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Inorganic glasses are viscoelastic materials since they exhibit, below as well as above their glass transition temperature, a viscoelastic deformation under stress, which can be decomposed into a sum of an elastic part, an inelastic (or viscous) part and a delayed elastic part. The delayed elastic part is responsible for the non-linear primary creep stage observed during creep tests. During a stress relaxation test, the strain, imposed, is initially fully elastic, but is transformed, as the stress relaxes, into an inelastic and a delayed elastic strains. For linear viscoelastic materials, if the stress relaxation function can be fitted by a stretched exponential function, the evolution of each part of the strain can be predicted using the Boltzmann superposition principle. We develop here the equations of these evolutions, and we illustrate their accuracy by comparing them with experimental evolutions measured on GeSe 9 glass fibers. We illustrate also, by simple equations, the relationship between any kind of relaxation function based on additive contribution of different relaxation processes and the delayed elastic contribution to stress relaxation: the delayed elasticity is directly correlated to the dispersion of relaxations times of the processes involved during relaxation.

Introduction

Many models (please see [START_REF] Phillips | Stretched exponential relaxation in molecular and electronic glasses[END_REF] and references therein) have been proposed to explain the non-exponential relaxation in amorphous solids, and to give an "unified" theory, valid for any kind of relaxation, including stress relaxation.

Nevertheless, the "delayed elasticity", that inevitably emerges when the stress relaxation is not exponential, is not often discussed (see [START_REF] Goldstein | Viscous liquids and the glass transition: a potential energy barrier picture[END_REF] where this problem is detailed) despite its preponderance during the first stages of relaxation.

It is known, since more than a century and a half [START_REF] Weber | Über die elastizität der seidenfäden[END_REF], that the primary or transient creep stage of almost all kind of materials is due to delayed elasticity. It is not only due to a possible non-equilibrium viscosity, as astonishingly suggested by the ASTM standard for viscosity measurements (ASTM C1350-96, 1996, since glasses under equilibrium also exhibit primary creep stage. Delayed elasticity is also named "anelasticity" (mainly for metals [START_REF] Zener | Elasticity and Anelasticity of Metals[END_REF]), or "retarded elasticity" [START_REF] Goldstein | Viscous liquids and the glass transition: a potential energy barrier picture[END_REF] and was originally named "elastic aftereffect" ("elastiche nachwirkung" [START_REF] Boltzmann | On the theory of the elastic aftereffect[END_REF]).

The delayed elastic deformation is a reversible deformation ("elastic") which does not recover instantaneously ("delayed" or "retarded") when the stress is released. The history of the investigation of the "aftereffect", taking its origins in Göttingen with Weber and Kohlrausch, has been nicely summarized by [START_REF] Bendler | Levy (stable) probability densities and mechanical relax-723 ation in solid polymers[END_REF]. The primary creep stage is supposed to occur in any kind of material, including ceramics, crystalline metallic materials, polymers, inorganic glasses, metallic glasses, as 27 well as biomaterials. Thus, any kind of material is supposed to [START_REF] Maxwell | On the dynamical theory of gases[END_REF] (or more precisely a "Maxwell-Wiechert model" [START_REF] Wiechert | Gesetze der elastischen nachwirkung für constante temperatur[END_REF]), where the relaxation modulus is decomposed into a Prony series. The equations, depicting the correlation between a non-exponential relaxation corresponding to a Maxwell-Wiechert model and the primary creep stage (including the delayed elasticity), have been set by Bennewitz and Rötger (see [START_REF] Simha | On relaxation effects in amorphous media[END_REF]). The Maxwell-Wiechert model is efficient to describe the viscoelastic behavior of silica glasses [START_REF] Duffrène | Viscoelastic behavior of a soda-lime-silica glass: inadequacy of the KWW function[END_REF], but it requires a large number of parameters as compared to the well-known stretched exponential or "KWW" (Kohlrausch-Williams-Watts) function (Kohlrausch, 1854):

ϕ(t) = Q(t) -Q ∞ Q(0) -Q ∞ = exp       - t τ 0 β       ( 1 
)
where ϕ is the relaxation function, describing the normalized relaxation of a quantity Q (here the shear stress), Q ∞ being its asymptotic value at t → +∞. β is the stretch exponent, and τ 0 is a characteristic time, related to the average (or "Maxwell's") relaxation time τ a by the following relation:

τ a = +∞ 0 ϕ(t)dt = Γ (1/β) β τ 0 ( 2 
)
where Γ is the Gamma function:

Γ(x, y) = ∞ y s x-1 e -s ds
and Γ(x) = Γ(x, 0). The average relaxation time corresponds to the average lifetime of an atom/molecule or group of atoms/molecules in their equilibrium position (here when they are shifted by the stress) [START_REF] Frenkel | Über die wärmebewegung in festen und flüssigen körpern[END_REF]. The stretched exponential function (SEF) has various advantages. The main one is that it has only two parameters to describe the full relaxation spectrum. The second one is that the "departure" from the exponentiality is directly signed by the stretch exponent β. So, according to the idea of Wiechert, the delayed elasticity is directly signed by β. The SEF has been widely used to describe various kind of relaxation processes (see for example [START_REF] Phillips | Stretched exponential relaxation in molecular and electronic glasses[END_REF]), but this function is not physically sound, first because regarding its time derivation:

dϕ(t) dt = -ϕ(t) t τ 0 β β t -1 (3) 
the relaxation rate tends to -∞ when t → 0 + , for 0 < β < 1. [START_REF] Duffrène | Viscoelastic behavior of a soda-lime-silica glass: inadequacy of the KWW function[END_REF] have also pointed out the inadequacy of the SEF to describe the viscoelastic behavior of soda-limesilica glasses. Additionally, they have shown that if we assume that the shear relaxation function corresponds to a SEF, the primary creep stage can not be fitted by another SEF, as it is often done.

In spite of the weaknesses of the SEF, we will show here, experimentally, how much the idea of Duhamel convolution equation [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]:

123 t = t 0 G(t -s) × J(s)ds = t 0 G(s) × J(t -s)ds (6) 124 
Or, considering the well-known [START_REF] Lee | Stress analysis in viscoelastic bodies[END_REF]-Mandel correspon-125 dence principle, the equations, for linear elasticity being:

126 γ = µ -1 σ and σ = µ γ so that: µ -1 µ = 1 (7) 127
where µ is the elastic shear modulus, we obtain for linear vis-128 coelasticity, considering G and J as the viscoelastic counter-129 parts of µ and µ -1 respectively: where η is the shear viscosity. Using Eq.( 6), we also obtain:

130 γ * = J * σ * and σ * = G * γ * so that: J * G * = 1 (8) 131 where f * is the Laplace-Carson transform of f : f * = s × L( f ), 132 L( f )
141 J d (t) = L -1 1 s 2 L(G(t)) - t η - 1 µ (10)
This decomposition of J is clearly assumed for various wellknown models. This is the case for the Burger's model, the generalized Burger's model, and for any kind of model or function describing J with a retardation function (a function corresponding to φ(t) = 1 -J d (t)/J d (0)). Other models, describing the shear relaxation modulus, such as the Maxwell-Wiechert model, implicitly assume this division of J, since the Burger's model is equivalent to a Maxwell-Wiechert model with two cells. Accordingly, the shear distortion, itself, can be divided into three components, associated with J e , J d and J η : an elastic distortion γ e , reversible, a delayed elastic distortion γ d , reversible but with delay, and an inelastic distortion γ η , irreversible. We can write, using the Boltzmann superposition principle [START_REF] Boltzmann | On the theory of the elastic aftereffect[END_REF] or the Lee-Mandel correspondence principle:

γ c (t) = t -∞ J c (t -s) dσ(s) ds ds or γ * c (s) = J * c (s)σ * (s) (11)
where c = e, d or η. With:

γ(t) = γ e (t) + γ d (t) + γ η (t) & J(t) = J e (t) + J d (t) + J η (t)(12)
So, we can also write:

γ e (t) = σ(t) µ γ η (t) = t -∞ σ(s) η ds (13) γ d (t) = γ(t) -γ e (t) -γ η (t)
Regarding these equations, and assuming γ η (t) = 0 if t < 0, we can deduce that:

η = σ(t) γη (t) (14) 
This is the conventional "newtonian viscosity". But, using

Eq.( 6) we also have the following relation, known as the "Ferry's relation" [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]:

η = +∞ 0 G(t) dt (15) 

Delayed elasticity

Using Eq.( 10) and ( 11), we can see that there is no delayed elasticity, for any kind of stress history, only if J d (t) = 0. It leads to (Eq.( 6) & ( 9)):

J(t) = 1 µ + t η and G(t) = µ exp - t µ η (16) 
The average shear relaxation time τ a , according to the Maxwell's relation [START_REF] Maxwell | On the dynamical theory of gases[END_REF] corresponds to: τ a = η/µ.

In other words, the only possibility to observe no delayed elasticity is to have an exponential relaxation. It clearly illustrates the assertion of [START_REF] Wiechert | Gesetze der elastischen nachwirkung für constante temperatur[END_REF] that the delayed elasticity comes from a non-exponential relaxation. The equation of [START_REF] Simha | On relaxation effects in amorphous media[END_REF], giving the relationship between a creep curve and the distribution of relaxation times leads to the same con- 

G(t) = µ ϕ(t) where ϕ(t) = exp       - t τ 0 β       ( 17 
)
190
where 0 < β < 1. Using a SEF, it is not possible to obtain an 191 analytic form of J d in Eq.( 10), since the SEF has no Laplace-192 transform [START_REF] Duffrène | Viscoelastic behavior of a soda-lime-silica glass: inadequacy of the KWW function[END_REF]. But, we can assume:

193 J d (t) = 1 µ d (1 -φ(t)) ( 18 
)
194
where φ is a retardation function (φ(0) = 1 and lim t→+∞ φ(t) = 0), 195 and µ -1 d corresponds to the asymptotic value of J d (t) (when t → 196 +∞). According to [START_REF] Duffrène | Viscoelastic behavior of a soda-lime-silica glass: inadequacy of the KWW function[END_REF]:

197 1 µ d = 1 µ Γ(1 + 2/β) (Γ(1 + 1/β)) 2 -1 (19) 198 
Thus, if we perform a creep test (constant stress σ 0 ), the de-199 layed elastic distortion continuously increases over time, and 200 depends on σ 0 , µ, β. According to (Eq.( 11)):

201 γ d∞ = lim t→+∞ γ d (t) = σ 0 µ d = γ 0 Γ(1 + 2/β) (Γ(1 + 1/β)) 2 -1 ( 20 
)
202
where γ 0 = σ 0 /µ, is the initial shear distortion, fully elastic. 

208

Now, if instead of performing a creep test, we perform a shear 209 relaxation test on a linear viscoelastic body, so that:

210 γ(t) = γ 0 H(t) (21) 

211

H being the Heaviside function. Assuming that the relaxation 212 function is a SEF, we have, using Eq.( 4) and ( 17), for t ≥ 0:

213 γ e (t) = γ 0 ϕ(t) = γ 0 exp       - t τ 0 β       ( 22 
)
214

And according to the Hooke's law: σ(t) = µ γ e (t). Using

215

Eq.( 13), we have: Since G(t) = µ ϕ(t), using Eq.( 2) & ( 15), we have η = 222 µ τ a (well known "Maxwell's relationship"). Substituting, in 223 Eq.( 23), η by this latter expression and t 0 ϕ(s)ds by the expres-224 sion found in Eq.( 24), we have:

216 γ η (t) = t 0 σ(s)ds η = µ γ 0 t 0 ϕ(s)ds η ( 
220 t 0 ϕ(s)ds = τ β       Γ 1 β -Γ       1 β , t τ 0 β             ( 
225 γ η (t) = γ 0             1 - Γ 1/β, t τ 0 β Γ(1/β)             (25) 226
Finally, using Eq.( 13):

227 γ d (t) = γ 0             Γ 1/β, t τ 0 β Γ(1/β) -ϕ(t)             ( 26 
)
228

In order to eliminate τ 0 in these latter equations, to highlight 229 the role of the exponent β, let us introduce:

230 Λ = σ(0) -σ(t) σ(0) = 1 -ϕ(t) ( 27 
)

231

Λ is the relative fraction of stress relaxed. The total shear dis-232 tortion is γ = γ 0 for t ≥ 0, so that the relative fraction of each

233 distortion component is: 234 γ e (Λ) γ 0 = 1 -Λ (28) 235 γ η (Λ) γ 0 = 1 - Γ(1/β, -ln (1 -Λ)) Γ(1/β) (29) 236 γ d (Λ) γ 0 = Λ -1 + Γ(1/β, -ln (1 -Λ)) Γ(1/β) ( 30 
)
237

We can calculate when the delayed elasticity will reach its max-238 imum, when ϕ is a SEF, by solving dγ d /dΛ = 0. The maximum 239 is obtained, if 0 < β < 1 when:

240 Λ M = 1 -exp -(Γ (1/β)) β 1-β (31) 241
Inserting Eq.( 31) in Eq.( 30), we obtain the maximum delayed 242 elastic distortion during shear relaxation (γ d (Λ M )/γ 0 ): 

243 γ d (Λ M ) γ 0 = Γ(1/β, Γ (1/β) β 1-β ) Γ(1/β) -exp -Γ (1/β) β 1-β (32)

258

The shear relaxation and recovery tests allow for the measure-259 ments of all the distortion components during relaxation. This 260 test is described in details in [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and in refer- process, called "photorelaxation" [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF], the glass relaxes faster and tends to equilibrate in a photoinduced equilibrium which is not its natural configurational equilibrium [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF]. Thus, after two months, its viscosity becomes constant [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF]. It can be illustrated by the fact that the shear relaxation function remains unchanged if the test is done after two months under irradiation, and after four months under irradiation (see [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and references therein). Without irradiation, at room temperature, the glass would not reach equilibrium before, at least, a decade [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF].

These experimental conditions are chosen for the following reasons. Firstly, below the glass transition, the characteristic time for stress relaxation is large (here, it corresponds to weeks) as compared to the time required (a few seconds, so at least 5 orders of magnitude lower) for loading (to apply the constant strain) and unloading (to measure the elastic part of strain), so that we can consider that the loading and unloading periods do not impact on the measurements. This is in sharp contrast to the situation above the glass transition.

Moreover, the full experimental setup is not instrumented (there are no displacement sensors or load cells) since there are no fast dynamics to measure; therefore it has the advantage of preventing any drift of sensors that could can impact on the measurements. Finally, at low temperatures the delayed elasticity is to be more exacerbated (i.e.: the stretch exponent is usually lower).

We have also performed various mechanical tests on these glass fibers to assess the linearity of the viscoelastic behavior in the stress range investigated here (see [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and references therein). No non-linear viscoelastic behavior is detectable below, at least, 55 MPa. Because the shear relaxation test is a torsional test, the imposed distortion linearly increases with r, the distance from the neutral axis of the fiber.

The maximum imposed distortion, at the surface of the fiber, was γ 0 = 4 ± 0.05 10 -3 . The shear elastic modulus being µ = 4.6 GPa (see [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and references therein), it corresponds to an initial stress of σ(0) = 18.4 MPa.

Results

348

The relaxation function of the GeSe 9 fibers is plotted in Fig- 349 ure 2. The relaxation function ϕ is plotted as lnln [ϕ(t)] vs.

350 ln (t), since: ) vs. ln (t) (t is time), compared with a previous measurement (blue cross) (see [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and references therein).

351 ln       -ln       exp       - t τ 0 β                   = β ln (t) -β ln (τ 0 ) (34 
We obtain here, by least square fitting: β = 0.581 and 

358

The stretch exponent previously found was β = 0.59, in very 359 good agreement with that found here. The average relaxation 360 time previously found was somewhat lower (τ a = 25.9 days,

361

Eq.( 2), with τ 0 = 16.8 days), but Figure 2 illustrates that this 362 small discrepancy corresponds to the experimental uncertainty.

363

The shear relaxation function previously measured was bimodal 364 (see [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] exactly why, and we will leave here this issue as unsolved.

371

The evolution of the inelastic and delayed elastic distortion, 22), ( 25) and ( 26), respectively, with β = 0.58 and τ 0 = 18.5 days for the full lines, and β = 0.59 and τ 0 = 16.8 for the dashed lines.

waiting for the delayed elastic to fully recover (see details in 381 [START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF]). For the last data plotted in Figure 3, We can note that if β → 0, the delayed elasticity increases.

430

Nevertheless, if β = 0, there is no relaxation anymore (ϕ(t) = 431 1), but the delayed elastic contribution predicted is 100%. Ac-432 cording to Eq.( 6), we also observe that if [START_REF] Yang | Physical properties of the Ge x Se 1-x glasses in the 0 < x < 0.42 range in correlation with their structure[END_REF] and references therein). But the energy barrier for a specific type of local relaxation event (LRE) varies from one site to another, at least because of the inherent disorder of glasses [START_REF] Simha | On relaxation effects in amorphous media[END_REF].

β → 0, so if G(t) → µ
An atom or a structural unit can also contribute to different types of LRE, with different energy barriers.

At a given temperature, under no stress, the LRE will occur in random directions, producing, macroscopically, no net strain.

Under relatively low stress, the energy barrier is slightly biased (not enough biased to induce non-linear viscoelasticity) favoring the relaxation events in a specific direction. These events do not necessarily correspond to global atomic displacements:

it can correspond to a transformation or a configuration change as described by [START_REF] Argon | Free energy spectra for inelastic deformation of five 713 metallic glass alloys[END_REF]. Indeed, during a relaxation test, the strain is constant, so that there is, macroscopically, no displacement, but just a "conversion" of the initial elastic displacement into delayed elastic and inelastic displacements. During a relaxation test all the atoms move initially only "elastically" and are able to go back to their initial position. As soon as even a single atom (or more generally speaking a "relaxing unit", a "cooperatively rearranging subsystem" or a "cooperatively rearranging region" [START_REF] Dyre | Source of non-arrhenius average relaxation time in glassforming liquids[END_REF]) has overcome its energy barrier to reach a new stable position/configuration the delayed elasticity can emerge. If the stress is released, all the others atoms will try to go back to their initial position, while this atom will not be able anymore, without overcoming again an energy barrier and will disturb the return of the other atoms.

Macroscopically, the material is not able anymore to recover instantaneously its initial shape. This atom is stressed by all other (and by reaction, stressed itself the other atoms), so that a driving force exists to induce its forward motion to its initial configuration. But since there is an energy barrier to overcome, this motion is delayed: this is the delayed elasticity.

Consequently, each initial LRE only produce delayed elasticity, it will be turn into inelasticity (it will be irreversible) only when its initial configuration will be not reachable anymore:

when the surrounding network will have produced their own LRE to erase the memory of this initial configuration. This idea has been developed by [START_REF] Orowan | Creep in metallic and non-metallic materials[END_REF] and nicely discussed latter by [START_REF] Goldstein | Viscous liquids and the glass transition: a potential energy barrier picture[END_REF]. We can go deeper into this idea by using a concept discussed by [START_REF] Argon | Delayed elasticity in inorganic glasses[END_REF]. Considering one specific subsystem and its corresponding LRE, with its specific energy barrier (i.e.: its specific relaxation time), we understand that if the subsystem wants to move or to change its configuration, it has no reason to have exactly the free space it needs to do so: it will "shove" the surrounding network [START_REF] Trachenko | Slow dynamics and stress relaxation in a liquid as an elastic medium[END_REF], at it is nicely depicted by the shoving-model of [START_REF] Dyre | Source of non-arrhenius average relaxation time in glassforming liquids[END_REF], to reach a new state. The difference between the new and the initial states will let the surrounding network partially "shoved", if it can not synchronously re-arrange. In other words, the subsystem will occupy a new site by elastically distorting it and stressing it or, at least will modify its configuration by stressing the surrounding network (let us name it the "shoving-stress", ShS). The delayed elasticity is driven by the modification of the stress of the surrounding network of the subsystem [START_REF] Argon | Delayed elasticity in inorganic glasses[END_REF]. The shoving-stress (ShS) in- 

ϕ(t) = N i=1 ρ i exp - t τ i ( 35 
)
ρ i is the weight of the i th process having a relaxation time 555 τ i , verifying N i=1 ρ i = 1 (this is the Maxwell-Wiechert model 556 [START_REF] Wiechert | Gesetze der elastischen nachwirkung für constante temperatur[END_REF]). according to the definition of the relaxation function, we have: The equations ( 41) and ( 42) are in perfect agreement with 618 the concepts proposed by [START_REF] Orowan | Creep in metallic and non-metallic materials[END_REF], [START_REF] Goldstein | Viscous liquids and the glass transition: a potential energy barrier picture[END_REF] 619 and [START_REF] Argon | Delayed elasticity in inorganic glasses[END_REF]. All initial and "fast" LRE, with small re- 

562 n(t) n T = 1 -ϕ(t) = N i=1 ρ i 1 -exp - t τ i (36) n r (t) n T = +∞ 0 1 - τ τ a ρ(τ) 1 -exp - t τ dτ ( 
ρ(τ) = exp -τ 4τ 0 2 √ πττ 0 → ϕ(t) = exp        - t τ 0 1/2        (44) 635 
With this ρ(τ), we have τ a = 2τ 0 . We set n T = 1 in order to 636 normalize the functions. Then we obtain the contribution (n + r )

637

of the fast processes (τ ≤ τ a ) to n r , by replacing " + ∞" in 638 the integral of Eq.( 41) by τ a , and the contribution (n - r ) of the 639 slow processes (τ ≥ τ a ) to n r by replacing "0" in the integral of of Eq.( 41) by τ a . n + r and n - r are plotted on Figure 5 with the 641 total amount of n r . Note that n r is directly found using Eq.( 41) 642 but also using Eq.( 26), these two equations being analytically time (normalized by τ 0 ) for a SEF with β = 1/2, of the amount of reversible LRE (n + r ) produced by all the processes having relaxation times lower than τ a (green line) and of the amount of reversible LRE (n - r ) annihilated by all the processes having relaxation times larger than τ a (red line). [START_REF] Trachenko | Slow dynamics and stress relaxation in a liquid as an elastic medium[END_REF] and thus to the initial ap-663 plied stress (σ(t = 0) = σ 0 ). Indeed, the model assumes 664 that all LRE induce the same ∆p 0 [START_REF] Trachenko | Slow dynamics and stress relaxation in a liquid as an elastic medium[END_REF], so that: 665 σ(t) = (n Tn(t))∆p 0 and ∆p 0 = σ 0 /n T , the final number of 666 LRE (n T ) at the end of the relaxation being stress independent 667 [START_REF] Trachenko | Slow dynamics and stress relaxation in a liquid as an elastic medium[END_REF]. Thus, this model can clearly not be applied 

Models without initial distribution of relaxation times

  28 exhibit, during creep flow, delayed elasticity. Since nowadays 29 a lot of commercial machines are available for measuring 30 the steady state viscosity from the creep rate, it is sometimes 31 forgotten that the creep rate is not solely controlled by the 32 viscosity. During the primary creep stage, the creep rate is 33 mainly controlled by the delayed elasticity, and the viscosity 34 parameter can be measured only when the stationary creep 35 stage is reached. This, for inorganic glasses, below their glass 36 transition temperature, can take hours to days. Consequently, 37 a "continuous viscosity measurement", in the glass transition 38 range, below or just above (down to a viscosity of, let say, 39 10 9-10 Pa.s), based on the continuous creep rate measurement, 40 using continuous heating or cooling (no matter how slow 41 it is), does not even make sense, and will obviously tend 42 to give an "anomalous" apparent viscosity. In other words, 43 non-isothermal viscosity measurements are necessarily wrong, 44 because of the delayed elasticity. It underlines the necessity of eralized Maxwell model

203

  Considering a constant γ 0 , this equation illustrates that γ d∞ is 204 maximum if β → 0 and minimum if β → 1. This is illustrated 205 on Figure 1. The equation of Duffrène et al. (1997) illustrates 206 that the stretch exponent is an indicator of the delayed elasticity 207 level.

  Research, Inc., Champaign, Illinois, version 5.2 219 edition, 2005),

Figure 1 :

 1 Figure1: Evolution of the maximum relative (normalized by the initial distortion γ 0 ) delayed elastic distortion during conventional mechanical tests for viscoelastic materials, as a function of the stretch exponent (β) of stress relaxation. On the left axis, during a relaxation test (γ d /γ 0 , blue) and on the right axis during a creep test (γ d∞ /γ 0 , red).

244

  This maximum is only a function of β: neither τ 0 nor µ appears 245 in this equation. The stretch exponent is the only indicator of 246 the maximum delayed elastic contribution to shear stress re-247 laxation. Therefore, as for creep, we will see that the delayed 248 elasticity is maximum if β → 0 and minimum (null) if β → 1. 249 3. Experiments 250 In order to challenge all the equations we have developed 251 in the previous section, we have performed shear relaxation 252 and strain recovery tests on GeSe 9 glass fibers by a tor-253 sional method. The glass and fibers synthesis is described in 254 (Gueguen, King, Keryvin, Sangleboeuf, Rouxel, Bureau, and 255 Lucas, 2013). The fibers were 300 µm in diameter, 130 mm 256 in length. The glass transition temperature of the GeSe 9 glass, 257 measured by DSC at 10 • C/min, is 92 • C (Gueguen et al., 2013).

  261ences therein. The shear distortion γ 0 is imposed to the fiber by 262 imposing a rotation to one of its ends (the other is fixed) with an 263 angle α 0 (here α 0 = 200 ± 2 • ). The rotation angle is measured 264 thanks to a thin needle fixed on the fiber, with a uncertainty of 265 ±2 • . Each experimental point corresponds to a given fiber, the 266 fibers being all tested under exactly the same conditions. The 267 angle is imposed during a given period, up to a time "t" (only t 268 varies from a fiber to another). At the time t the fiber is released, 269 the elastic distortion instantaneously recovers, and the corre-270 sponding recovered angle (α e ) is measured. Then, the delayed 271 elastic distortion recovers over time and the corresponding ad-272 ditional recovered angle, evolving over time, is measured until 273 it reaches an equilibrium value (α d ). The remaining angle (α η ) 274 is due to the inelastic distortion (α 0 = α e + α d + α η ). It takes 275 usually few seconds to measure an angle with the naked eye. 276 The relationship between the distortion and the corresponding 277 angle is (classical beam theory): 278 γ 0 = r α 0 /L & γ c = r α c /L (33) 279 where c = e, d or η again, L the fiber length and r the 280 distance from the neutral axis of the fiber. All the distortion 281 components are normalized by γ 0 , so that r and L have no 282 impact on the results and their uncertainty. The error bars on 283 normalized distortions are estimated taking into account the 284 "worst" situation: α c is measured with an error of +2 • and 285 α 0 with an error of -2 • (upper limit of the error bar), and 286 conversely (lower limit). The relaxation function corresponds 287 to the normalized shear elastic distortion (Gueguen et al., 288 2013). These relaxation recovery tests have been performed at 289 room temperature (20 • C).

290 291

 290 photosensitivity. The glass fibers have been irradiated during two months by two light bulbs (Philips MASTER TL-D 36W/840) that are separated from fibers by almost 1.20 m, and the relaxation-recovery tests have been also performed under permanent irradiation. Because of a specific photoinduced

Figure 2 :

 2 Figure 2: Experimental relaxation function obtained here (open red circle), plotted as ln(ln (ϕ(t))) vs. ln (t) (t is time), compared with a previous measurement (blue cross) (see[START_REF] Gueguen | Photoinduced aging and viscosity evolution in se-rich Ge-Se glasses[END_REF] and references therein).

353 τ 0

 0 = 18.5 days (τ a = 29.1 days, according to Eq.(2)), for 354 the five points of Figure 2. The relaxation function obtained 355 here is compared with another one, previously obtained in the 356 same conditions (see (Gueguen et al., 2013) and references 357 therein). It illustrates the reproducibility of this measurement.

Figure 3 :

 3 Figure 3: Evolution of each distortion contribution. The red, blue and green open circles correspond to γ c = γ e , γ d and γ η , respectively. The size of the circles corresponds to the error bar. The red, green and blue lines correspond to Eq.(22), (25) and (26), respectively, with β = 0.58 and τ 0 = 18.5 days for the full lines, and β = 0.59 and τ 0 = 16.8 for the dashed lines.

382Figure 4 :

 4 Figure 4: Theoretical evolutions (Eq.(28), (29) and (30)) of each distortion contribution (γ c = γ e , γ d or γ η ) as a function of Λ, the fraction of stress relaxed, for various β values. The open circles correspond to experimental data. The theoretical evolutions are also plotted for β = 0.59, but they are practically indiscernible from those plotted using β = 0.58.
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  duced in the network surrounding the moving subsystems is 501 macroscopically self-equilibrated (just like for an Eshelby's in-502 clusion, the LRE corresponding to an eigenstrain): it does not 503 increase the macroscopic external stress. When the strain re-504 covery starts, this macroscopic stress becomes null, but at the 505 microscopic scale, the ShS will slowly relax, by allowing back-506 ward motions: this is the delayed elasticity recovery. The con-507 cepts of Orowan/Goldstein or Argon have the same basis: all 508 LRE contribute initially only to delayed elasticity, they con-509 tribute to inelasticity only because they tend to make the posi-510 tion/configuration changes of the previous LRE irreversible. 511 During a relaxation test, the macroscopic stress applied re-512 laxes, the elastic energy initially stored being dissipated during 513 LRE (Maxwell, 1868). Each event induces a local ShS, increas-514 ing the amount of delayed elasticity. Nevertheless, since this 515 ShS can also relax, there is a competition between a creation 516 and a relaxation of the ShS. Accordingly, the delayed elastic-517 ity, during a relaxation test, increases and reaches a maximum 518 before decreasing. This is illustrated here on Figure 3. Dur-519 ing a creep test, the delayed elasticity created saturates when 520 the rate of creation of ShS equilibrates with its rate of relax-521 ation (Argon, 1968). During a relaxation test, each LRE decays 522 the stress, that is not fully redistributed to the surrounding net-523 work. During a creep test, a subsystem bears less stress after a 524 LRE, but all the stress it does not bear anymore is fully redis-525 tributed on the surrounding network Just imagine a truss made 526 of various beams, and break a beam of this truss (by analogy 527 to a LRE): if the truss is bearing a constant load, all the other 528 beams will support more load to exactly compensate the load 529 the broken beam was bearing, and will deform more (this is 530 the creep test). If a constant distortion is imposed to the truss, 531 once a beam is broken, the truss is less rigid, the load needed 532 to impose the same distortion will globally decrease (this is the 533 relaxation test).534 5.3. Generalization to any kind of relaxation functions 535 There are two standard ways to model a linear viscoelastic 536 body by using cells made of springs and dashpots. The first 537 one is to use "parallel" models, such as the Maxwell-Wiechert 538 model, where there is no individual cell that induces delayed 539 elasticity. The second one is to use "serial" models, such as 540 the Burgers's model, where the delayed elasticity is usually due 541 to Kelvin-Voigt cells. For this latter solution, we have cells to 542 model the delayed elasticity, but without clear microscopical 543 explanation for it: we could assume that some LRE (associated 544 with Kelvin-Voigt cells) induce exclusively delayed elasticity 545 and some others induce exclusively viscous flow, without inter-546 acting with each other. But serial models can just be considered 547 as other kind of representations of parallel models. For the par-548 allel models, we can assume that a relaxation function can be 549 decomposed as a weighted sum of exponential processes, each 550 of these processes having its own relaxation time. Let us as-551 sume a finite number (N) of relaxation processes (a discontinu-552 ous relaxation spectrum) having an additive contribution:

  t) be the numbers of LRE that have already occurred 559 at t and n T is the total number of LRE that will occur until the 560 stress becomes null. The LRE producing the stress relaxation, 561
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  laxation times (τ ≤ τ a ), first mainly induce delayed elastic-621 ity (they induce reversible events: n r > 0): their initial po-622 sition/configuration/state are still reachable. Then, the "slow" 623 LRE, with large relaxation times (τ ≥ τ a ), occur and tend to 624 make, by their own configuration/position changes, the initial 625 states of fast LRE unattainable (they annihilate the reversibil-626 ity of the first LRE: n r < 0). It is easy to see that "slow" LRE 627 only annihilate the reversibility of the events produced by "fast" 628 LRE, since their respective contributions to n r exactly compen-629 sate each other. Indeed, the term 1 -τ τ a ρ(τ) satisfies: an illustration of these equations using a sim-632 ple ρ(τ), for which we will have only analytical solutions (John-633 ston, 2006):

  634

643Figure 5 :

 5 Figure5: Illustration of the total number of reversible LRE (n r , black line) vs. time (normalized by τ 0 ) for a SEF with β = 1/2, of the amount of reversible LRE (n + r ) produced by all the processes having relaxation times lower than τ a (green line) and of the amount of reversible LRE (n - r ) annihilated by all the processes having relaxation times larger than τ a (red line).
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  [START_REF] Trachenko | Slow dynamics and stress relaxation in a liquid as an elastic medium[END_REF] is, to our knowledge, the only one propos-650 ing a model corresponding to a SEF, where no pre-set distri-651 bution of relaxation time (ρ(τ)) exists. In this model, since 652 a relaxing unit "support less stress after relaxation, later LRE 653 should support more stress in order to counterbalance" (Tra-654 chenko, 2007), thus increasing their energy barrier (actually, 655 since the macroscopic stress relaxes, the later LRE will rather 656 support less stress, they should instead support a new stress 657 field, self equilibrated). Consequently, the relaxation time of 658 the LRE increases with the number of LRE that have already 659 occurred, leading to a stretched exponential decay of the macro-660 scopic stress. One consequence of the model is that the stretch 661 exponent is inversely proportional to the stress decay (∆p 0 ) 662 due to a LRE

  668as a relaxation function for linear viscoelastic materials, such 669 as the glass investigated here, since the relaxation function is 670 stress dependent. Since we do not know other models of stress 671 relaxation in the framework of linear viscoelasticity, without 672 pre-set distribution of relaxation times, we can assume that, in 673 that framework, the delayed elasticity can just be seen as a con-674 sequence of the broadness of the distribution. 675 6. Conclusion 676 According the idea of Wiechert, the delayed elasticity takes 677 its origins in the non-exponentiality of the stress relaxation, and 678 thus, is due to a dispersion of relaxation times of all the pro-679 cesses involved during relaxation. In spite of the fact that the 680 SEF is not physically sound and can not be used alone (with-681 out an other model at t → 0 + ) as a phenomenological model 682 (Duffrène et al., 1997), the experimental investigation done here 683 highlights that this function can be perfectly suitable to describe 684 the detailed viscoelastic deformation of a linear viscoelastic 685 material. The equations developed here highlight the role of de-686 layed elasticity during relaxation and shows that the maximum 687 delayed elasticity reached during relaxation is only correlated to 688 the stretch exponent (β). This maximum continuously increases 689 as β decreases. Actually, the delayed elasticity is the result of 690 the broadness (connected to β for a SEF) of the distribution 691 function of relaxation times, whatever this function. For a dis-692 tribution function d(τ), the relative delayed elasticity induced 693 (> 0) or annihilated (< 0) by the process having a relaxation 694 time τ is: (1 -τ/τ a ) d(τ), where τ a is the average relaxation 695 time of the whole system. At short time, the subsystems having 696 low relaxation times induce large amount of delayed elastic-697 ity by moving in a network of slow subsystems that can only 698 accommodate the motions elastically. At long time, these slow 699 subsystems, by moving, accommodate inelastically the motions 700 of the fast subsystems and annihilate the delayed elasticity by 701 turning it into inelasticity.
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  Additionally, since, to our knowledge, no inorganic glasses 703 exhibits or even approach a Maxwell-Debye stress relaxation 704 (β → 1) until they are far above their glass transition tempera-705 ture (T g ), all of them exhibit delayed elasticity below and above 706 T g . Accordingly, viscosity measurements in this range must be 707 isothermal, to reach the stationary creep stage, or they will be 708 just absolutely wrong. Viscosity measurements made during 709 a continuous heating, just give almost something close to the 710 initial delayed elastic strain rate.
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  being the Laplace transform of f and s the variable in the

	133					
	134	Laplace s-domain.		
	135					
	136	The shear creep compliance J is often explicitly divided into
	137	a sum of three components: elastic J e time-independent, de-
	138	layed elastic J d (t) which converges to a time-independent value
	139	when t → +∞ and inelastic J η a linear function of time:	
	140	J e =	1 µ	and J η (t) =	t η	(9)

  and references therein): for t <17

	365	
	366	days, we have a first SEF, corresponding to the data plotted on
	367	Figure 2, but at t >17 days, the relaxation function deviates with
	368	a slower stretch exponent (β = 0.35). We can distinguish this
	369	deviation in Figure 2 (ln (17) ∼ 2.83). The new measurements
	370	performed here do not confirm the bimodality. We do not know

  ,

	433	
	434	there is no creep anymore, since J(t) → 1/µ. It is a clear illus-
	435	tration that the delayed elasticity is not itself able to produce a
	436	full stress relaxation.
		5.2. Origin of the delayed elasticity

437

Originally, the non-exponential relaxation, and so the exis-438 tence of various mechanisms of stress relaxation, and corre-439 sponding energy barriers, was attributed to the inhomogene-440 ity of glasses. There are various energy barriers first be-441 cause there are various structural units (in Ge-Se glasses, 442 there is GeSe 4/2 tetrahedra, connected in different ways, Sechains, probably Se-rings... (see

  41) 

	591	And the fraction of "irreversible LRE":		
	592	n i (t) n T	=	0	+∞	τ τ a	ρ(τ) 1 -exp -	t τ	dτ	(42)
	593	These two latter equations explicitly show that the delayed
	594	elasticity (the reversible LRE) directly comes from the differ-
	595	ence between the relaxation time τ (or τ i if the spectrum is
	596	discontinuous) of a specific LRE and the average relaxation
	597	time τ a . The relative proportion of reversible events produced
	598	by a process having relaxation times between τ and τ + dτ
	599 600	is: 1 -τ τ a ρ(τ)dτ. Obviously, if all the LRE have exactly the same relaxation time (τ = τ a ), we obtain n r (t) = 0 and
	601	n i (t) = n(t). None of the LRE produces reversible LRE, all
	602	are irreversible. So whatever the relaxation function based on
	603	a given distribution d(τ) used, the delayed elasticity comes
	604	from a "dispersion" of the relaxation times. Conversely, some
	605	viscoelastic bodies can exhibit delayed elasticity without
	606	viscous flow, they are called "viscoelastic solids" (as oppose to
	607	viscoelastic liquid (Lakes, 1998)). For such bodies, we may
	608	assume that some slow processes have very large relaxation
		times as compare to fast ones, enough large to consider that, at
	590									

609

the human scale, they can be set as infinite (relative Deborah 610 number 1). Thus, if at least the j th relaxation time (τ j ) 611 in Eq.(

35

), is set as infinite, then ϕ(t) = ρ j when t → +∞.

612

Additionally, according to Eq.(

42

), n i → 0, at any time, since 613 τ a → +∞. In other words, bodies with infinitely dispersed 614 relaxation times, but at least with one finite relaxation time, 615 exhibit only delayed elasticity. 616 617

Among the n LRE, a part of them have induced motions that 564 have let some subsystems in configurations where they can pro-565 duce delayed elasticity. These LRE can be considered as "re-566 versible", since the corresponding backward events occur when 567 the macroscopic stress is removed. Let n r be the number of such to the viscous strain. So, we have:

574

We first derive this expression, using Eq.( 23), n i /n T being 575 equivalent to γ η /γ 0 , according to Eq.( 36):

577

Then we directly obtain ṅr (t). After integration, and assum-578 ing that n r (0) = 0, it leads to the fraction of "reversible LRE":

Now, if we assume a continuous relaxation spectrum: