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Stress induced by accumulation of unfolded proteins in the endoplasmic reticulum (ER) is 

observed in many human diseases including cancers. Cellular adaptation to ER stress is 

mediated by the unfolded protein response (UPR), which aims at restoring ER homeostasis. 

The UPR has emerged as a major pathway in remodeling cancer gene expression, thereby 

either preventing cell transformation or providing an advantage to transformed cells. UPR 

sensors are highly regulated by the formation of dynamic protein scaffolds, leading to 

integrated reprogramming of the cells. Herein, we describe the regulatory mechanisms 

underlying UPR signaling upon cell intrinsic or extrinsic challenges, and how they engage 

cell transformation programs and/or provide advantages to cancer cells, leading to 

enhanced aggressiveness or chemoresistance. We discuss the emerging cross-talks 

between the UPR and related metabolic processes to ensure maintenance of protein 

homeostasis, and its impact on cell transformation and tumor growth.  

 

 

Significance - Endoplasmic Reticulum (ER) stress signaling is dysregulated in many forms 

of cancer and contributes to tumor growth as a survival factor, in addition to modulating other 

disease-associated processes, including cell migration, cell transformation, and 

angiogenesis. Evidence for targeting the ER stress signaling pathway as an anticancer 

strategy is compelling, and novel agents that selectively inhibit the UPR have demonstrated 

preliminary evidence of pre-clinical efficacy with an acceptable safety profile.  
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Canonical ER stress signaling, activation mechanisms and alterations in 

cancers 

Since the discovery of an adaptive response against disrupted endoplasmic 

reticulum (ER) homeostasis through the up-regulation of specific ER resident chaperones 

(1), the so-called “ER stress response” has been the subject of many studies and reviewed 

extensively. ER stress results from the imbalance in the folding capacity of this organelle, 

thus leading to the accumulation of improperly folded proteins in its lumen. To restore ER 

proteostasis, the cell has evolved an integrated signaling network named the Unfolded 

Protein Response (UPR; (2)). The UPR is mainly transduced by three ER resident sensor 

proteins, Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK; (3)), Activating 

Transcription Factor 6 alpha (ATF6α; (4)) and Inositol Requiring Enzyme 1 alpha 

(IRE1α, named IRE1 thereafter; (5)) (Figure 1 ). The integrated signaling downstream of 

these three sensors tightly controls life or death decisions in cells exposed to either 

oncogenic (oncogene or tumor suppressors) or environmental (hypoxia, nutrient deprivation, 

pH) stresses. The mechanisms involved in sensing stress by the three UPR sensors are 

controlled by the ER chaperone BiP/GRP78. Under basal conditions BiP constitutively binds 

to the three sensors thus preventing their activation. Under ER stress, BiP dissociates from 

IRE1α, PERK, and ATF6, thereby allowing their respective oligomerization and auto-

transphosphorylation (6) or revealing an ER export motif in ATF6 (7).  

 

 PERK signaling - PERK oligomerization induces its autophosphorylation and the 

subsequent phosphorylation of the translation initiation factor eIF2α, thereby attenuating 

global protein synthesis (8). Phosphorylation of eIF2α and reduction of global translation 

also allows the bypass of a µORF upstream of ATF4 start codon leading to the selective 

translation of ATF4 (9). ATF4 is a transcription factor that controls the expression of genes 

involved in folding, antioxidant responses, autophagy, amino acid metabolism, and 

apoptosis (10). In addition, ATF4 promotes the transcription of CHOP and GADD34, the 

former is thought to control a pro-apoptotic response (11) whereas the latter being 

instrumental in the dephosphorylation of eIF2alpha together with the phosphatase PP1c 

(12). Moreover, active PERK directly phosphorylates NRF2, which subsequently controls 

the antioxidant response pathway (13-15). More recently, PERK activation has been shown 

to lead to the phosphorylation of the transcription factor FOXO (16), thereby leading to 

enhanced FOXO activity and to decreased insulin responsiveness in D. melanogaster. In a 

similar manner, a cryptic lipid kinase activity was recently uncovered in PERK, thereby 

promoting the phosphorylation of Di-Acyl Glycerol (DAG) and its conversion to phosphatidic 

acid (17). Although these two observations were made in a metabolic context, either insulin 
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resistance in D. melanogaster or adipocyte differentiation, their impact on cancer cell 

metabolism might represent novel paths for therapeutic development. In summary, PERK 

signaling in cancer has been shown to contribute to adaptive pathways rather than to cancer 

cell death as demonstrated by the fact that a pharmacological inhibition of PERK attenuates 

tumor growth in mouse xenograft models (18, 19). 

 

 ATF6 signaling – ATF6 is a membrane anchored transcription factor whose 

activation mainly controls ER protein folding and quality control machineries. ATF6 

activation upon ER stress requires export from the ER and cleavage in the Golgi apparatus 

by the proteases S1P and S2P (20, 21). Moreover, ATF6 export from the ER also depends 

on its cysteine oxidation status (22) as well as on the protein disulfide isomerase A5 

(PDIA5) (23). ATF6 cytosolic domain (ATF6f) translocates to the nucleus where it activates 

specific transcriptional programs involved for example, in ER-associated degradation 

(ERAD) (24, 25). ATF6 belongs to a family of transmembrane transcription factors that 

comprises about 10 members with different functions in stress response (26). Recently, 

BBF2H7/CREB3L2, which is activated in a similar manner to ATF6, was found to exert its 

function not only through its transcription factor domain (27) but also through its luminal 

domain, which is secreted and acts as a growth factor (28). ATF6 main functions to date 

depend on its cytosolic transcription activator domain, which activates the transcription of 

genes involved in ER quality control and the folding molecular machinery (29). The role of 

ATF6 in cancer is yet poorly described but this stress sensor might contribute to tumor cell 

dormancy and chemoresistance through the regulation of adaptive pathways (23, 30). 

 

 IRE1 signaling - IRE1 activity, which was first reported in relation to the splicing of 

XBP1 mRNA (31-34), is now also known to be involved in the degradation of RNA (known 

as regulated IRE1-dependent decay, or RIDD (35)), including mRNAs (36, 37), ribosomal 

RNA (38), and microRNAs (39, 40). In humans, IRE1 catalyzes the excision of a 26-

nucleotide intron on XBP1 mRNA, shifting the coding reading frame resulting in the 

expression of a stable and active transcription factor known as XBP1s. XBP1s controls 

genes involved in protein folding, secretion, ERAD, and lipid synthesis (41). In addition, 

XBP1s forms functional dimers with ATF6f to control distinct gene expression patterns (42). 

The unspliced XBP1u is suggested to play regulatory roles in i) the efficient delivery of its 

own mRNA to the ER for processing and ii) controlling the degradation of XBP1s (43). The 

mechanisms regulating the switch from XBP1 splicing to RIDD activity were recently 

suggested in vitro by showing that IRE1 dimers are more active in RIDD, whereas IRE1 

oligomers are responsible for XBP1 mRNA splicing (44). This model is in agreement with 

previous results correlating IRE1 oligomerization with enhanced XBP1 mRNA splicing (45). 
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IRE1 RNase activity was also linked to its phosphorylation status at key residues (i.e., 

Ser724), although the remaining identified phosphorylation sites remain to be functionally 

tested (46) and in yeast other phosphorylation sites mediate its inactivation (47, 48). Very 

recently, four studies have reported the mammalian XBP1s mRNA ligase as the tRNA ligase 

RtcB (49-52). Beyond its role in XBP1 mRNA splicing, IRE1 RNase is also involved in the 

direct degradation of mRNAs, an activity named Regulated IRE1 Dependent Decay (RIDD). 

Through RIDD IRE1 cleaves substrate RNAs including cancer-relevant mRNA such as 

PDFGR, SPARC or Period1 mRNA (35) and cancer relevant microRNAs such as miR-17 or 

miR-96 (40). Finally, IRE1 activation has also been linked to the activation of the 

ASK1/JNK1 signaling cascade through the recruitment of TRAF2 to IRE1 (53) although this 

could also occur through the cleavage of miR-17 via the control of TXNIP (39). Altogether 

these recent discoveries shed light on the complexity of the signaling mechanisms 

downstream of IRE1, which involve both transcriptional and post-transcriptional regulations. 

Moreover, these data provide more insights into the UPR-dependent biological networks 

that orchestrate ER protein homeostasis (proteostasis) recovery. The understanding of how 

these signaling networks are altered in cancer could unravel novel and original therapeutic 

avenues. 

 

Pro-oncogenic potential of the three UPR branches - The contribution of the UPR to 

oncogenic processes was first proposed in 2004 (54) and is now well accepted by the 

community. More recently, somatic mutations have been found in genes coding for UPR 

sensors and reported in genome-wide sequencing studies (55). For example, three 

independent studies identified mutations in IRE1 in cancers (55), including glioblastoma (56) 

and hepatocellular carcinoma (57). Since then, the number of cancer-associated mutations 

in the three UPR sensor-encoding genes has risen (Figure 2A ) and been documented in 

the COSMIC database (58). Interestingly, the somatic mutation profiles of PERK, IRE1, and 

ATF6 are distinct, with missense mutations enriched in PERK, nonsense mutations enriched 

in ATF6, and silent mutations enriched in IRE1 (Figure 2A ). Similarly, the spectrum of in-

frame variations, splicing, or frameshift mutations was also different for the three UPR 

sensors, with a predominance of in frame deletions and insertions observed for IRE1 

(Figure 2A ). The biological causes and consequences of such mutation spectra have been 

partly investigated in non-cancer relevant experimental systems (59), however these 

mutations on UPR sensors could represent novel avenues for the selective targeting of 

tumors. Moreover, the incidence of mutations found in the genes encoding the three 

sensors also exhibited tissue specificity (Figure 2B ). Indeed, integration of mutation rates 

reported in three databases (COSMIC, cBIOportal and IntOGen) revealed higher mutation 

rates of PERK in bone cancers (“other”, Figure 2B ). IRE1 somatic mutations appear to be 
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predominant in cancers of the nervous system, thereby confirming previous functional 

observations made in glioblastoma (60). Interestingly, IRE1 and ATF6 mutations are more 

frequently found in gastrointestinal cancers, which are most prone to exhibit mutations in the 

3 UPR sensor-encoding genes (Figure 2B ). Finally, PERK and ATF6 were highly mutated 

in urologic and lung cancers, whereas ATF6 mutations were predominant in genital cancers. 

Although the biological relevance of these mutations remains to be fully elucidated in terms 

of functionality (activating/inactivating, expression of the sensors, signaling specificity and 

impact on tumor phenotypes), the roles of each arm of the UPR have been illustrated in 

several cancers (Figure 2C ). For instance, Myc-induced lymphomas require the 

overactivation of the PERK/ATF4 pathway and autophagy induction for complete 

transformation (61). This was also recapitulated in Drosophila models, thus pointing towards 

the use of such tools to decipher the underlying genetic networks (62). Moreover, 

overactivation of the ATF6 pathway, most likely through high expression levels of PDIA5, 

confers resistance to Imatinib in chronic myeloid leukemia cells, and therefore inhibiting 

Protein Disulfide Isomerases (PDI) restored Imatinib sensitivity (23). Finally, the IRE1 arm of 

the UPR, and in particular the splicing of XBP1 mRNA, were found to be overactive in triple-

negative breast cancers (TNBC), thereby conferring on these tumor cells a highly 

aggressive phenotype (63) (Figure 2C ). 

 

 

Transcriptional reprogramming by the UPR 

The initial view of the impact of the UPR on adaptation processes directed against 

disturbances in ER proteostasis proposed the existence of linear pathways that control well-

defined subsets of target genes, and thus unique signaling outputs. The discovery of novel 

functions of UPR transcription factors in the physiology of diverse organs has changed this 

simplistic vision, enforcing a concept where, depending on (i) the input or the stimuli (stress-

dependent or -independent) and (ii) the cell type affected (i.e., the context: secretion-

specialized cells or not), the population of target genes engaged can dramatically differ, 

affecting cellular functions that may not have been predicted to rely on ER stress (i.e., 

involved in restoring ER proteostasis) (64). The selective reprogramming of gene expression 

by the UPR is fine-tuned, in part by the formation of heterodimeric transcription factors, in 

addition to posttranslational modifications and the crosstalk of UPR stress sensors with other 

cancer-relevant signaling pathways. In this section, we highlight a few examples 

demonstrating specific mechanisms underlying the selective control of gene expression 

programs by the UPR in a context-dependent manner. 
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 UPR transcription factor networks - Gene expression profile analysis in classic in 

vitro models of ER stress (i.e., pharmacological perturbation to ER physiology) have 

suggested that most of the UPR target genes are involved in almost every aspect of the 

secretory pathway, including folding, quality control, ERAD, trafficking, redox control, lipid 

synthesis, and in more distantly related functions such as apoptosis and autophagy (24, 65-

68). Interestingly, a recent report suggested that XBP1s and ATF6f form heterodimers that 

drive a distinct pattern of gene expression compared with that of the respective homodimers, 

thereby influencing the folding, trafficking, and degradation of destabilized ER client proteins 

(42). The transcriptional activity of ATF6 is also determined by its binding to different 

cofactors and transcription factors, including NF-Y/CBF, YY1, and TATA-binding protein 

(TBP) (25, 69, 70) and by phosphorylation (71). XBP1s is regulated by acetylation and 

sumoylation, in addition to phosphorylation through p38 (72-74). Similarly, ATF4 interacts 

with different transcription factors and is also regulated by posttranslational modifications, 

including phosphorylation, ubiquitination, and acetylation which impact on protein stability 

and thereby its availability for activating transcription (reviewed in (75)). A recent report 

assessed the regulatory network governed by ATF4 and CHOP, and indicated that these 

transcription factors may not occupy the promoters of genes involved in apoptosis (76). 

Instead, ATF4 and CHOP where shown to form heterodimers that control genes involved in 

autophagy and mRNA translation, which may lead to ATP depletion and oxidative stress 

(76). Hence, the regulation of gene expression by the UPR is complex and involves multiple 

dynamic mechanisms and control checkpoints. 

The physiological role of XBP1 is mostly attributed to sustaining the function and 

differentiation of specialized secretory cells due to their high demand for protein folding and 

secretion (41). A genome-wide screen to define the regulatory network under ER stress 

revealed that, in addition to classical secretory pathway components, XBP1s modulates the 

expression of a cluster of genes related to cell differentiation, DNA repair pathways, and key 

genes involved in brain and muscle diseases (66). Mist1, a master regulator of cell 

differentiation, was identified in this study as a direct target of XBP1s, which was then 

functionally validated in vivo in the differentiation of gastric zymogenic cells (77). During B 

lymphocyte differentiation, the engagement of the B cell receptor has been proposed to 

regulate plasma cell differentiation through signaling events that depend on XBP1 mRNA 

splicing associated with the attenuation of the transcriptional repressors IRF4 and BLIMP1 

(68, 78). These studies suggest that XBP1 has relevant functions in cell differentiation that 

are beyond the control of protein folding stress through the modulation of well-defined gene 

expression programs which when dysregulated could impact on tumor cell’s adaptive 

properties to selective environments.  
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Collectively, this information provides a global picture of a cancer-relevant 

interconnected network of UPR-activated transcription factors, which not only interact with 

each other but also are able to form specific complexes with other stress-relevant 

transcription factors (see below). These events may specifically modulate the UPR 

transcriptional responses and thus cancer cells’ ability to cope with their altered metabolism 

and the challenging microenvironment.  

 

Transcriptional reprogramming in cancer cells – Although the role of the UPR in the 

survival and positive selection of cancer cells in solid tumors has been well established for 

over a decade, a deeper knowledge of the mechanisms of action of ER stress signaling in 

cancer biology has only recently become available. In addition to operating as an adaptive 

mechanism to the microenvironmental changes observed in cancer, the UPR is now 

recognized as a relevant component that determines cell transformation and metastatic 

potential, in addition to its regulation of cell dormancy, genomic stability, angiogenesis, 

immunogenic tolerance, and the metabolic status of the cell (79). These findings have 

suggested that targeting the proteostasis network may be therapeutically beneficial in 

cancer. One of the best examples in terms of demonstrating the therapeutic potential of 

targeting the proteostasis network in cancer is the use of the proteasome inhibitor 

bortezomib for the treatment of multiple myeloma (80). Bortezomib was shown to trigger 

chronic ER stress, reflected in overactivation of PERK, which may sensitize cells to 

apoptosis (81). Recently, pharmacological inhibitors targeting the PERK kinase domain were 

developed and shown to reduce pancreatic tumor growth in xenograft models (18, 19). 

However, as PERK plays essential roles in pancreatic beta cells’ functions, the use of PERK 

inhibitors might have deleterious secondary effects on the organ. Interestingly, a novel 

compound termed ISRIB that blocks ATF4 expression (82), was recently shown to overcome 

the deleterious side effects of PERK inhibitors on pancreas (83). Importantly, in vitro studies 

also indicated that bortezomib might actually inhibit XBP1 mRNA splicing, abrogating the 

prosurvival consequences of this UPR signaling branch (84). This finding motivated the 

search for small molecules that block the RNase activity of IRE1 as a possible anti-cancer 

agent. In fact, several compounds have been identified that selectively block XBP1 splicing 

(i.e. STF-083010 and MKC-3946), and have important antitumor effects in preclinical models 

of multiple myeloma (reviewed in (85)). IRE1 inhibitors also synergize with bortezomib in the 

killing of cancer cells. In agreement with these findings, XBP1s overactivation has been 

suggested to be part of the etiology of multiple myeloma, as ectopic overexpression of 

XBP1s in the lymphoid compartment in transgenic mice led to the spontaneous development 

of phenotypic alterations resembling multiple myeloma (86). This oncogenic transformation 

process was accompanied by the unexpected engagement of a gene expression signature 
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involving a variety of genes linked to the human disease, including Cyclin D1, Cyclin D2, 

MAF, MAFB and IL6-dependent pathways.  

Recent advances have highlighted the contribution of genomic reprogramming by the 

UPR as a determinant of cancer prognosis. XBP1s is an estrogen-regulated gene and its 

levels strongly correlate with estrogen receptor α expression in breast cancer (87). 

Consistent with this idea, XBP1 was shown to modulate estrogen receptor expression (88). 

A recent study of adaptive UPR responses in the absence of pro-apoptotic responses 

uncovered the induction of estrogen-dependent gene expression signatures as a possible 

effect of the UPR (89).  XBP1 may also control cell survival in estrogen receptor–positive 

cells through modulation of NFκB p65/RelA expression (90), and overexpression of XBP1 in 

estrogen receptor α–positive breast cancer cells can lead to anti-estrogen resistance by 

regulating genes associated with apoptosis and cell-cycle progression (91) as well as to 

estrogen-induced tumor growth (87).  

In addition, activation of XBP1 mRNA splicing was recently shown to enhance the 

tumorigenicity and progression of TNBC cells (63) by assembling a transcriptional complex 

with hypoxia-inducible factor 1α (HIF1α) to regulate the expression of HIF1α target genes. 

As such TNBC growth is dependent on XBP1-mediated regulation of the HIF1α 

transcriptional program. The gene expression signature controlled by XBP1s in breast 

cancer includes vascular endothelial growth factor (VEGF), a central pro-angiogenic factor, 

as well as genes related to cell proliferation, cell growth and differentiation, cytoskeletal 

rearrangement, and cell survival (63). Remarkably, analysis of XBP1s-dependent gene 

expression signatures in patients with TNBC revealed that this pattern highly correlated with 

HIF1α function and predicted poor prognosis. This finding revealed an unexpected crosstalk 

of the UPR with HIF1α in the reprogramming of cancer cells toward cell transformation. 

Although this has been proved in TNBC, XBP1 splicing is observed in numerous cancer cell 

lines and tumors under unstressed conditions, but this needs further investigation to 

demonstrate a causal relationship with tumor aggressiveness. 

High expression of XBP1 can also predict a poor outcome in pre-B acute 

lymphoblastic leukemia at the time of diagnosis (92), and pharmacological inhibition of 

IRE1α resulted in efficient killing of pre-B lymphoblastic leukemia cells (92, 93). In these 

cells, XBP1 deficiency resulted in the acquisition of phenotypes that are disadvantageous for 

leukemia cell survival, including compromised BCR signaling capability and increased 

surface expression of sphingosine-1-phosphate receptor 1, this occurred most likely through 

the attenuation of the adaptive capacity of the secretory pathway and the subsequent impact 

on both intrinsic cellular metabolism and tumor microenvironement. Similarly, high levels of 

XBP1s may also predict a better outcome for the treatment of multiple myeloma patients with 
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bortezomib, most likely through an established addiction to the signals mediated by this 

transcription factor (94, 95).  

In summary, accumulating evidence suggests that the UPR is a relevant driver of 

oncogenic transformation that could be used for prognosis. Measuring XBP1-dependent and 

-independent gene expression responses may serve as a biomarker to predict the evolution 

of disease progression. It remains to be determined if similar observations are recapitulated 

with ATF4 and ATF6. 

 

Tumor microenvironment and ER stress – An acquired feature of malignant cells is 

the ability to rewire their metabolism to support sustained growth (96). Indeed, the nutrient 

requirements eventually exceed the capacity of the cells’ microenvironment due to 

inadequate vascularization, thus leading to hypoxia and nutrient limitation. To survive these 

environmental stresses, tumor cells induce adaptive responses including the UPR (54). The 

UPR has critical functions beyond adjusting proteostasis. For example, the PERK-ATF4 

branch upregulates VEGF to induce angiogenesis (97). Moreover, it is now becoming clear 

that the UPR can directly participate in the reprogramming of tumor metabolism by 

selectively activating biosynthetic pathways. Indeed, it is well established that ER stress 

signaling pathways control protein synthesis, folding, and degradation machineries (98). This 

is illustrated by the direct regulation of protein synthesis through PERK-mediated 

phosphorylation of eIF2α (99), IRE1-mediated RNA degradation (35), and control of the 

expression of ER proteins involved in folding or degradation (98). Changes in proteostasis 

have been associated with tumor-associated gain-of-functions that can be reversed using 

proteostasis modulators such as proteasome inhibitors that overcome the adaptive capacity 

of the UPR and induce cell death (85). The PERK/ATF4 branch is also known to regulate 

catabolic pathways such as autophagy through ATF4-dependent induction of autophagy 

genes (100) and to modulate amino acid and lipid metabolism, again through ATF4-mediated 

induction of select targets. 

In the tumor microenvironment, XBP1s is part of a response that mediates the 

transcriptional induction of UDP-galactose 4-epimerase to generate substrates for protein 

glycosylation, thereby coping with the increased protein folding and post-translational 

demand in tumor cells (101). In addition, the constitutive splicing of XBP1 drives 

tumorigenicity by assembling a transcriptional complex with HIF1α, which activates a 

transcriptional program that upregulates glycolytic proteins, including glucose transporter 1 

(GLUT1) (63). XBP1 also controls the expression of the hexosamine biosynthetic pathway 

(102) and negatively regulates the levels of the transcription factor FOXO1, thereby 

impacting energy control and glucose metabolism, both controlled by genes dependent on 
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FOXO1-mediated transcription (103) as well as ER homeostasis (104, 105). This provides a 

potentially cancer-relevant link between IRE1 and PERK signals as both stress sensors can 

regulate the functionality of FOXO transcription factors (16). These studies indicate that 

XBP1s actively promotes the stimulation of glucose uptake by cancer cells. Notably, XBP1 

appears to have more than one effector to ensure the same biological output, namely cancer 

cell adaptation to intrinsic demand and/or extrinsic challenges. 

In addition, accumulating evidence suggests that the UPR signaling network is 

associated with other cancer-relevant signaling pathways and modulates the activity of 

various transcription factors (i.e., c-JUN, MAPK, CREB, NRF2, HIF1α, NFκB, mTOR, AKT) 

to generate distinct gene expression patterns associated with tumor phenotypes including 

aggressiveness or angiogenesis (reviewed in (43)). Thus, it is predicted that in cancer cells, 

therapeutic targeting of the UPR may have unpredicted effects (i.e., independent of protein 

misfolding in the ER) beyond protein folding stress that may depend on the transformed cell 

type (i.e., secretory capacity of the cell, nature of the oncogenic stimulation, stage of the 

transformation).  

In addition, in order to generate additional energy supply under environmentally 

induced starvation, cancer cells also have the capacity to trigger ER stress–dependent 

autophagic pathways. As such, the PERK/eIF2α/ATF4 pathway is activated upon hypoxia in 

tumor cells (9) and protects these cells from environmental damage (106) through 

autophagy via LC3B and ATG5 (107). Similarly, a link was established between IRE1 

signaling and autophagy induction through the binding of TRAF2 to IRE1 and the 

downstream activation of JNK (108). This pathway is repressed under nutrient starvation 

conditions by the ER located protein BI-1/TMBIM6 (102), a negative regulator of IRE1 (103) 

that plays an essential role in numerous cancers (109, 110). Thus, it is easily conceivable 

that, as for PERK, IRE1 might represent a significant player in the control of autophagy in 

response to environmental challenges. In addition, genetic inactivation of XBP1 has been 

shown to switch the proteostasis network toward autophagy upregulation, which could 

generate adaptive advantages by i) actively removing proteotoxic aggregates caused by the 

imbalance between the protein folding demand and the protein folding capacity of the tumor 

cell, and ii) providing nutrients through catabolic processes and therefore compensating for 

environmental nutrient starvation (111). These studies illustrate a highly dynamic network 

that controls cancer cells’ ability to adapt and resist environmental stresses through UPR-

dependent mechanisms. 

 

 ER stress and DNA damage/repair – Although less explored, recent evidence 

suggests that ER stress may also affect genomic stability and DNA repair pathways, which 
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may contribute to oncogenic transformation. Bidirectional regulation between the UPR and 

DNA damage responses has been shown in various experimental systems (112-116), 

suggesting a dynamic feed-forward homeostatic regulation that controls the stability of the 

proteome and genome. Studies in yeast uncovered a relevant function of IRE1p in 

maintaining the stability of the genome (117, 118). IRE1p deficiency led to chromosome loss 

under basal conditions, a phenomenon that was further enhanced when DNA damage was 

generated by UV exposure. Although these findings have not been validated in mammalian 

cells, global assessment of the XBP1s regulatory network identified a cluster of DNA 

damage and repair genes as direct targets of XBP1, as mentioned above (66). However, the 

functional contribution of these genes to the ER stress response is unknown. A better 

understanding of why and how ER stress signals control DNA damage/repair pathways and 

the impact this crosstalk could have in cancer is therefore required. 

ATM-deficient cells undergo hyperactivation of IRE1 when exposed to ionizing 

radiation (119), and both p53-deficient cells and ATM-deficient cells develop spontaneous 

alterations in ER proteostasis (119-121). Crosstalk between the UPR and p53 has been 

reported in many studies (see examples in (122-125)), which may influence gene expression 

toward cell adaptation or induction of apoptosis, and thus determine cancer cell fate. For 

example, a recent report provided evidence suggesting that UPR signaling modulates the 

function of a p53 isoform (122). In addition, ER stress may affect the cell cycle and protein 

translation in a p53-dependent manner (123, 124). p53 is also a relevant mediator of ER 

stress–dependent apoptosis through the transcriptional upregulation of the BCL-2 family 

members PUMA and NOXA (125), and interestingly, p53-deficient mice exhibit constitutive 

ER stress (120).  

Genetic inactivation of PERK also results in genomic instability, possibly due to 

uncontrolled ROS production (126) most likely through a signals emanating from the 

Mitochondrial Associated Membranes (MAMs) (127), and crosstalk between PERK signaling 

and DNA repair pathways has been reported (128). Finally, genomic instability associated 

with the generation of tetraploid cells involves basal levels of ER stress, with exposure of the 

ER chaperone calreticulin at the cell surface, contributing to immunogenic cell death, again 

this could occur through the roles played by PERK in MAMs and thus regulating intracellular 

calcium fluxes and ROS production (129).  In summary, these studies suggest a link 

between ER stress signaling and DNA damage/repair mechanisms involving, in part, p53. 

Although this subject is predicted to have high relevance for cancer cell proteostasis, as 

illustrated by the increasing number of reports describing linking protein homeostasis to 

transcriptional and genome maintenance events (130, 131), further functional studies are 

required for validation in cancer models in vivo. 
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ER stress–mediated post-transcriptional signaling networks 

Post-transcriptional regulation represents a significant mechanism by which the UPR 

influences cancer development. This phenomenon can either be achieved through the direct 

degradation of select mRNAs or modulation of the expression of post-transcriptional 

regulators, such as microRNAs. Indeed, non-coding RNAs have been described to positively 

or negatively impact on the ER stress response (Figure 3 ) through either specific targets or 

through yet unclear mechanisms.  

 

 MicroRNAs and ER stress in cancer - miRNAs have been shown to influence 

apoptosis induction under ER stress through different targets. For example, overexpression 

of the miR-23a~27a~24-2 cluster upregulates pro-apoptotic components such as CHOP, 

TRIB3, ATF3, and ATF4 (132). Other miRNAs can modulate the amplitude of UPR signaling, 

including miR-122, which represseses ER stress signals in hepatocellular cancers through a 

CDK4-PSMD10 pathway (133), and miR-214, which promotes ATF4 downregulation (134) 

and targets XBP1 expression through a yet unclear mechanism (135). Reciprocally, ER 

stress suppresses the expression of the miR-199a/miR-214 cluster in hepatoma cells 

through an NFκB dependent pathway (135), suggesting that the miR-199a/miR-214 cluster 

might represent an example of miRNAs as both regulators and effectors of the UPR. In 

addition, miR-708 expression is controlled by CHOP and contributes to brain metastasis 

(136). PERK signaling has been shown to regulate the expression of miRNAs involved in the 

subsequent modulation of the UPR. For example, repression of the miR-106b-25 cluster by 

PERK signaling is required for the induction of Bim and apoptosis during ER stress (137). 

Moreover, PERK activation also promotes the expression of miR-30-c-2*, which represses 

the expression of XBP1 (138), and miR-211, which results in ER stress–dependent 

attenuation of CHOP expression (139). These examples illustrate how miRNA-dependent 

signaling circuits are tightly regulated downstream of the UPR (Figure 3 ). Collectively, these 

observations point toward an additional layer of complexity in the orchestration of the ER 

stress response, allowing for the tight control of selected transcriptional programs that 

regulates, not only the survival/death balance, but also other specific tumor features (i.e., 

invasion/migration or control of the tumor stroma). 

 

ER stress-dependent RNA stability in cancer - RNA degradation upon ER stress has 

been described to occur through Nonsense-Mediated RNA Decay (NMD) (140) and through 

RIDD (35). NMD is an mRNA quality control mechanism known to destabilize aberrant 

mRNAs that contain premature termination codons. NMD was recently shown to determine 
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the threshold of stress necessary to activate the UPR, in addition to adjusting the amplitude 

of downstream responses and the termination phase. These effects were mapped to the 

control of the mRNA stability of IRE1, highlighting the dynamic crosstalk between mRNA 

metabolism and the proteostasis network. Although NMD has not yet been linked directly to 

cancer development, RIDD has been illustrated to be involved in tumor-specific phenotypes 

in several instances. In gliobastoma, IRE1-mediated decay of the circadian regulator 

Period1 was shown to increase tumor inflammation and infiltration properties, most likely 

through the secondary transcriptional regulation of gene expression (60). Moreover, in the 

same type of tumors, IRE1 was identified to cleave SPARC mRNA, thereby leading to 

changes in the collective vs. individual migration of glioblastoma cells and reducing cell 

migration (141). The pro-oncogenic Glypican-3 (GPC3) was also identified as a substrate of 

IRE1 RNase in hepatocellular carcinoma (142) (Figure 3 ). These studies provide clues 

about the possible contribution of IRE1 inactivation through genetic mutation in cancer, 

however even though IRE1 appears globally to act as a prosurvival factor in cancer, the 

precise underlying mechanisms remain to be fully characterized and one might also predict 

that the different enzymatic activities of this protein (kinase/RNase) and substrate selectivity 

(mRNA, XBP1, rRNA or miRNA) will impact on tumor and stromal cell fate. 

A systematic analysis of RIDD substrates in different cancer models therefore 

becomes necessary to identify the relevant networks to possibly be either genetically or 

pharmacologically targeted and to clarify the mechanisms involved in cell death signaling 

driven by IRE1 (reviewed in (143)). RIDD activity increases proportionally with ER stress 

intensity, inducing the degradation of mRNA substrates required for cell survival and cell 

growth and thus leading to cell death (35). For example, RIDD induces the decay of several 

miRNA precursors, such as that of miR-17 (40), which represses the expression of the pro-

oxidant thioredoxin-interacting protein (TXNIP) that contributes to the activation of the NLR 

family pyrin domain containing 3 (NLRP3) inflammasome (39). The decay of pre-miR-17 by 

RIDD increases TXNIP expression, NLRP3 inflammasome activation, and the subsequent 

cleavage of pro-caspase-1 and secretion of IL-1β, thereby inducing systemic or local 

inflammatory responses and promoting cell death (39) (Figure 3 ). In addition, the cleavage 

of pre-miR-17 by IRE1 was found to derepress caspase-2 expression and promote ER 

stress–induced apoptosis (40). However, the contribution of caspase-2 to UPR-mediated cell 

death remains unclear (144). Mir-17 is the only validated miRNA whose expression has been 

shown to be directly regulated by IRE1-mediated cleavage (40), and has been shown to be 

involved in tumor aggressiveness in gliobastoma (145), hepatocellular carcinoma (146) and 

prostate (147), kidney (148), gastric (149) and colon (150) cancers. However, IRE1 has also 

been implicated in the degradation of other pre-miRNAs that are involved in cancer 
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development, such as miR-96, whose overexpression has been observed in bladder (151), 

prostate (152) and breast (153) cancers and has been shown to possess tumor-suppressor 

functions in pancreatic cancer (154). Overall, since RIDD targets are thought to depend on 

the cellular context (abundance of the respective substrates in a given cell type), the stimuli 

engaging IRE1 (nature of the UPRosome formed as well as size of the oligomers) and the 

presence of somatic mutations altering IRE1 conformation, we predict that this specific 

output of the UPR, together with the expression of classical ER stress transcription factors, 

will drive distinct gene expression patterns that affect multiple aspects of cancer biology 

including control of i) the tumor cells death/survival balance, ii) tumor cells invasion and 

metastasis properties and iii) the nature of the tumor stroma. 

 

Concluding remarks 

Over the past decade, we have witnessed major advances in our understanding of the 

contribution of the UPR to oncogenesis and the acquisition of chemoresistance in cancer 

cells. There are now many new open questions that need to be addressed with regard to the 

role of the UPR in cancer. Two key problems to be solved are “when is a stress too much?” 

and “what is the quantitative contribution of specific ER stress signaling modules during 

malignant transformation?” Indeed, many cancer cells die during transformation, tumor 

formation, and metastasis due to their inability to cope with the combined oncogenic and 

microenvironmental stresses. However, tumors that develop following the selection process 

often have a high basal UPR and, in particular, high IRE1 or PERK activities. Although this 

high basal UPR activity confers a survival advantage to the tumor cells, it also keeps the 

cells on edge, so that either dampening the UPR response (e.g., by inhibition of different 

arms of the UPR) in the face of the continued stress signals or increasing stress levels (e.g., 

administration of chemotherapy) will tip the balance in favor of cell death. One could also 

anticipate different roles played by each arm of the UPR at distinct stages of tumor 

progression including (i) initial stages of oncogene-induced cell transformation, (ii) tumor 

vascularization, (iii) metastasis including extravasation, (iv) survival in the blood flow and 

then (v) intravasation and growth in the hosting niche. 

Another question that is linked to the focus of this review is what determines the 

switch between pro-survival and pro-death UPR signals? This is an area of much interest, as 

the answer to this question should allow the development of novel drugs that selectively tip 

the balance in favor of pro-death UPR signals as an anticancer therapeutic strategy. 

However, evidence to date suggests that the mechanisms underlying cell fate control under 

ER stress are unlikely to be so simplistic and that a greater understanding of the UPR under 

different ER stress–inducing conditions (i.e., oncogene expression, nutrient deprivation) and 

in different cellular contexts (i.e., tumor cell type or subtype) is needed to predict how UPR -
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targeting drugs might affect tumor growth and progression. In particular, a better 

understanding of the UPR itself is needed, in addition to its integration with other signaling 

pathways and how it relates to cell fate control. Such an understanding would pave the way 

for personalized treatment of cancer based on a patient’s tumor cell type and the activation 

status of UPR-related signaling networks. 
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Legends to Figures 

 

 

Figure 1 – Schematic representation of the Unfolded  Protein Response. Purple signs 

represent IRE1-dependent pathways, blue signs represent PERK-dependent pathways and 

green signs represent ATF6-dependent signals. Orange signs represent the negative 

feedback loop activated downstream of PERK to dephosphorylate eIF2α and restore 

translation. UPR target functions are indicated in red. Dual color signs indicate the 

contribution to more that one pathway following the same color code as described above. 
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Figure 2 – UPR sensors specificity in cancers.  A) By integrating data from the COSMIC, 

cBIOportal, and IntOgen databases, the spectrum of mutations found in IRE1 (ERN1; 

purple), PERK (EIF2AK3, blue), or ATF6α (green) was analyzed and represented according 

to the mutation type (missense, silent, nonsense, frameshift, splicing, or in-frame variation 

(IF var; deletion or insertion)). B) Similarly as in A, tissue distribution of the identified 

mutations in the three UPR sensors (same color code) was reported as normalized mutation 

rate integrating data from three databases (COSMIC, cBIOportal, IntOgen) and reporting the 

percentage of mutations found in the total number of tumors sequenced. C) Three examples 

of PERK-, ATF6-, and IRE1-relevant cancer signaling pathways in three different cancers, 

Myc-induced lymphoma, chronic myeloid leukemia, and triple negative breast cancer. A: 

autophagosome. 
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Figure 3: UPR-mediated post-transcriptional and pos t-translational networks in 

cancer.  The three UPR sensor pathways depending on PERK, ATF6, and IRE1 are 

respectively represented in blue, green, and purple. MicroRNAs with direct evidence of a link 

to cancer are circled in bold, those with indirect evidence are circled, and those with no 

evidence are not circled.  

 


