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Abstract

Inorganic glasses are viscoelastic materials since they exhibit, below as well as above their glass transition temperature, a viscoelas-
tic deformation under stress, which can be decomposed into a sum of an elastic part, an inelastic (or viscous) part and a delayed
elastic part. The delayed elastic part is responsible for the non-linear primary creep stage observed during creep tests. During a
stress relaxation test, the strain, imposed, is initially fully elastic, but is transformed, as the stress relaxes, into an inelastic and a
delayed elastic strains. For linear viscoelastic materials, if the stress relaxation function can be fitted by a stretched exponential
function, the evolution of each part of the strain can be predicted using the Boltzmann superposition principle. We develop here
the equations of these evolutions, and we illustrate their accuracy by comparing them with experimental evolutions measured on
GeSe9 glass fibers. We illustrate also, by simple equations, the relationship between any kind of relaxation function based on addi-
tive contribution of different relaxation processes and the delayed elastic contribution to stress relaxation: the delayed elasticity is
directly correlated to the dispersion of relaxations times of the processes involved during relaxation.
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1. Introduction1

Many models (please see (Phillips, 1996) and references2

therein) have been proposed to explain the non-exponential3

relaxation in amorphous solids, and to give an ”unified” theory,4

valid for any kind of relaxation, including stress relaxation.5

Nevertheless, the ”delayed elasticity”, that inevitably emerges6

when the stress relaxation is not exponential, is not often dis-7

cussed (see (Goldstein, 1969) where this problem is detailed)8

despite its preponderance during the first stages of relaxation.9

It is known, since more than a century and a half (Weber,10

1835), that the primary or transient creep stage of almost all11

kind of materials is due to delayed elasticity. It is not only12

due to a possible non-equilibrium viscosity, as astonishingly13

suggested by the ASTM standard for viscosity measurements14

(ASTM C1350-96, 1996), since glasses under equilibrium also15

exhibit primary creep stage. Delayed elasticity is also named16

”anelasticity” (mainly for metals (Zener, 1948)), or ”retarded17

elasticity” (Goldstein, 1969) and was originally named ”elastic18

aftereffect” (”elastiche nachwirkung” (Boltzmann, 1876)).19

The delayed elastic deformation is a reversible deformation20

(”elastic”) which does not recover instantaneously (”delayed”21

or ”retarded”) when the stress is released. The history of the22

investigation of the ”aftereffect”, taking its origins in Göttingen23

with Weber and Kohlrausch, has been nicely summarized by24

Bendler (1984). The primary creep stage is supposed to occur25

in any kind of material, including ceramics, crystalline metallic26

materials, polymers, inorganic glasses, metallic glasses, as27

well as biomaterials. Thus, any kind of material is supposed to28

exhibit, during creep flow, delayed elasticity. Since nowadays29

a lot of commercial machines are available for measuring30

the steady state viscosity from the creep rate, it is sometimes31

forgotten that the creep rate is not solely controlled by the32

viscosity. During the primary creep stage, the creep rate is33

mainly controlled by the delayed elasticity, and the viscosity34

parameter can be measured only when the stationary creep35

stage is reached. This, for inorganic glasses, below their glass36

transition temperature, can take hours to days. Consequently,37

a ”continuous viscosity measurement”, in the glass transition38

range, below or just above (down to a viscosity of, let say,39

109−10 Pa.s), based on the continuous creep rate measurement,40

using continuous heating or cooling (no matter how slow41

it is), does not even make sense, and will obviously tend42

to give an ”anomalous” apparent viscosity. In other words,43

non-isothermal viscosity measurements are necessarily wrong,44

because of the delayed elasticity. It underlines the necessity of45

a better knowledge of this delayed elastic deformation.46

47

If it is quite straightforward to measure the delayed elastic-48

ity during a creep-recovery test, it becomes more delicate to49

evaluate it during a relaxation test. Wiechert (1893) is prob-50

ably the first who has suggested that the delayed elasticity51

takes its origin in the non-exponentiality of the stress relax-52

ation. A non-exponential relaxation can be modelled by a gen-53
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eralized Maxwell model (Maxwell, 1868) (or more precisely54

a ”Maxwell-Wiechert model” (Wiechert, 1893)), where the re-55

laxation modulus is decomposed into a Prony series. The equa-56

tions, depicting the correlation between a non-exponential re-57

laxation corresponding to a Maxwell-Wiechert model and the58

primary creep stage (including the delayed elasticity), have59

been set by Bennewitz and Rötger (see (Simha, 1942)). The60

Maxwell-Wiechert model is efficient to describe the viscoelas-61

tic behavior of silica glasses (Duffrène, Gy, Burlet, and Piques,62

1997), but it requires a large number of parameters as com-63

pared to the well-known stretched exponential or ”KWW”64

(Kohlrausch-Williams-Watts) function (Kohlrausch, 1854):65

ϕ(t) =
Q(t) − Q∞
Q(0) − Q∞

= exp
− (

t
τ0

)β (1)66

where ϕ is the relaxation function, describing the normalized67

relaxation of a quantity Q (here the shear stress), Q∞ being its68

asymptotic value at t → +∞. β is the stretch exponent, and τ069

is a characteristic time, related to the average (or ”Maxwell’s”)70

relaxation time τa by the following relation:71

τa =

∫ +∞

0
ϕ(t)dt =

Γ (1/β)
β

τ0 (2)72

where Γ is the Gamma function: Γ(x, y) =
∫ ∞

y sx−1e−sds73

and Γ(x) = Γ(x, 0). The average relaxation time corre-74

sponds to the average lifetime of an atom/molecule or group of75

atoms/molecules in their equilibrium position (here when they76

are shifted by the stress) (Frenkel, 1926). The stretched expo-77

nential function (SEF) has various advantages. The main one78

is that it has only two parameters to describe the full relaxation79

spectrum. The second one is that the ”departure” from the ex-80

ponentiality is directly signed by the stretch exponent β. So,81

according to the idea of Wiechert, the delayed elasticity is di-82

rectly signed by β. The SEF has been widely used to describe83

various kind of relaxation processes (see for example (Phillips,84

1996)), but this function is not physically sound, first because85

regarding its time derivation:86

dϕ(t)
dt

= −ϕ(t)
(

t
τ0

)β
β t−1 (3)87

the relaxation rate tends to −∞ when t → 0+, for 0 < β < 1.88

Duffrène et al. (1997) have also pointed out the inadequacy89

of the SEF to describe the viscoelastic behavior of soda-lime-90

silica glasses. Additionally, they have shown that if we assume91

that the shear relaxation function corresponds to a SEF, the92

primary creep stage can not be fitted by another SEF, as it is93

often done.94

95

In spite of the weaknesses of the SEF, we will show here,96

experimentally, how much the idea of Wiechert is correct: the97

delayed elasticity is only connected to the stretch exponent. The98

SEF is largely used in the literature mainly in order to describe99

the relaxation kinetic, but what is not often considered is its100

ability to describe the detailed mechanisms of relaxation, such101

as, for stress relaxation, the delayed elasticity and the inelas-102

ticity. We will illustrate, through relaxation-recovery tests on103

a viscoelastic material, how much efficient is the SEF to pre-104

dict the evolution of the delayed elasticity. Then, we will show105

how we can interpret the relationship between any kind of relax-106

ation function decomposable into a sum of exponential function107

(such as the SEF) and the delayed elasticity.108

2. Theory109

2.1. Linear viscoelasticity110

Let us consider a linear viscoelastic body, undergoing a shear111

distortion, evolving over time: γ(t), in the framework of the112

small strain assumption. According to the Boltzmann superpo-113

sition principle (Boltzmann, 1876), the resulting shear stress is114

σ:115

σ(t) =

∫ t

−∞

G(t − s)
dγ(s)

ds
ds (4)116

G is the shear relaxation modulus of the viscoelastic body. Of117

course, considering the distortion as something imposed is just118

a point of view, and consequently, if we consider instead the119

stress as imposed, the resulting shear distortion is:120

γ(t) =

∫ t

−∞

J(t − s)
dσ(s)

ds
ds (5)121

J is the shear creep compliance. J and G are correlated by a122

Duhamel convolution equation (Ferry, 1980):123

t =

∫ t

0
G(t − s) × J(s)ds =

∫ t

0
G(s) × J(t − s)ds (6)124

Or, considering the well-known Lee (1955)-Mandel correspon-125

dence principle, the equations, for linear elasticity being:126

γ = µ−1σ and σ = µ γ so that: µ−1 µ = 1 (7)127

where µ is the elastic shear modulus, we obtain for linear vis-128

coelasticity, considering G and J as the viscoelastic counter-129

parts of µ and µ−1 respectively:130

γ∗ = J∗σ∗ and σ∗ = G∗γ∗ so that: J∗G∗ = 1 (8)131

where f ∗ is the Laplace-Carson transform of f : f ∗ = s × L( f ),132

L( f ) being the Laplace transform of f and s the variable in the133

Laplace s-domain.134

135

The shear creep compliance J is often explicitly divided into136

a sum of three components: elastic Je time-independent, de-137

layed elastic Jd(t) which converges to a time-independent value138

when t → +∞ and inelastic Jη a linear function of time:139

Je =
1
µ

and Jη(t) =
t
η

(9)140

where η is the shear viscosity. Using Eq.(6), we also obtain:141

Jd(t) = L−1
(

1
s2 L(G(t))

)
−

t
η
−

1
µ

(10)142

2



This decomposition of J is clearly assumed for various well-143

known models. This is the case for the Burger’s model, the144

generalized Burger’s model, and for any kind of model or func-145

tion describing J with a retardation function (a function cor-146

responding to φ(t) = 1 − Jd(t)/Jd(0)). Other models, de-147

scribing the shear relaxation modulus, such as the Maxwell-148

Wiechert model, implicitly assume this division of J, since149

the Burger’s model is equivalent to a Maxwell-Wiechert model150

with two cells. Accordingly, the shear distortion, itself, can151

be divided into three components, associated with Je, Jd and152

Jη: an elastic distortion γe, reversible, a delayed elastic dis-153

tortion γd, reversible but with delay, and an inelastic distortion154

γη, irreversible. We can write, using the Boltzmann superposi-155

tion principle (Boltzmann, 1876) or the Lee-Mandel correspon-156

dence principle:157

γc(t) =

∫ t

−∞

Jc(t − s)
dσ(s)

ds
ds or γ∗c(s) = J∗c (s)σ∗(s) (11)158

where c = e, d or η. With:159

γ(t) = γe(t) +γd(t) +γη(t) & J(t) = Je(t) + Jd(t) + Jη(t)(12)160

So, we can also write:161

γe(t) =
σ(t)
µ

γη(t) =

∫ t

−∞

σ(s)
η

ds (13)

γd(t) = γ(t) − γe(t) − γη(t)

Regarding these equations, and assuming γη(t) = 0 if t < 0, we162

can deduce that:163

η =
σ(t)
γ̇η(t)

(14)164

This is the conventional ”newtonian viscosity”. But, using165

Eq.(6) we also have the following relation, known as the166

”Ferry’s relation” (Ferry, 1980):167

η =

∫ +∞

0
G(t) dt (15)168

2.2. Delayed elasticity169

Using Eq.(10) and (11), we can see that there is no delayed170

elasticity, for any kind of stress history, only if Jd(t) = 0. It171

leads to (Eq.(6) & (9)):172

J(t) =
1
µ

+
t
η

and G(t) = µ exp
(
−

t µ
η

)
(16)173

The average shear relaxation time τa, according to the174

Maxwell’s relation (Maxwell, 1868) corresponds to: τa = η/µ.175

In other words, the only possibility to observe no delayed elas-176

ticity is to have an exponential relaxation. It clearly illus-177

trates the assertion of Wiechert (1893) that the delayed elas-178

ticity comes from a non-exponential relaxation. The equation179

of Simha (1942), giving the relationship between a creep curve180

and the distribution of relaxation times leads to the same con-181

clusion. As a matter of fact, if the shear relaxation modulus182

of a linear viscoelastic body is described by a SEF, for any183

0 < β < 1, when this body deforms non-elastically (whatever if184

the stress is constant or not), a part of the deformation is or has185

been delayed elastic.186

2.3. Stretched exponential relaxation187

Let us now assume that the shear relaxation modulus can be188

fitted by a SEF:189

G(t) = µ ϕ(t) where ϕ(t) = exp
− (

t
τ0

)β (17)190

where 0 < β < 1. Using a SEF, it is not possible to obtain an191

analytic form of Jd in Eq.(10), since the SEF has no Laplace-192

transform (Duffrène et al., 1997). But, we can assume:193

Jd(t) =
1
µd

(1 − φ(t)) (18)194

where φ is a retardation function (φ(0) = 1 and lim
t→+∞

φ(t) = 0),195

and µ−1
d corresponds to the asymptotic value of Jd(t) (when t →196

+∞). According to Duffrène et al. (1997):197

1
µd

=
1
µ

(
Γ(1 + 2/β)

(Γ(1 + 1/β))2 − 1
)

(19)198

Thus, if we perform a creep test (constant stress σ0), the de-199

layed elastic distortion continuously increases over time, and200

depends on σ0, µ, β. According to (Eq.(11)):201

γd∞ = lim
t→+∞

γd(t) =
σ0

µd
= γ0

(
Γ(1 + 2/β)

(Γ(1 + 1/β))2 − 1
)

(20)202

where γ0 = σ0/µ, is the initial shear distortion, fully elastic.203

Considering a constant γ0, this equation illustrates that γd∞ is204

maximum if β → 0 and minimum if β → 1. This is illustrated205

on Figure 1. The equation of Duffrène et al. (1997) illustrates206

that the stretch exponent is an indicator of the delayed elasticity207

level.208

Now, if instead of performing a creep test, we perform a shear209

relaxation test on a linear viscoelastic body, so that:210

γ(t) = γ0 H(t) (21)211

H being the Heaviside function. Assuming that the relaxation212

function is a SEF, we have, using Eq.(4) and (17), for t ≥ 0:213

γe(t) = γ0 ϕ(t) = γ0 exp
− (

t
τ0

)β (22)214

And according to the Hooke’s law: σ(t) = µ γe(t). Using215

Eq.(13), we have:216

γη(t) =

∫ t
0 σ(s)ds

η
=
µ γ0

∫ t
0 ϕ(s)ds

η
(23)217

Using the symbolic computation Mathematica software218

(from Wolfram Research, Inc., Champaign, Illinois, version 5.2219

edition, 2005),220 ∫ t

0
ϕ(s)ds =

τ

β

Γ (
1
β

)
− Γ

1
β
,

(
t
τ0

)β (24)221
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Figure 1: Evolution of the maximum relative (normalized by the initial dis-
tortion γ0) delayed elastic distortion during conventional mechanical tests for
viscoelastic materials, as a function of the stretch exponent (β) of stress relax-
ation. On the left axis, during a relaxation test (γd/γ0, blue) and on the right
axis during a creep test (γd∞/γ0, red).

Since G(t) = µ ϕ(t), using Eq.(2) & (15), we have η =222

µ τa (well known ”Maxwell’s relationship”). Substituting, in223

Eq.(23), η by this latter expression and
∫ t

0 ϕ(s)ds by the expres-224

sion found in Eq.(24), we have:225

γη(t) = γ0

1 −
Γ

(
1/β,

(
t
τ0

)β)
Γ(1/β)

 (25)226

Finally, using Eq.(13):227

γd(t) = γ0


Γ

(
1/β,

(
t
τ0

)β)
Γ(1/β)

− ϕ(t)

 (26)228

In order to eliminate τ0 in these latter equations, to highlight229

the role of the exponent β, let us introduce:230

Λ =
σ(0) − σ(t)

σ(0)
= 1 − ϕ(t) (27)231

Λ is the relative fraction of stress relaxed. The total shear dis-232

tortion is γ = γ0 for t ≥ 0, so that the relative fraction of each233

distortion component is:234

γe(Λ)
γ0

= 1 − Λ (28)235

γη(Λ)
γ0

= 1 −
Γ(1/β,− ln (1 − Λ))

Γ(1/β)
(29)236

γd(Λ)
γ0

= Λ − 1 +
Γ(1/β,− ln (1 − Λ))

Γ(1/β)
(30)237

We can calculate when the delayed elasticity will reach its max-238

imum, when ϕ is a SEF, by solving dγd/dΛ = 0. The maximum239

is obtained, if 0 < β < 1 when:240

ΛM = 1 − exp
(
− (Γ (1/β))

β
1−β

)
(31)241

Inserting Eq.(31) in Eq.(30), we obtain the maximum delayed242

elastic distortion during shear relaxation (γd(ΛM)/γ0):243

γd(ΛM)
γ0

=
Γ(1/β,Γ (1/β)

β
1−β )

Γ(1/β)
− exp

(
−Γ (1/β)

β
1−β

)
(32)244

This maximum is only a function of β: neither τ0 nor µ appears245

in this equation. The stretch exponent is the only indicator of246

the maximum delayed elastic contribution to shear stress re-247

laxation. Therefore, as for creep, we will see that the delayed248

elasticity is maximum if β→ 0 and minimum (null) if β→ 1.249

3. Experiments250

In order to challenge all the equations we have developed251

in the previous section, we have performed shear relaxation252

and strain recovery tests on GeSe9 glass fibers by a tor-253

sional method. The glass and fibers synthesis is described in254

(Gueguen, King, Keryvin, Sangleboeuf, Rouxel, Bureau, and255

Lucas, 2013). The fibers were 300 µm in diameter, 130 mm256

in length. The glass transition temperature of the GeSe9 glass,257

measured by DSC at 10◦C/min, is 92◦C (Gueguen et al., 2013).258

The shear relaxation and recovery tests allow for the measure-259

ments of all the distortion components during relaxation. This260

test is described in details in (Gueguen et al., 2013) and in refer-261

ences therein. The shear distortion γ0 is imposed to the fiber by262

imposing a rotation to one of its ends (the other is fixed) with an263

angle α0 (here α0 = 200 ± 2◦). The rotation angle is measured264

thanks to a thin needle fixed on the fiber, with a uncertainty of265

±2◦. Each experimental point corresponds to a given fiber, the266

fibers being all tested under exactly the same conditions. The267

angle is imposed during a given period, up to a time ”t” (only t268

varies from a fiber to another). At the time t the fiber is released,269

the elastic distortion instantaneously recovers, and the corre-270

sponding recovered angle (αe) is measured. Then, the delayed271

elastic distortion recovers over time and the corresponding ad-272

ditional recovered angle, evolving over time, is measured until273

it reaches an equilibrium value (αd). The remaining angle (αη)274

is due to the inelastic distortion (α0 = αe + αd + αη). It takes275

usually few seconds to measure an angle with the naked eye.276

The relationship between the distortion and the corresponding277

angle is (classical beam theory):278

γ0 = r α0/L & γc = r αc/L (33)279

where c = e, d or η again, L the fiber length and r the280

distance from the neutral axis of the fiber. All the distortion281

components are normalized by γ0, so that r and L have no282

impact on the results and their uncertainty. The error bars on283

normalized distortions are estimated taking into account the284

”worst” situation: αc is measured with an error of +2◦ and285

α0 with an error of −2◦ (upper limit of the error bar), and286

conversely (lower limit). The relaxation function corresponds287

to the normalized shear elastic distortion (Gueguen et al.,288

2013). These relaxation recovery tests have been performed at289

room temperature (20◦C).290

291
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Glasses are, by definition, non-equilibrium materials. The292

equations tested here are only valid at equilibrium or, more293

precisely, if the material does not undergo aging during the294

mechanical tests. As an example, the Ferry’s relation (Eq.(15))295

makes sense only if no aging occurs: the viscosity is not296

time-dependent in this equation. But the viscosity, being very297

sensitive to the aging of the material, is actually time-dependent298

in glasses, below their glass transition temperature, until they299

reach their equilibrium, thanks to structural relaxation. In300

order to be sure that the glass is under equilibrium, we have301

used a specific property of some chalcogenide glasses: their302

photosensitivity. The glass fibers have been irradiated during303

two months by two light bulbs (Philips MASTER TL-D304

36W/840) that are separated from fibers by almost 1.20 m, and305

the relaxation-recovery tests have been also performed under306

permanent irradiation. Because of a specific photoinduced307

process, called ”photorelaxation” (Gueguen et al., 2013), the308

glass relaxes faster and tends to equilibrate in a photoinduced309

equilibrium which is not its natural configurational equilibrium310

(Gueguen et al., 2013). Thus, after two months, its viscosity311

becomes constant (Gueguen et al., 2013). It can be illustrated312

by the fact that the shear relaxation function remains unchanged313

if the test is done after two months under irradiation, and after314

four months under irradiation (see (Gueguen et al., 2013) and315

references therein). Without irradiation, at room temperature,316

the glass would not reach equilibrium before, at least, a decade317

(Gueguen et al., 2013).318

319

These experimental conditions are chosen for the following320

reasons. Firstly, below the glass transition, the characteristic321

time for stress relaxation is large (here, it corresponds to322

weeks) as compared to the time required (a few seconds, so323

at least 5 orders of magnitude lower) for loading (to apply324

the constant strain) and unloading (to measure the elastic325

part of strain), so that we can consider that the loading and326

unloading periods do not impact on the measurements. This327

is in sharp contrast to the situation above the glass transition.328

Moreover, the full experimental setup is not instrumented329

(there are no displacement sensors or load cells) since there330

are no fast dynamics to measure; therefore it has the advantage331

of preventing any drift of sensors that could can impact on332

the measurements. Finally, at low temperatures the delayed333

elasticity is to be more exacerbated (i.e.: the stretch exponent334

is usually lower).335

336

We have also performed various mechanical tests on these337

glass fibers to assess the linearity of the viscoelastic behavior338

in the stress range investigated here (see (Gueguen et al., 2013)339

and references therein). No non-linear viscoelastic behavior is340

detectable below, at least, 55 MPa. Because the shear relax-341

ation test is a torsional test, the imposed distortion linearly in-342

creases with r, the distance from the neutral axis of the fiber.343

The maximum imposed distortion, at the surface of the fiber,344

was γ0 = 4 ± 0.05 10−3. The shear elastic modulus being345

µ = 4.6 GPa (see (Gueguen et al., 2013) and references therein),346

it corresponds to an initial stress of σ(0) = 18.4 MPa.347

4. Results348

The relaxation function of the GeSe9 fibers is plotted in Fig-349

ure 2. The relaxation function ϕ is plotted as ln
[
− ln [ϕ(t)]

]
vs.350

ln (t), since:351

ln
− ln

exp
− (

t
τ0

)β = β ln (t) − β ln (τ0) (34)352
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Figure 2: Experimental relaxation function obtained here (open red circle),
plotted as ln (− ln (ϕ(t))) vs. ln (t) (t is time), compared with a previous mea-
surement (blue cross) (see (Gueguen et al., 2013) and references therein).

We obtain here, by least square fitting: β = 0.581 and353

τ0 = 18.5 days (τa = 29.1 days, according to Eq.(2)), for354

the five points of Figure 2. The relaxation function obtained355

here is compared with another one, previously obtained in the356

same conditions (see (Gueguen et al., 2013) and references357

therein). It illustrates the reproducibility of this measurement.358

The stretch exponent previously found was β = 0.59, in very359

good agreement with that found here. The average relaxation360

time previously found was somewhat lower (τa = 25.9 days,361

Eq.(2), with τ0 = 16.8 days), but Figure 2 illustrates that this362

small discrepancy corresponds to the experimental uncertainty.363

The shear relaxation function previously measured was bimodal364

(see (Gueguen et al., 2013) and references therein): for t <17365

days, we have a first SEF, corresponding to the data plotted on366

Figure 2, but at t >17 days, the relaxation function deviates with367

a slower stretch exponent (β = 0.35). We can distinguish this368

deviation in Figure 2 (ln (17) ∼ 2.83). The new measurements369

performed here do not confirm the bimodality. We do not know370

exactly why, and we will leave here this issue as unsolved.371

The evolution of the inelastic and delayed elastic distortion,372

obtained from recovery tests are plotted in Figure 3. As373

expected from Eq.(14), the inelastic distortion continuously374

increases with time (the stress and the viscosity being strictly375

positive, γ̇η is strictly positive). The delayed elastic distortion,376

instead, first increases, reaches a maximum, at t ∼ 13 days,377

and then slowly decreases. It must be underlined here that the378

values of the inelastic and delayed elastic distortion at a time379

”t” are obtained by starting a recovery test at this time t and by380
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Figure 3: Evolution of each distortion contribution. The red, blue and green
open circles correspond to γc = γe, γd and γη, respectively. The size of the
circles corresponds to the error bar. The red, green and blue lines correspond to
Eq.(22), (25) and (26), respectively, with β = 0.58 and τ0 = 18.5 days for the
full lines, and β = 0.59 and τ0 = 16.8 for the dashed lines.

waiting for the delayed elastic to fully recover (see details in381

(Gueguen et al., 2013)). For the last data plotted in Figure 3,382

this recovery part took more than one year. This is the reason383

why we do not have data at very long times.384

385

In Figure 3, we have also plotted the theoretical evolutions386

of the delayed elastic and inelastic distortions, using Eq.(25)387

and (26) and the values of β = 0.581 and τ0 = 18.5 identified388

from the experiments. As we can see, the theoretical evolu-389

tions match the experimental ones, according to the measure-390

ment uncertainty. It illustrates the validity of the equations (25)391

and (26). We have also plotted the theoretical evolutions with392

the following values, identified from the previous experiments:393

β = 0.59 and τ0 = 16.8 days. We can see that it slightly devi-394

ates from the experimental data after ∼ 10 − 18 days. Indeed,395

this parameter set does not allow to fit γd and γη when they also396

does not fit the relaxation function, since the relaxation function397

deviates from a single SEF after 17 days.398

5. Discussion399

5.1. Delayed elasticity vs. stretch exponent400

The equations developed here illustrate the robustness of the401

SEF. Using only three parameters (β, τ0 and µ), it is possible to402

evaluate, with a very good accuracy, the three components of403

the viscoelastic deformation, namely: the elasticity, the delayed404

elasticity and the inelasticity. In Figure 4, we have plotted the405

distortion contributions vs. the fraction of stress relaxed Λ, in406

order to illustrate the theoretical evolution of delayed elastic407

and inelastic distortions as a function of the stretch exponent408

β. In this Figure, we can observe that ΛM , the position of the409

maximum delayed elastic distortion, is shifted to larger values410

as β decreases. Since ΛM ∈ R+ when 0 < β < 1, the delayed411

elastic distortion first increases over time, reaches a maximum,412

and then decreases and tends to 0 when t → +∞. The inelastic413

distortion, instead, increases monotonically starting from 0 to414

tend to γ0 when t → +∞. We can notice in Figure 4 that, if415

β is low, the delayed elasticity will be the major contribution416

to stress relaxation, until the stress relaxes down to a very417

low level. The maximum relative fraction of delayed elastic418

distortion is γd(ΛM)/γ0. It is plotted vs. β in Figure 1. We have419

shown (Eq.(32)) that this maximum delayed elastic distortion420

is not a function of τ0: it is only defined by the stretch exponent421

β. So, we clearly highlight here that the stretch exponent in a422

shear relaxation modulus is just the indicator of the delayed423

elastic contribution to viscoelasticity, and it is self sufficient.424

More precisely, the time-parameter, τ0, only indicates the425

kinetics of the relaxation, and the stretch exponent, β, only426

indicates the amplitude of the delayed elastic contribution to427

this relaxation.428

429
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Figure 4: Theoretical evolutions (Eq.(28), (29) and (30)) of each distortion
contribution (γc = γe, γd or γη) as a function of Λ, the fraction of stress relaxed,
for various β values. The open circles correspond to experimental data. The
theoretical evolutions are also plotted for β = 0.59, but they are practically
indiscernible from those plotted using β = 0.58.

We can note that if β → 0, the delayed elasticity increases.430

Nevertheless, if β = 0, there is no relaxation anymore (ϕ(t) =431

1), but the delayed elastic contribution predicted is 100%. Ac-432

cording to Eq.(6), we also observe that if β→ 0, so if G(t)→ µ,433

there is no creep anymore, since J(t) → 1/µ. It is a clear illus-434

tration that the delayed elasticity is not itself able to produce a435

full stress relaxation.436

5.2. Origin of the delayed elasticity437

Originally, the non-exponential relaxation, and so the exis-438

tence of various mechanisms of stress relaxation, and corre-439

sponding energy barriers, was attributed to the inhomogene-440

ity of glasses. There are various energy barriers first be-441

cause there are various structural units (in Ge-Se glasses,442
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there is GeSe4/2 tetrahedra, connected in different ways, Se-443

chains, probably Se-rings... (see (Yang, Gueguen, Sangleboeuf,444

Rouxel, Boussard-Pledel, Troles, Lucas, and Bureau, 2013) and445

references therein). But the energy barrier for a specific type of446

local relaxation event (LRE) varies from one site to another, at447

least because of the inherent disorder of glasses (Simha, 1942).448

An atom or a structural unit can also contribute to different449

types of LRE, with different energy barriers.450

At a given temperature, under no stress, the LRE will occur451

in random directions, producing, macroscopically, no net strain.452

Under relatively low stress, the energy barrier is slightly biased453

(not enough biased to induce non-linear viscoelasticity) favor-454

ing the relaxation events in a specific direction. These events455

do not necessarily correspond to global atomic displacements:456

it can correspond to a transformation or a configuration change457

as described by Argon and Kuo (1980). Indeed, during a re-458

laxation test, the strain is constant, so that there is, macroscop-459

ically, no displacement, but just a ”conversion” of the initial460

elastic displacement into delayed elastic and inelastic displace-461

ments. During a relaxation test all the atoms move initially only462

”elastically” and are able to go back to their initial position. As463

soon as even a single atom (or more generally speaking a ”re-464

laxing unit”, a ”cooperatively rearranging subsystem” or a ”co-465

operatively rearranging region” (Dyre, 1998)) has overcome its466

energy barrier to reach a new stable position/configuration the467

delayed elasticity can emerge. If the stress is released, all the468

others atoms will try to go back to their initial position, while469

this atom will not be able anymore, without overcoming again470

an energy barrier and will disturb the return of the other atoms.471

Macroscopically, the material is not able anymore to recover472

instantaneously its initial shape. This atom is stressed by all473

other (and by reaction, stressed itself the other atoms), so that474

a driving force exists to induce its forward motion to its initial475

configuration. But since there is an energy barrier to overcome,476

this motion is delayed: this is the delayed elasticity.477

Consequently, each initial LRE only produce delayed elastic-478

ity, it will be turn into inelasticity (it will be irreversible) only479

when its initial configuration will be not reachable anymore:480

when the surrounding network will have produced their own481

LRE to erase the memory of this initial configuration. This idea482

has been developed by Orowan (1952) and nicely discussed lat-483

ter by Goldstein (1969). We can go deeper into this idea by484

using a concept discussed by Argon (1968). Considering one485

specific subsystem and its corresponding LRE, with its spe-486

cific energy barrier (i.e.: its specific relaxation time), we un-487

derstand that if the subsystem wants to move or to change its488

configuration, it has no reason to have exactly the free space it489

needs to do so: it will ”shove” the surrounding network (Tra-490

chenko, 2007), at it is nicely depicted by the shoving-model491

of Dyre (1998), to reach a new state. The difference between492

the new and the initial states will let the surrounding network493

partially ”shoved”, if it can not synchronously re-arrange. In494

other words, the subsystem will occupy a new site by elasti-495

cally distorting it and stressing it or, at least will modify its496

configuration by stressing the surrounding network (let us name497

it the ”shoving-stress”, ShS). The delayed elasticity is driven498

by the modification of the stress of the surrounding network499

of the subsystem (Argon, 1968). The shoving-stress (ShS) in-500

duced in the network surrounding the moving subsystems is501

macroscopically self-equilibrated (just like for an Eshelby’s in-502

clusion, the LRE corresponding to an eigenstrain): it does not503

increase the macroscopic external stress. When the strain re-504

covery starts, this macroscopic stress becomes null, but at the505

microscopic scale, the ShS will slowly relax, by allowing back-506

ward motions: this is the delayed elasticity recovery. The con-507

cepts of Orowan/Goldstein or Argon have the same basis: all508

LRE contribute initially only to delayed elasticity, they con-509

tribute to inelasticity only because they tend to make the posi-510

tion/configuration changes of the previous LRE irreversible.511

During a relaxation test, the macroscopic stress applied re-512

laxes, the elastic energy initially stored being dissipated during513

LRE (Maxwell, 1868). Each event induces a local ShS, increas-514

ing the amount of delayed elasticity. Nevertheless, since this515

ShS can also relax, there is a competition between a creation516

and a relaxation of the ShS. Accordingly, the delayed elastic-517

ity, during a relaxation test, increases and reaches a maximum518

before decreasing. This is illustrated here on Figure 3. Dur-519

ing a creep test, the delayed elasticity created saturates when520

the rate of creation of ShS equilibrates with its rate of relax-521

ation (Argon, 1968). During a relaxation test, each LRE decays522

the stress, that is not fully redistributed to the surrounding net-523

work. During a creep test, a subsystem bears less stress after a524

LRE, but all the stress it does not bear anymore is fully redis-525

tributed on the surrounding network Just imagine a truss made526

of various beams, and break a beam of this truss (by analogy527

to a LRE): if the truss is bearing a constant load, all the other528

beams will support more load to exactly compensate the load529

the broken beam was bearing, and will deform more (this is530

the creep test). If a constant distortion is imposed to the truss,531

once a beam is broken, the truss is less rigid, the load needed532

to impose the same distortion will globally decrease (this is the533

relaxation test).534

5.3. Generalization to any kind of relaxation functions535

There are two standard ways to model a linear viscoelastic536

body by using cells made of springs and dashpots. The first537

one is to use ”parallel” models, such as the Maxwell-Wiechert538

model, where there is no individual cell that induces delayed539

elasticity. The second one is to use ”serial” models, such as540

the Burgers’s model, where the delayed elasticity is usually due541

to Kelvin-Voigt cells. For this latter solution, we have cells to542

model the delayed elasticity, but without clear microscopical543

explanation for it: we could assume that some LRE (associated544

with Kelvin-Voigt cells) induce exclusively delayed elasticity545

and some others induce exclusively viscous flow, without inter-546

acting with each other. But serial models can just be considered547

as other kind of representations of parallel models. For the par-548

allel models, we can assume that a relaxation function can be549

decomposed as a weighted sum of exponential processes, each550

of these processes having its own relaxation time. Let us as-551

sume a finite number (N) of relaxation processes (a discontinu-552
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ous relaxation spectrum) having an additive contribution:553

ϕ(t) =

N∑
i=1

ρi exp
(
−

t
τi

)
(35)554

ρi is the weight of the ith process having a relaxation time555

τi, verifying
∑N

i=1 ρi = 1 (this is the Maxwell-Wiechert model556

(Wiechert, 1893)).557

558

Let n(t) be the numbers of LRE that have already occurred559

at t and nT is the total number of LRE that will occur until the560

stress becomes null. The LRE producing the stress relaxation,561

according to the definition of the relaxation function, we have:562

n(t)
nT

= 1 − ϕ(t) =

N∑
i=1

ρi

(
1 − exp

(
−

t
τi

))
(36)563

Among the n LRE, a part of them have induced motions that564

have let some subsystems in configurations where they can pro-565

duce delayed elasticity. These LRE can be considered as ”re-566

versible”, since the corresponding backward events occur when567

the macroscopic stress is removed. Let nr be the number of such568

LRE. It is proportional to the delayed elastic strain. The other569

part of the LRE produces viscous flow, they have let subsys-570

tems in stable configurations, they are ”irreversible”, since no571

backward motion is possible. Their number is ni, proportional572

to the viscous strain. So, we have:573

n(t) = nr(t) + ni(t) (37)574

We first derive this expression, using Eq.(23), ni/nT being575

equivalent to γη/γ0, according to Eq.(36):576

ṅi(t) = nT
γ̇η

γ0
= nT

γ0 µ ϕ(t)
γ0 η

=
nT − n(t)

τa
(38)577

Then we directly obtain ṅr(t). After integration, and assum-578

ing that nr(0) = 0, it leads to the fraction of ”reversible LRE”:579

nr(t)
nT

=

N∑
i=1

(
1 −

τi

τa

)
ρi

(
1 − exp

(
−

t
τi

))
(39)580

Now, if we assume a continuous relaxation spectrum:581

ϕ(t) =

∫ +∞

0
ρ(τ) exp

(
−

t
τ

)
dτ (40)582

Here, the weight ρ is per time unit (d(τ) = ρ(τ)τ is the dis-583

tribution function of relaxation times), and ρ ≥ 0. According584

to Eq.(2), we have: τa =
∫ +∞

0 ρ(τ)τdτ. Note that for a SEF, β585

is a monotonous function of the logarithmic full width at half586

maximum of d(τ) (Johnston, 2006), the distribution function of587

relaxation times. And we obtain, by analogy with the Maxwell-588

Wiechert model:589

nr(t)
nT

=

∫ +∞

0

(
1 −

τ

τa

)
ρ(τ)

(
1 − exp

(
−

t
τ

))
dτ (41)590

And the fraction of ”irreversible LRE”:591

ni(t)
nT

=

∫ +∞

0

τ

τa
ρ(τ)

(
1 − exp

(
−

t
τ

))
dτ (42)592

These two latter equations explicitly show that the delayed593

elasticity (the reversible LRE) directly comes from the differ-594

ence between the relaxation time τ (or τi if the spectrum is595

discontinuous) of a specific LRE and the average relaxation596

time τa. The relative proportion of reversible events produced597

by a process having relaxation times between τ and τ + dτ598

is:
(
1 − τ

τa

)
ρ(τ)dτ. Obviously, if all the LRE have exactly599

the same relaxation time (τ = τa), we obtain nr(t) = 0 and600

ni(t) = n(t). None of the LRE produces reversible LRE, all601

are irreversible. So whatever the relaxation function based on602

a given distribution d(τ) used, the delayed elasticity comes603

from a ”dispersion” of the relaxation times. Conversely, some604

viscoelastic bodies can exhibit delayed elasticity without605

viscous flow, they are called ”viscoelastic solids” (as oppose to606

viscoelastic liquid (Lakes, 1998)). For such bodies, we may607

assume that some slow processes have very large relaxation608

times as compare to fast ones, enough large to consider that, at609

the human scale, they can be set as infinite (relative Deborah610

number � 1). Thus, if at least the jth relaxation time (τ j)611

in Eq.(35), is set as infinite, then ϕ(t) = ρ j when t → +∞.612

Additionally, according to Eq.(42), ni → 0, at any time, since613

τa → +∞. In other words, bodies with infinitely dispersed614

relaxation times, but at least with one finite relaxation time,615

exhibit only delayed elasticity.616

617

The equations (41) and (42) are in perfect agreement with618

the concepts proposed by Orowan (1952), Goldstein (1969)619

and Argon (1968). All initial and ”fast” LRE, with small re-620

laxation times (τ ≤ τa), first mainly induce delayed elastic-621

ity (they induce reversible events: nr > 0): their initial po-622

sition/configuration/state are still reachable. Then, the ”slow”623

LRE, with large relaxation times (τ ≥ τa), occur and tend to624

make, by their own configuration/position changes, the initial625

states of fast LRE unattainable (they annihilate the reversibil-626

ity of the first LRE: nr < 0). It is easy to see that ”slow” LRE627

only annihilate the reversibility of the events produced by ”fast”628

LRE, since their respective contributions to nr exactly compen-629

sate each other. Indeed, the term
(
1 − τ

τa

)
ρ(τ) satisfies:630 ∫ +∞

0

(
1 −

τ

τa

)
ρ(τ)dτ = 0 (43)631

We can provide an illustration of these equations using a sim-632

ple ρ(τ), for which we will have only analytical solutions (John-633

ston, 2006):634

ρ(τ) =
exp

(
− τ

4τ0

)
2
√
πττ0

→ ϕ(t) = exp

− (
t
τ0

)1/2 (44)635

With this ρ(τ), we have τa = 2τ0. We set nT = 1 in order to636

normalize the functions. Then we obtain the contribution (n+
r )637

of the fast processes (τ ≤ τa) to nr, by replacing ” + ∞” in638

the integral of Eq.(41) by τa, and the contribution (n−r ) of the639
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slow processes (τ ≥ τa) to nr by replacing ”0” in the integral640

of of Eq.(41) by τa. n+
r and n−r are plotted on Figure 5 with the641

total amount of nr. Note that nr is directly found using Eq.(41)642

but also using Eq.(26), these two equations being analytically643

strictly equivalent. We clearly see on this Figure that the total644

amount of nr = n+
r + n−r (and thus the delayed elasticity) is only645

due to the difference between the rate of creation of nr by the646

fast processes and the rate of annihilation of these nr by the647

slow one.648
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Figure 5: Illustration of the total number of reversible LRE (nr , black line) vs.
time (normalized by τ0) for a SEF with β = 1/2, of the amount of reversible
LRE (n+

r ) produced by all the processes having relaxation times lower than τa
(green line) and of the amount of reversible LRE (n−r ) annihilated by all the
processes having relaxation times larger than τa (red line).

5.4. Models without initial distribution of relaxation times649

Trachenko (2007) is, to our knowledge, the only one propos-650

ing a model corresponding to a SEF, where no pre-set distri-651

bution of relaxation time (ρ(τ)) exists. In this model, since652

a relaxing unit ”support less stress after relaxation, later LRE653

should support more stress in order to counterbalance” (Tra-654

chenko, 2007), thus increasing their energy barrier (actually,655

since the macroscopic stress relaxes, the later LRE will rather656

support less stress, they should instead support a new stress657

field, self equilibrated). Consequently, the relaxation time of658

the LRE increases with the number of LRE that have already659

occurred, leading to a stretched exponential decay of the macro-660

scopic stress. One consequence of the model is that the stretch661

exponent is inversely proportional to the stress decay (∆p0)662

due to a LRE (Trachenko, 2007) and thus to the initial ap-663

plied stress (σ(t = 0) = σ0). Indeed, the model assumes664

that all LRE induce the same ∆p0 (Trachenko, 2007), so that:665

σ(t) = (nT − n(t))∆p0 and ∆p0 = σ0/nT , the final number of666

LRE (nT ) at the end of the relaxation being stress independent667

(Trachenko, 2007). Thus, this model can clearly not be applied668

as a relaxation function for linear viscoelastic materials, such669

as the glass investigated here, since the relaxation function is670

stress dependent. Since we do not know other models of stress671

relaxation in the framework of linear viscoelasticity, without672

pre-set distribution of relaxation times, we can assume that, in673

that framework, the delayed elasticity can just be seen as a con-674

sequence of the broadness of the distribution.675

6. Conclusion676

According the idea of Wiechert, the delayed elasticity takes677

its origins in the non-exponentiality of the stress relaxation, and678

thus, is due to a dispersion of relaxation times of all the pro-679

cesses involved during relaxation. In spite of the fact that the680

SEF is not physically sound and can not be used alone (with-681

out an other model at t → 0+) as a phenomenological model682

(Duffrène et al., 1997), the experimental investigation done here683

highlights that this function can be perfectly suitable to describe684

the detailed viscoelastic deformation of a linear viscoelastic685

material. The equations developed here highlight the role of de-686

layed elasticity during relaxation and shows that the maximum687

delayed elasticity reached during relaxation is only correlated to688

the stretch exponent (β). This maximum continuously increases689

as β decreases. Actually, the delayed elasticity is the result of690

the broadness (connected to β for a SEF) of the distribution691

function of relaxation times, whatever this function. For a dis-692

tribution function d(τ), the relative delayed elasticity induced693

(> 0) or annihilated (< 0) by the process having a relaxation694

time τ is: (1 − τ/τa) d(τ), where τa is the average relaxation695

time of the whole system. At short time, the subsystems having696

low relaxation times induce large amount of delayed elastic-697

ity by moving in a network of slow subsystems that can only698

accommodate the motions elastically. At long time, these slow699

subsystems, by moving, accommodate inelastically the motions700

of the fast subsystems and annihilate the delayed elasticity by701

turning it into inelasticity.702

Additionally, since, to our knowledge, no inorganic glasses703

exhibits or even approach a Maxwell-Debye stress relaxation704

(β → 1) until they are far above their glass transition tempera-705

ture (Tg), all of them exhibit delayed elasticity below and above706

Tg. Accordingly, viscosity measurements in this range must be707

isothermal, to reach the stationary creep stage, or they will be708

just absolutely wrong. Viscosity measurements made during709

a continuous heating, just give almost something close to the710

initial delayed elastic strain rate.711

References712

Argon, A., Kuo, H., 1980. Free energy spectra for inelastic deformation of five713

metallic glass alloys. J. Non-Cryst. Solids 37 (2), 241 – 266.714

Argon, A. S., 1968. Delayed elasticity in inorganic glasses. J. Appl. Phys.715

39 (9), 4080–4086.716

ASTM C1350-96, 1996. Standard test method for measurement of viscosity of717

glass between softening point and annealing range (approximately 108 Pa718

- s to approximately 1013 Pa - s) by beam bending (metric). It says : ”the719

method also may be used in experimental programs that focus on nonequi-720

librium conditions”, whereas only the measurement of the delayed elasticity721

allow such investigation.722

Bendler, J. T., 1984. Levy (stable) probability densities and mechanical relax-723

ation in solid polymers. Journal of Statistical Physics 36 (5-6), 625–637.724

Boltzmann, L., 1876. On the theory of the elastic aftereffect. Pogg. Ann. Erg.725

Bd. 7, 624–645.726

9



Duffrène, L., Gy, R., Burlet, H., Piques, R., 1997. Viscoelastic behavior of727

a soda-lime-silica glass: inadequacy of the KWW function. J. Non-Cryst.728

Solids 215 (2-3), 208–217.729

Dyre, J. C., 1998. Source of non-arrhenius average relaxation time in glass-730

forming liquids. J. Non-Cryst. Solids 235-237, 142–149.731

Ferry, J. D., 1980. Viscoelastic properties of polymers. Vol. 3. Wiley New York.732
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