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ABSTRACT  

Biodegradability improvement of tetracycline-containing solutions after an electrochemical pre-

treatment was examined. Cyclic voltammetry with a nickel electrode revealed a significant 

electrochemical activity of tetracycline, in both oxidation and reduction. Electrochemical 

treatment was therefore performed in a home-made flow cell using a nickel-modified graphite 

felt electrode as the working electrode. Optimal conditions, namely 100 mg l-1 initial 

tetracycline, above 0.45 V potential, and between 1 and 6 ml min-1 flow rate, led to a more than 

99% conversion yield of tetracycline in oxidation in alkaline conditions, after only a single pass 

through the percolation cell. However, total organic carbon (TOC) analyses revealed a low 

mineralization level, i.e., always below 31%, underscoring the importance of a combined 

electrochemical and biological treatment. This was confirmed by the favorable trends of the 

COD/TOC ratio, decreasing from 2.7 to 1.9, and the average oxidation state, increasing from 

0.044 to 1.15, before and after oxidation pretreatment at 0.7 V and 3 ml min-1 flow rate. 

Electrolyzed solutions appeared biodegradable, since BOD5/COD increased from 0 to 0.46 for 

untreated and pretreated TC at 0.7 V/SCE. Biological treatment showed only biosorption for 

non-pretreated tetracycline, while after 11.5 days of culture, the mineralization of solutions 

electrolyzed in oxidation was 54%, leading to a 69% overall TOC decrease during the combined 

process. 
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Biodegradability 

 

1. Introduction 

 

Tetracycline (TC) represents an important group of polyketide antibiotics. It is commonly 

used in human and veterinary medicine, in aquaculture, and as an additive to animal feeds, and it 

can also inhibit fungal growth in fruit trees. It is active against a wide range of Gram-positive 

and Gram-negative bacteria (Chopra and Roberts, 2001). It is widely used in European countries; 

in Germany, for instance, in 2007, over 17,000 kg of tetracycline were consumed by livestock as 

antimicrobial substances applied to pigs (Merle et al., 2012). 

Only small portions of antibiotics administered to treated species are metabolized or 

absorbed in the body; most of the unchanged form of the drug is eliminated in faeces and urine 

(Arikan et al., 2006). Between 30 and 90% is excreted unchanged into the waste system (Hirsch 

et al., 1999). The presence of low levels of antibiotics and their transformation products in the 

environment could have adverse effects, such as bacterial resistance and disruption of key cycles 

critical to aquatic ecology or crop and animal production (Kummerer, 2004; Costanzo et al., 

2005; Crane et al., 2006). 

Due to their refractory characteristics as well as their antibacterial effects, biological 

methods are not efficient for antibiotic removal (Reyes et al., 2006). Indeed, biological removal 

using activated sludge showed only adsorption onto the solid phase without degradation (Prado 

et al., 2009).  

Chemical oxidation could efficiently destroy antibiotics and overcome most of the 

limitations encountered during other conventional processes; especially the advanced oxidation 
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processes (AOP), which constitute the most important and widely documented group (Chiron et 

al., 2000; Oppenländer, 2003; Badawy et al., 2006). The AOP can be divided into three 

categories: photochemical processes, ozonation combined with UV irradiation and/or hydrogen 

peroxide (H2O2), and in-situ generation of free radicals OH by other technologies.  They are 

efficient but can be costly (Mohajerani et al., 2009). 

Electrochemical processes also showed a remarkable ability to remove recalcitrant 

organic contaminants such as antibiotics (Walsh and Mills, 1993). An electrochemical reaction is 

based on a heterogeneous electronic transfer, and the mean reactants are electrons. Weichgrebe 

et al. (2004) studied the biocide effect during electrochemical oxidation of tetracycline in water 

at an initial concentration of 1 g l-1. Zhang et al. (2009) investigated the effect of various 

operating conditions on the electro-oxidation of tetracycline with a Ti/RuO2 anode; similar 

studies used gold diamond and platinum anodes (Weichgrebe et al., 2004; Kraft, 2007; Masawat 

and Slater, 2007; Zhang et al., 2009). Electro-oxidation has appeared efficient for tetracycline 

degradation but has been carried out mostly on onerous anode materials. 

For electroactive target compounds, oxidation or reduction can be carried out for their 

removal. Direct electrochemical processes are relevant in the case of a specific pollutant owing 

to the targeted selectivity, and therefore would be appropriate to treat low volumes of highly 

concentrated pollutants. 

Reducing the antibacterial activity of a tetracycline solution does not necessarily require 

its complete mineralization. All that is needed is to break down the initial tetracycline molecules 

(Vedenyapina et al., 2008). Effluent mineralization can subsequently be completed during 

biological treatment; the potential advantages of the strategy of combining physicochemical and 
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biological processes to treat contaminants in wastewater have previously been described (Scott 

and Ollis, 1995, 1997; Pulgarin et al., 1999; Farré, et al., 2007). 

Biodegradability improvement of solutions of 2,4-dichlorophenoxyacetic acid after a 

direct electrochemical oxidation in a homemade flow-cell involving a bare graphite felt electrode 

has been shown (Fontmorin et al., 2012), and complete mineralization (97%) of a pesticide, 

phosmet, was obtained by coupling an electrochemical reduction by means of the same 

electrolysis system and an activated sludge culture (Alonso-Salles et al., 2010). 

Regarding the target compound, tetracycline, a significant electrochemical activity was shown by 

cyclic voltammetry with a vitreous carbon electrode, and hence electrochemical treatment was 

performed in a home-made flow cell with a bare graphite felt electrode. Biodegradability, based 

on the BOD5 (five-day biochemical oxygen demand) to COD (chemical oxygen demand) ratio, 

increased with the oxidation potential until reaching 0.39, namely a biodegradable solution for 

1.6 V/SCE, while no biodegradability improvement was observed after electrolysis in reduction, 

even though the resulting solution was not toxic for activated sludge. In addition, TOC analyses 

of the electrolyzed solution revealed that the level of mineralization remained low indicating the 

potential of a combined electrochemical and biological treatment (Belkheiri et al., 2011). 

In order to improve the efficiency of the electrolysis pretreatment, especially through 

attempts to reduce the working potential, modification of the graphite felt electrode by nickel 

electrodeposition has been considered (Chamoulaud et al., 2001). Indeed, nickel oxidation on the 

electrode leads to the formation of a nickel oxyhydroxide, NiOOH, known to catalyze the 

oxidation of some organic molecules (Fleischmann et al., 1971; Vértes and Horányi, 1974). The 

purpose of this study was therefore to examine the electrochemical behavior of tetracycline with 
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an electrode modified by nickel electrodeposition and to determine if this improved the 

biodegradability of the tetracycline. 

 

2. Materials and methods 

 

2.1. Chemicals and reagents 

 

Tetracycline hydrochloride (< 96% HPLC-grade) is displayed in Fig.1 and was obtained 

from Sigma Aldrich (Saint-Quentin Fallavier, France). Acetonitrile (ACN) was HPLC grade 

from Fisher Scientific (Illkirch, France), and formic acid (LC-MS grade, 98%) was purchased 

from J.T. Baker (Deventer, Holland). Standards were prepared with ultra-pure water (Purelab 

Options- Q7/15, Elga, 18.2 MΩ.cm-1). All other reagents were of analytical grade. 

 

2.2. Materials for the electrochemical pre-treatment 

 

Electrochemical pre-treatment, in a continuous system, was performed in a home-made 

flow cell (Fig. 2a). The working electrode was obtained by nickel electrodeposition on the 

surface of the carbon felt. The electrode was made in the laboratory (by Floner and co-workers)  

at room temperature in an electrochemical cell formed by an open rectangular tank containing 1 

L of the electrolyte solution (sodium sulfate and boric acid, 0.25 M each). The mechanism of 

nickel electrodeposition in acidic medium can be summarized in its simplest form by the 

reaction: Niaq
2+ + 2e− → Ni (Floner and Moinet, 2004; Floner and Geneste, 2007). The electrode 

was uniformly covered by nickel (around 1 μm thickness). There were no obvious defects and 
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cracks of the coating layer found on the electrode surface and it had a smooth surface, as shown 

in the SEM micrograph obtained with a JEOL 6301F (9 kV) microscope (Fig. 2b). Its specific 

area, measured by the BET method, was 1 m2 g-1 and its density was about 0.37 g cm-3, with a 

specific surface area related to the volume of 3700 cm2 cm-3. The working electrode was 0.3 cm 

high and 4 cm in diameter, leading to a volume of 3.768 cm3, with a total surface of 1.39 m2. The 

electrode was separated from the two interconnected stainless steel counter-electrode 

compartments by cationic exchange membranes (Ionac 3470 – Lanxess SAS, Courbevoie, 

France). A good homogeneity of the potential distribution in the three-dimensional working 

electrode was obtained when the felt was located between two counter-electrodes (Moinet, 

1994). The reference electrode (SCE) was positioned in the middle of the felt. The potential 

control was performed using an e-daq potentiostat linked to an e-corder 401 converter (AD 

Instruments Pty Ltd., Castle Hill, Australia). The tetracycline concentration (TC) was 100 mg l-1. 

The supporting electrolyte used was 0.1 M Na2SO4. The TC solution percolated the porous 

electrode at a constant flow rate monitored by a Gilson minipuls 2 peristaltic pump (Middleton, 

WI, USA). 

 

2.3. Analysis 

 

2.3.1 Electrochemical analysis 

Electrochemical analysis of tetracycline was performed using a conventional three 

electrode-cell with a nickel electrode (20 mm2) as working electrode and a platinum wire as 

counter electrode. All the electrode potentials were measured with respect to a saturated calomel 

electrode (SCE) located near the working electrode. 
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Experiments were performed at ambient temperature under a nitrogen atmosphere. 

Voltammograms were obtained by cyclic voltammetry (100 mVs−1) using an e-daq potenstiostat 

linked to an e-corder 401 converter. The sense of the potential (E) sweeping is indicated by an 

arrow. 

 

2.3.2. UPLC  

The residual tetracycline concentration was determined by a UPLC (ultra-high-pressure 

liquid chromatography) system involving a Waters Acquity UPLC® H-Class gradient pump and 

a PDA (photo diode array) UV detector. A C18 BEH (bridged ethylene hybrid) column, 1.7 µm 

(2.1 x 50 mm) was used. A gradient elution was carried out with 0.1% formic acid in ultra-pure 

water (solvent A) and acetonitrile (solvent B) as follows: 90/10% from 0 to 1 min; from 1 to 4.5 

min elution was linearly modified from 90/10 to 2/98%, maintained at 2/98 % from 4.5 to 5 min; 

from 5 to 5.5 min elution was linearly modified  from 2/98 to 90/10%, where it was maintained 

from 5.5 to 10 min for solvents A and B, respectively. 

The flow rate was 0.5 ml. Tetracycline was detected at 360 nm. More detailed information on the 

UPLC determination can be found in a previous paper (Belkheiri et al., 2011). 

 

2.3.3. Total organic carbon (TOC) and total nitrogen measurements  

Total organic carbon and total nitrogen were measured by means of a Schimadzu total 

organic analyzer (TOC-VCPH TOC-VCPN/TOC-VWP).  HCl (2 N) and H3PO4 (25%) were 

considered for CO2 and NO production. Organic carbon compounds were combusted and 

converted to CO2, which was detected by a non-dispersive infrared detector (NDIR). Dissolved 

nitrogen compounds were combusted and converted to NO, which was then mixed with ozone 
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chemiluminescence for detection by a photomultiplier. Analyses were run in triplicate. 

 

2.3.4. Chemical oxygen demand (COD) measurements 

Chemical oxygen demand (COD) was measured by means of a Test Nanocolor® CSB 40 

and 160 from Macherey-Nagel (Düren, Germany). The amount of oxygen required for the 

oxidation of the organic and mineral matter at 148°C for 2 h was quantified after oxidation with 

K2Cr2O7 at acidic pH and with heating. Analyses were triplicated. 

 

2.3.5. Toxicity 

Toxicity was measured by means of the Microtox test (using a Microtox 500 analyser, 

which is a laboratory-based temperature-controlled photometer [15–27°C] that maintains the 

luminescent bacteria reagent and test samples at the appropriate temperature. This self-

calibrating instrument measures the light production from a luminescent marine bacterial strain, 

Vibrio fischeri NRRL B-11177 (standard ISO 11348-3). The sample toxicity is determined by 

measuring the effective concentration at which 50% of the light is lost due to compound toxicity 

(EC50) (Sarria et al., 2002). 

 

2.3.6. Biological oxygen demand (BOD5) measurements (Delzer and McKenzie 2003) 

Biodegradability was deduced from BOD5 measurements, carried out in an Oxitop IS6 

(WTW, Alès, France). Activated sludge from a wastewater treatment plant was used to inoculate 

the flasks; the initial microbial concentration was 0.5 g l-1. 

1 ml of a mineral solution and 2.5 ml of a phosphate solution were added to 164 ml of 

sample. The composition of the mineral solution was (in g l-1): MgSO4.7H2O, 22.5; CaCl2, 27.5; 
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FeCl3, 0.15; NH4Cl, 2.0; and that of the phosphate solution was (g l-1): Na2HPO4, 6.80; KH2PO4, 

2.80. 

The BOD5 value was initially estimated based on the COD value experimentally 

measured by means of a Nanocolor test CSB 160 (Macherey-Nagel, Düren, Germany); BOD5 = 

COD/1.46. The range of expected BOD5 values was then deduced and hence led to the volumes 

of sample of activated sludge solution and of nitrification inhibitor (0.5 ml of 10 mg l-l solution 

of N-Allylthiourea), which have to be added in the shake flask of the Oxitop apparatus. 

Similar protocol was applied for the control flask except that it was replaced by a solution 

of easily biodegradable compounds, namely glutamic acid (150 mg l-1) and glucose (150 mg l-1). 

Before use, KOH was added to achieve neutral pH (7.0 ± 0.2). A similar protocol was also 

considered for the blank solution, for which the sample was replaced by water to deduce the 

biological oxygen demand corresponding to the endogenous respiration. 

All BOD5 measurements were duplicated. 

 

2.4. Biological treatment 

 

After only one pass through the electrochemical flow-cell, the effluent was collected for 

subsequent biological treatment. The biological treatment was carried out in aerobic conditions, 

using activated sludge purchased from a local wastewater treatment plant (Beaurade, Rennes, 

France). Prior to the experiment, activated sludge was washed four times with tap water and once 

with distilled water. After each washing, activated sludge was centrifuged at 3000 rpm for five 

minutes (Jouan, Thermo Fisher Scientific, Saint Herblain, France). The supernatant was then 

separated from the sludge to dispose of any residual carbon or mineral source.  
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Duplicate experiments were carried out in 600-ml Erlenmeyer flasks containing 450 ml of 

medium. Each sample was run in triplicate, stirred at 200 rpm, and kept at 25°C. The following 

mineral basis was used for each sample: 

•1 ml of the following solution (g l-1): KH2PO4, 8.5; K2HPO4, 20.8; Na2HPO4.2H2O, 33.4. 

• 0.4 ml of the following solutions (g l-1): CaCl2, 27.6; MgSO4.7H2O, 22.6; FeCl3.6H2O, 0.26. 

•– 1 ml of a trace elements solution containing (g l-1): CuSO4.7H2O, 1.36; ZnSO4.5H2O, 0.25; 

NiSO4.6H2O, 0.11; MnSO4.H2O, 1.01; H3BO3, 0.10; and H2SO4, 1 ml l-1. 

The culture medium also contained NH4Cl, 75 mg l-1, as nitrogen source; as well as either the 

tetracycline concentration at100 mg l-1, or a solution of 100 mg l-1 TC electrolyzed in oxidation 

at -0.7 V at a flow rate of 3 ml min-1. A primary carbon source, glucose 100 mg l-1, was also 

added as a carbon co-substrate. The pH of each sample was then adjusted to 7.0 ± 0.2 with 1 mol 

l-1 NaOH. 

Samples (5 ml) were taken every 2 or 3 days and filtered on 0.45 µm. Measurements of 

pH were carried out using a Hanna pH meter with a combined micro-electrode probe (Thermo 

Spectronic, Rochester, NY). Samples were then diluted for TOC and TC measurements. 

 

3. Results and discussion 

 

3.1. Electrochemical behaviour of tetracycline 

 

The electroactivity of tetracycline (1 g l-1) was examined in oxidation in alkaline medium 

(NaOH 0.1 mol l−1) and in reduction in acidic medium (phosphate buffer 0.25 mol l−1) by cyclic 

voltammetry on a nickel electrode. Alkaline conditions were established for oxidation, since it is 
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well-known that under these conditions, oxyhydroxide NiOOHs are formed, leading to 

electrocatalysis of organic compounds, mainly alcohols (Fleischmann et al., 1971; Vértes and 

Horányi, 1974). Reduction tests were carried out in an acidic medium (pH = 2.2 phosphate buffer 

0.25 mol l−1), since it favors the electrocatalytic hydrogenation (ECH) of compounds (Martel et 

al., 1997; Vilar et al., 2010). 

 

3.1.1. Oxidation tests 

Voltammograms obtained in the presence of only NaOH display a quasi-reversible 

system around 0.38 VSCE (Fig.3 a). This signal has to be related to the reversible couple nickel 

hydroxide / nickel oxyhydroxide (Ni(OH)2/ NiOOH). This couple is known to appear above pH 

12 (Hahn et al., 1987). 

 

The voltammogram of the target compound showed an increase of the anodic signal of the quasi-

reversible system, showing that in alkaline conditions tetracycline can be oxized on nickel. It 

seems that the formation of NiOOH on the electrode allows the oxidation of tetracycline, 

probably by a reaction with the alcohols groups of the molecule. Interestingly, the oxidation 

potential (around 0.5 VSCE) was significantly lower than those observed on the graphite-felt 

electrode (1 V/SCE – (Belkheiri et al. 2011)), due to the catalytic properties of nickel. 

Owing to the high concentration of tetracycline that can be achieved in some effluents, 

experiments were also carried out for tetracycline concentrations of 0.1 g l-1 (not shown). The 

electrochemical oxidation of tetracycline was still observed at this concentration, underscoring 

the importance of the electrochemical process on nickel. 

 

3.1.2. Reduction tests 
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The electrochemical behavior of tetracycline in reduction in buffered acidic medium at 

pH 2.2 is displayed in Fig.3b. The presence of tetracycline induces a slight anodic shift of the 

reduction of water in dihydrogen. The reduction of water on the nickel electrode in acidic 

medium proceeds as follows (Martel et al., 1997; Vilar et al., 2010): 

Ni + H3O
+ + e- → NiH + H2O (1) 

2NiH → H2 + 2Ni (2) 

The anodic shift of the electrochemical signal shows that adsorbed dihydrogen (NiH) is involved 

in a reaction with adsorbed tetracycline, favouring reaction (1). Thus, cyclic voltammetry 

analyses seem to show an electrocatalytic hydrogenation reaction of tetracycline on the nickel 

electrode, which should be confirmed by electrolysis. 

 

3.2. TC electrolysis 

Since cyclic voltammetry showed the feasibility of an electrochemical pre-treatment, 

electrolysis of tetracycline were studied at 0.1 g l-1 in both oxidation and reduction. 

 

3.2.1. Reduction 

Cathodic reduction was performed in phosphate buffered acidic medium (pH 2.1) at 1 ml 

min-1 at different potentials (Table 1). The TC concentration was followed by HPLC. The results 

show that TC removal yield increased for increasing negative potentials. However, even at -1.0 

V, the residual amount of TC remained high (17.5 mg l-1 – Table 1), whereas the hydrogen 

evolution rate becomes more significant with increasing polarization potential. Since more 

cathodic potentials should even more enhance reaction (2), we considered the oxidation of 

tetracycline rather than the reduction as a possible pretreatment. 
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3.2.2. Oxidation 

Oxidation was examined for a TC concentration of 100 mg l-1, in alkaline medium (pH 

13) at 1 ml min-1. 

Tetracycline concentration degradation appeared almost negligible for potentials below 

0.4 V (Table 1). These results confirmed cyclic voltammetry analyses, since the oxidation signal 

became noticeable from about 0.4 V, corresponding to the formation of nickel oxyhydroxides 

(NiOOH). Above this potential, an almost total TC removal was always observed, showing the 

efficiency of the catalytic system. To optimize the electrochemical process, the flow rate effect 

was also examined at 0.7 V, corresponding to a total TC removal for a flow rate of 1 ml min-1 

(Table 1). Interestingly, for all the studied flow rates, total TC degradation was achieved, as 

confirmed by TC determination by HPLC. However, mineralization yield decreased for 

increasing flow rates (Table 2) and was almost stable (around 15%) from 3.5 ml min-1. This can 

be explained by further oxidation of byproducts occurring at low flow rates, leading to higher 

degradation yields. 

Even if tetracycline was completely degraded after oxidation, the mineralization level 

remained low; it increased from 13.3% for 6 ml min-1 to 31% for 1 ml min-1 (Table 2). It should 

be noted that the electrochemical process was carried out in order to selectively degrade the 

target compound to obtain byproducts that were expected to be biologically assimilated by 

microorganisms from activated sludge. Therefore, such electrochemical pretreatment seems to be 

relevant for the tetracycline molecule, owing to the important amount of residual organic carbon 

available for a subsequent biological treatment. 
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3.3. COD measurements 

 

Generally COD decrease involves a chemical oxidation of the target molecule and 

therefore a modification of its chemical structure that could lead to a decrease of its toxicity, 

while low mineralization is desired to ensure sufficient residual organic carbon for a subsequent 

biological treatment (Bandara et al., 1997; Sarria et al., 2003; Oller et al., 2007). Consequently, a 

favorable trend is a decrease of the COD/TOC ratio (Chebli et al., 2010) or an increase of the 

average oxidation state (AOS) (Pulgarin et al., 1999; Sarria et al., 2002): 

TOC
COD-TOC

AOS
)(*4

=  

with TOC and COD expressed in molar carbon per liter and molar oxygen per liter, respectively. 

The TOC and COD values for the untreated tetracycline were 55.5 and 145 mg l-1. From 

this, mineralization and oxidation yields varied in the range 9.7 to 33.5% and 19.3 to 31.7% for 

flow rates between 1 and 5 ml min-1, respectively (Table 3). Hence, the COD to TOC ratio 

increased only slightly from 2.6 for the untreated tetracycline to 3.2 for a 1 ml min-1 flow rate, 

while it decreased significantly for 3 and 5 ml min-1 (Table 3), thus showing a favorable trend. 

Regarding AOS, it also decreased for a 1 ml min-1 flow rate, while it followed a favorable trend 

for higher flow rates, 3 and 5 ml min-1 (Table 3).The oxidation on nickel electrodes at flow rates 

above 1 ml min-1 therefore seemed advantageous for electrolysis prior to a biological treatment. 

 

3.4. Toxicity and biodegradability 

 

Pure tetracycline at a concentration of 100 mg l-1 was toxic for activated sludge, since the 

toxicity threshold is 18 mg l-1 (Prado et al., 2010); this was illustrated by the BOD5 value, which 
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was below that of the blank sample, and was confirmed by the Microtox test, since the EC50 

value was 13% (corresponding to 50% cell death, Vibrio fischeri). 

Toxicity decreased after electrolysis since an EC50 value of 52% was obtained for a 3 ml 

min-1 flow rate. Biodegradability was checked by determination of the BOD5 to COD ratio, since 

for values above 0.4, the effluent can be considered as biodegradable (Pulgarin et al., 1999; 

Sarria et al., 2002). The favorable trend was confirmed, since after electrolysis the BOD5 to COD 

ratio was above the biodegradability threshold for 1 and 3 ml min-1 and close to the threshold for 

5 ml min-1 (Table 3), showing the biodegradability of the byproducts from TC oxidation. 

 

3.5. Biological treatment 

 

In the absence of electrochemical pretreatment, the initial decrease observed for 

tetracycline (Fig.4) should be related to biosorption on activated sludge. Indeed, the adsorbed 

amount corresponded to 37.5% of the initial amount (not shown), and this was correlated with 

the TOC decrease (35.5%; Fig.4). This high amount of adsorbed TC was in agreement with 

previous findings, i.e., 39.8% TC and 41% TOC biosorption on activated sludge for Yahiat et al. 

(2011), as well as with the trend observed by Prado et al. (2009) who showed that adsorption is 

the most likely fate for tetracycline in a biological system. Throughout culturing, the TC 

concentration remained constant within the limits of experimental error (Fig.4), in agreement 

with the absence of TC biodegradability (Prado et al., 2009) and its potential toxicity for 

activated sludge remained, since TC concentration remained always above the threshold level of 

18 mg l-1 (Prado et al., 2010).  Owing to TC toxicity, the weak TOC increase observed from 

about 50 h of culture may be attributed to cell lysis. 
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The TOC decreased during biological treatment with an electrolyzed TC solution. This 

showed a continuous decrease of the residual TOC amount over the period of culture (Fig.4), 

which obviously cannot be attributed to the biosorption of byproducts which is a rapid 

mechanism which take only a few hours (Prado et al., 2009). It should be remembered that TC 

was completely oxidized after only one pass through the percolation cell, so no residual TC was 

expected after biological treatment. Decrease in TOC was observed until about 11.5 days of 

culture, leading to about 54% mineralization; then the TOC level remained nearly constant until 

the end of culture (Fig.4). From this the overall TOC decrease during the combined process was 

69%, corresponding to the abatement from the initial TOC value, before electrolysis pretreatment 

(55.5 mg l-1 for untreated TC – Table 3) to the final value observed at the end of the activated 

sludge culture (close to 17 mg l-1 – Figure 4). The significant residual TOC amount showed that 

some degradation byproducts in the oxidized effluent samples could not be assimilated by 

microorganisms even after 18 days of culture. An incomplete mineralization was also previously 

observed during the coupling of electrochemical pretreatment on a non-modified graphite-felt 

electrode and a biological treatment for the degradation of a pesticide, 2,4-dichlorophenoxyacetic 

acid (Fontmorin et al., 2013). However, the proposed combined process appeared especially 

promising considering the inefficiency of a widely used AOP, photocatalysis, to improve the 

biodegradability of TC solutions, owing to the presence of non-biodegradable byproducts 

(Yahiat et al., 2011, 20121; Maroga Mboula et al., 2012). To continue this study, research is in 

progress in the laboratory to examine the relevance of the proposed combined process to treat 

synthetic solutions of a widely used macrolide antibiotic, tylosin.  

 

4. Conclusions 
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The electroactivity of tetracycline (1 g l-1) was examined under oxidation conditions in 

alkaline medium (NaOH 0.1 mol l−1) and under reduction in an acidic medium (phosphate buffer 

0.25 mol l−1) using cyclic voltammetry with a nickel electrodeposition-modified graphite felt 

electrode. To our knowledge, such an electrode has never been studied for TC degradation. 

Tetracycline can be oxidized in alkaline conditions on nickel at an oxidation potential of only 0.5 

VSCE, which is significantly lower than possible with a graphite-felt electrode (1 V/SCE – 

(Belkheiri et al., 2011)). An electrocatalytic hydrogenation reaction of tetracycline on the nickel 

electrode was also shown; however, that reaction remained limited even at a potential of -1.0 V. 

An oxidation pretreatment was therefore considered. 

For 0.7 V, the COD on the TOC followed a favorable trend since it decreased 

significantly for 3 and 5 ml min-1; a similar trend was also recorded for AOS. The favorable 

trend was confirmed since toxicity decreased after electrolysis; an EC50 value of 52% was 

obtained for 3 ml min-1 while it was initially 13%, and the BOD5 to COD ratio was above the 

biodegradability threshold for 1 and 3 ml min-1 and close to this threshold for 5 ml min-1. 

Confirming these results, activated sludge culture led to 54% mineralization of solutions 

electrolyzed in oxidation, leading to a 69% overall TOC decrease during the combined process. 



20 

 

References 

 

Alonso-Salles, N., Fourcade, F., Geneste, F., Floner, D., Amrane, A., 2010. Relevance of an 

electrochemical process prior to a biological treatment for the removal of an 

organophosphorous pesticide, phosmet. Journal of Hazardous Materials 181, 617-623. 

Arikan, O.A., Sikora, L.J., Mulbry, W., Khan, S.U., Rice, C., Foster, G.D., 2006. The fate and 

effect of oxytetracycline during the anaerobic digestion of manure from therapeutically 

treated calves. Process Biochem. 41, 1637-1643. 

Badawy, M.I., Ghaly, M.Y., Gad-Allah, T.A., 2006. Advanced oxidation processes for the 

removal of organo phosphorus pesticides from wastewater. Desalination 194, 166-175. 

Bandara, J., Pulgarin, C., Peringer, P., Kiwi, J., 1997. Chemical (photo-activated) coupled 

biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. 

Journal of Photochemistry and Photobiology A: chemistry 111, 253-263. 

Belkheiri, D., Fourcade, F., Geneste, F., Floner, D., Aït-Amar, H., Amrane, A., 2011. Feasibility 

of an electrochemical pre-treatment prior to a biological treatment for tetracycline 

removal. Separation and Purification Technology 83, 151-156. 

Chamoulaud, G., Floner, D., Moinet, C., Lamy, C., Belgsir, E.M., 2001. Biomass conversion II: 

simultaneous electrosyntheses of furoic acid and furfuryl alcohol on modified graphite 

felt electrodes. Electrochimica Acta 46, 2757-2760. 

Chebli, D., Fourcade, F., Brosillon, S., Nacef, S., Amrane, A., 2010. Supported photocatalysis as 

a pre-treatment prior to biological degradation for the removal of some dyes from 

aqueous solutions; Acid Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. 

Journal of Chemical Technology and Biotechnology 85, 555-563. 



21 

 

Chiron, S., Fernandez-Alba, A.R., Rodriguez, A., Garcia-Calvo, E., 2000. Pesticide chemical 

oxidation: state of the art. Water Research 34366-377. 

Chopra, I., Roberts, M., 2001. Tetracycline antibiotics: Mode of action, Applications, Molecular 

Biology and Epidemiology of Bacterial resistance. Microbiology and Molecular Biology 

Reviews 65, 232-233. 

Costanzo, S.D., Murby, J., Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic 

environment. Marine Pollution Bulletin 51, 218-223. 

Crane, M., Watts, C., Boucard, T., 2006. Chronic aquatic environmental risks from exposure to 

human pharmaceuticals. Science of the Total Environment 367, 23-41. 

Delzer, G.C., McKenzie, S.W., 2003. Five-day Biochemical Oxygen Demand. in Biological 

indicators, Book 9. Handbooks for Water-Resources Investigations, Section A. National 

Field Manual for the Collection of Water-Quality Data U.S. Geological Survey 

Techniques of Water-Resources Investigations, USGS TWRI Book 9–A7 (Third 

Edition). pp 1-21. 

Farré, M.J., Brosillon, S., Domènech, X., Peral, J., 2007. Evaluation of the intermediates 

generated during the degradation of Diuron and Linuron herbicides by the photo-Fenton 

reaction. Journal of Photochemistry and Photobiology A: chemistry 189, 364-373. 

Fleischmann, M., Korinek, K., Pletcher, D., 1971. The oxidation of organic compounds at a 

nickel anode in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial 

Electrochemistry 31, 39-49. 

Floner, D., Geneste, F., 2007. Homogenous coating of graphite felt by nickel electrodeposition to 

achieve light nickel felts with high surface area. Electrochemistry Communications 9, 

2271-2275. 



22 

 

Floner, D., Moinet, C., 2004. Dispositif pour métalliser un feutre graphitique, procédé mis en 

œuvre par ce dispositif, feutre graphitique métallisé correspondant et utilisation d’un tel 

feutre graphitique métallisé. in Patent FR  0213034  

Fontmorin, J.M., Huguet, S., Fourcade, F., Floner, D., Geneste, F., Amrane, A., 2012. 

Electrochemical oxidation of 2,4-D: analysis of byproducts and Improvement of the 

biodegradability. Chemical Engineering Journal 195-196, 208-217. 

Fontmorin, J.M., Huguet, S., Fourcade, F., Geneste, F., Floner, D., Amrane, A., 2013. Coupling 

of an electrochemical process with a biological treatment for the removal of 2,4-

Dichlorophenoxyacetic acid. Biochemical Engineering Journal 70, 17-22. 

Hahn, F., Floner, D., Beden, B., Lamy, C., 1987. In situ investigation of the behavior of a nickel 

electrode in alkaline solution by UV visible and IR reflectance spectroscopies. 

Electrochimica Acta 32, 1631-1636. 

Hirsch, R., Ternes, T.A., Haberer, K., Kratz, K.L., 1999. Occurrence of antibiotics in the aquatic 

environment. Science of the Total Environment 225, 109-118. 

Kraft, A., 2007. Doped diamond: A compact review on a new, versatile electrode material. 

International Journal of Electrochemical Science 2, 355-385. 

Kummerer, K., 2004. Resistance in the environment. Journal of Antimicrobial Chemotherapy 54, 

311-320. 

Maroga Mboula, V., Hequet, V., Gru, Y., Colin, R., Andres, Y., 2012. Assessment of the 

efficiency of photocatalysis on tetracycline biodegradation. Journal of Hazardous 

Materials 209-210, 355-364. 



23 

 

Martel, A., Mahdavi, B., Lessard, J., Brossard, L., Ménard, H., 1997. Electrocatalytic 

hydrogenation of phenon on various electrode materials. Canadian Journal of Chemistry 

75, 1862-1867. 

Masawat, P., Slater, J.M., 2007. The determination of tetracycline residues in food using a 

disposable screen-printed gold electrode (SPGE). Sensors Actuators B 124, 127-132. 

Merle, R., Hajek, P., Käsbohrer, A., Hegger-Gravenhorst, C., Mollenhauer, Y., Robanus, M., 

Ungemanch, F.R., Kreienbrock, L., 2012. Monitoring of antibiotic consumption in 

livestock: a German feasibility study. Preventive Veterinary Medicine 104, 34-43. 

Mohajerani, M., Mehrvar, M., Ein-Mozaffari, F., 2009. An overview of the integration of 

advanced oxidation technologies and other processes for water and wastewater treatment. 

International Journal of Engineering 3, 120-146. 

Moinet, C., 1994. Electrosynthèse organique en continu. Méthodes directes et indirectes. Le 

Journal de Physique IV 4, 175-184. 

Oller, I., Malato, S., Sanchez-Perez, J.A., Maldonado, M.I., Gasso, R., 2007. Detoxification of 

wastewater containing five common pesticides by solar AOPs-biological coupled system. 

Catalysis Today 129, 69--78. 

Oppenländer, T., 2003. Photochemical purification of water and air. Advanced oxidation 

processes (AOPs): Principles, reaction mechanisms, reactor concepts., Wiley-VCH, New 

York 

Prado, N., Montéléon, C., Ochoa, J., Amrane, A., 2010. Evaluation of the toxicity of veterinary 

antibiotics on activated sludge using a modified Sturm-test – Application to tetracycline 

and tylosin. Journal of Chemical Technology and Biotechnology 85, 471-477. 



24 

 

Prado, N., Ochoa, J., Amrane, A., 2009. Biodegradation and biosorption of tetracycline and 

tylosine antibiotics in activated sludge system. Process Biochemistry 44, 1302-1306. 

Pulgarin, C., Invernizzi, M., Parra, S., Sarria, V., Polania, R., Péringer, P., 1999. Strategy for the 

coupling of photochemical and biological flow reactors useful in mineralization of 

biorecalcitrant industrial pollutants. Catalysis today 54,, 341-352. 

Reyes, C., Fernandez, J., Freer, J., Mondaca, M.A., Zaror, C., Malato, S., Mansilla, H.D., 2006. 

Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of 

Photochemistry and Photobiology A: chemistry 184, 141-146. 

Sarria, V., Kenfack, S., Guillod, O., Pulgarin, C., 2003. An innovative coupled solar-biological  

system at field pilot scale for the treatment of biorecalcitrant pollutants. Journal of 

Photochemistry and Photobiology A: chemistry 159, 89-99. 

Sarria, V., Parra, S., Adler, N., Peringer, P., Benitez, N., Pulgarin, C., 2002. Recent 

developments in the coupling of photoassisted and aerobic biological processes for the 

treatment of biorecalcitrant  compounds. Catalysis Today 76, 301-315. 

Scott, J.P., Ollis, D.F., 1995. Integration of chemical and biological processes for water 

treatment: Review and recommendations. Environmental Progress 14, 88-103. 

Scott, J.P., Ollis, D.F., 1997. Integration of chemical and biological oxidation processes for water 

treatment: II. Recent illustrations and experiences. Journal of Advanced Oxidation 

Technology 2, 374-381. 

Vedenyapina, M.D., Eremicheva, Y.N., Vedenyapin, A.A., 2008. Electrochemical degradation of 

tetracycline. Russian Journal of Applied Chemistry 81, 765-767. 



25 

 

Vértes, G., Horányi, G., 1974. Some problems of the kinetics of the oxidation of organic 

compounds at oxide-covered nickel electrodes. Journal of Electroanalytical Chemistry 

and Interfacial Electrochemistry 52, 47-53. 

Vilar, M., Oliveira, J.L., Navarro, M., 2010. Investigation of the hydrogenation reactivity of 

some organic substrates using an electrocatalytic method. Applied Catalysis A: General 

372, 1-7. 

Walsh, F., Mills, G., 1993. Electrochemical techniques for a cleaner environment. Chemical 

Industry 8, 576-580. 

Weichgrebe, D., Danilova, E., Rosenwinkel, K.H., Vedenjapin, A.A., Baturova, M., 2004. 

Electrochemical oxidation of drug residues in water by  the example of tetracycline, 

gentamicin and aspirin. Water Science and Technology 49, 201-206. 

Yahiat, S., Elandaloussi, K., Fourcade, F., Brosillon, S., Amrane, A., 2012. Relevance of 

photocatalysis prior to biological treatment of organic pollutants – Selection criteria. 

Chemical Engineering and Technology 35, 238-246. 

Yahiat, S., Fourcade, F., Brosillon, S., Amrane, A., 2011. Removal of antibiotics by an 

integrated process coupling photocatalysis and biological treatment – Case of tetracycline 

and tylosine. International Biodeterioration and Biodegradation 65, 997-1003. 

Zhang, H., Liu, F., Wu, X., Zhang, J., Zhang, D., 2009. Degradation of tetracycline in aqueous 

medium by electrochemical method. Asia-Pacific Journal of Chemical Engineering 4, 

568-573. 

 

 



26 

 

Tables 

Table 1 

Effect of the oxidation potential on tetracycline degradation on nickel / carbon felt electrode. 

(Flow rate: 1 ml min-1) 

 Reduction Oxidation 

E (V) -0.6 -0.7 -0.8 -0.9 -1.0 0.3 0.4 0.5 0.7 0.8 

Removal 

yield (%) 

36.47 49.98 51.05 56.95 82.50 5.50 96.43 99.10 100 100 

 

Table 2 

Tetracycline degradation by oxidation and mineralization yields. 

Flow rate (ml min-1) 1.00 2.25 3.50 4.75 6.00 

([TC] 0-[TC])/ [TC]0 (%) 100 100 100 100 100 

(TOC0-TOC)/TOC0 (%) 31.0 ±2.5 22.4 ± 2.5 14.83 ± 2.5 13.3 ± 1.4 13.3 ± 1.4 

 

Table 3 

Oxidation, mineralization, and biodegradability of tetracycline electrolyzed on nickel / carbon 

felt electrode in oxidation in alkaline medium (NaOH 0.1 M) at 0.7 V. 

  Flow rate (mL min-1) 

 Untreated TC 1 3 5 

TOC (mg l-1) 55.5 ± 0.9 36.9 ± 0.9 50.1 ± 0.7 46.8 ± 0.4 

COD mg O2 l
-1 145 ± 1 117 ± 4 99 ± 5 111 ± 4 

COD/TOC 2.61 ± 0.05 3.17 ± 0.17 1.98 ± 0.11 2.37 ± 0.13 
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AOS 0.08 ± 0.01 -0.76 ± 0.04 1.04 ± 0.09 0.44 ± 0.03 

BOD5 mg O2 l
-1 0 ± 0 52.5 ± 2.5 48 ± 4 31 ± 3 

BOD5/COD 0 ± 0 0.45 ± 0.01 0.48 ± 0.02 0.28 ± 0.02 

 

 

Figure captions 

 

 

Fig. 1. Chemical structure of hydrochlorated tetracycline. 
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Fig. 2. (a) Schematic diagram of the percolation cell: a: cationic membranes; b: saturated 

calomel electrode (SCE); c: working electrode (disc of graphite covered with nickel felt: 10 mm 

diameter, 10 mm thickness); d: auxiliary counter electrodes. (b) SEM images of a nickel coating 

graphite felt (thickness 3 mm). 
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Fig. 3. Current-potential curve obtained in oxidation by cyclic voltammetry (100 mVs−1) with a 

nickel electrode (S = 20 mm2), under nitrogen atmosphere and T = 298 K, 0.1 g l-1 TC in 0.1 mol 

l-1 NaOH (a) and 1 g l-1 TC in 0.1 mol l-1 phosphate buffer (b). Current-potential curve in the 

absence (red) and in the presence of TC (black line). 
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Fig. 4. Time-courses of the total organic carbon concentration during activated sludge culture on 

tetracycline (100 mg l-1) non-pretreated (●) and after oxidation in a single pass through the 

percolation cell at a flow rate of 3 ml min-1 at 0.7 V in 0.1 mol l-1 NaOH (Δ). 

 


