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Abstract

The hallmarks of cancer currently define the molecular mechanisms responsible for 

conferring specific tumor phenotypes. Recently, these characteristics were also connected to 

the status of the secretory pathway, thereby linking the functionality of this cellular machinery 

to the acquisition of cancer cell features. The secretory pathway ensures the biogenesis of 

proteins that are membrane-bound or secreted into the extracellular milieu and can control its 

own homeostasis through an adaptive signaling pathway named the Unfolded Protein 

Response (UPR). In the present review, we discuss the specific features of the UPR in various 

tumor types and the impact of the selective activation of this pathway on cell transformation, 

tumor development and aggressiveness. 
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Introduction

Tumor phenotypes including development and aggressiveness features can dramatically vary 

depending on the origin of tumor cells and context. The hallmarks of cancer defined by 

Hanahan and Weinberg [1] have helped to define these characteristics, which were also 

connected to the status of the secretory pathway (SP) [2, 3]. As a consequence this essential 

cellular component has taken significant importance in the acquisition of cancer cell features. 

The SP ensures the biogenesis of proteins that are membrane-bound or secreted into the 

extracellular milieu. It is well accepted that approximately one-third of the polypeptides 

synthesized by a cell, enter the endoplasmic reticulum (ER), the first compartment of the SP 

[2, 3]. However, the quantity of proteins entering the secretory pathway fluctuates, depending 

on the cell physiology, function and specific microenvironment. For instance, the synthesis of 

antibodies, extracellular matrix proteins, membrane receptors or secretory cyto/chemokines is 

cell type specific and can impact the workload of the secretory machinery. Moreover, cell 

migration, differentiation or proliferation features can also create the demand for a higher 

need for protein secretion. Protein secretion fluctuations affect cell homeostasis, particularly 

cell amino acid, lipid and sugar metabolism and energy consumption. As such, a strong and 

reliable adaptive system is central for the cell to cope with the increased demand for protein 

folding in the ER. This adaptive system is named the Unfolded Protein Response (UPR). In 

this review, we provide specific examples illustrating how the diversification of UPR signals 

in many human cell types, particularly in secretory cells, could impact typical cancer 

initiation, tumor development and cancer cell aggressiveness.

The UPR transmits stress signals from the ER lumen to the rest of the cell by three 

different proteins called PERK, ATF6 and IRE1. PERK (PKR-like endoplasmic reticulum 

kinase) is a transmembrane protein with a specific kinase activity in its cytosolic domain. Its 

main substrate is the translation initiation factor eIF2Ŭ. Phosphorylation of eIF2Ŭ results in a 

decrease in translation as well as a preferential translation of key proteins such as CHOP and 

GADD34, two factors directly involved in the cellular decisions of life or death. The 

transmembrane protein ATF6 (Activating Transcription Factor 6) is an ER transcription 

factor. Under stress conditions, ATF6 is exported to the Golgi apparatus, cleaved and released 

from its membrane attachment by the proteases S1P and S2P, to play its role as nuclear 

transcriptional activator. Finally, IRE1 (Inositol Requiring Enzyme 1), an ER resident type 1 

transmembrane protein, has two enzymatic activities in its cytosolic domain: a 

serine/threonine kinase and an endoribonuclease activity. The endoribonuclease activity itself 

has two distinct molecular functions: i) it participates in the unconventional splicing of the 
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XBP1 transcription factor mRNA [4]; ii) it degrades the mRNA of several secreted proteins, a 

process called RIDD (Regulated IRE1-Dependent Decay of RNA) [5]. The integration of 

signals from these three molecular pathways leads to a general transcription and translation 

reorientation, in favor of cell survival. Among the cellular processes regulated, the antioxidant 

capacity is increased, protein synthesis is decreased and the expression of ER chaperones/ER 

quality control proteins involved in protein folding (BiP, GRP94, CRT, PDIs) and in 

misfolded protein degradation is enhanced [6-8]. Finally, if ER homeostasis is not restored, 

ER stress can trigger apoptosis [9 , 10] (Figure 1).

It is well established that differentiated cells such as neurons, blood cells, pancreatic ɓ-

cells, hepatocytes, all require a dedicated secretory pathway with appropriate specialized 

regulations [11]. In accordance with this, an increasing number of studies have shown a 

dependency of specific UPR components for the differentiation of particular cell types. For 

instance, the IRE1-XBP1 branch is required for the differentiation of pancreatic ɓ cells, 

plasma cells, or adipocytes [12 , 13 , 14 , 15 , 16] and disturbance of the PERK-ATF4 

pathway triggers defects in oligodendrocytes, pancreatic and skeletal functions [17 , 18 , 19 , 

20 , 21].

A. The “secretory switch” in transformed cells

Most cancers have to cope with increasing fluxes of proteins through their secretory pathway. 

This high secretory protein demand is caused by different hallmarks of cancer [2] and 

comprises all the processes that increase gene expression, in an unspecific manner, such as 

aneuploidy or the universal amplifier of transcription, MYC [22 , 23]. Hence, it is not 

surprising that aneuploidy was found to be associated to hypersensitivity to conditions 

interfering with protein synthesis and protein folding in yeast [24] and in human cancer cells 

[25], and that MYC transformation requires a reliable secretory pathway to mediate its 

oncogenic potential [26]. Moreover, cell transformation can result in an increase in 

proliferation and metabolic demand, thereby leading to nutrient (i.e. glucose, amino acids) 

depletion and subsequent ER stress [27]. This means that during the cell transformation 

process, a “secretory switch” occurs and provides the transformed cells with novel secretory 

properties, which will in turn impact on cell homeostasis and interaction with the stroma.

What are the consequences of the “secretory switch” and associated ER stress on 

tumor-stroma interactions? First, it can lead to microenvironment architecture destabilisation 

by remodelling of the extracellular matrix (ECM) through changes in ECM components 

abundance or matrix metalloproteases (MMPs) expression, and consequently, to an increase 
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in cancer dissemination and invasion [28 , 29]. Second, by modulating messenger (i.e. 

chemokines, cytokines) or contact/adhesion protein abundance (i.e. membrane receptors, 

integrins), the “secrotory switch” and associated ER stress can trigger cancer cell 

proliferation, migration or tumor angiogenesis. Third, it can lead to remodelling of the 

immune response and ER stress transmission in the tumor microenvironment [30, 31]. Fourth, 

it can modulate tumor immunogenicity by stimulating surface exposure of ER chaperones 

such as CRT [2, 32 , 33 ] (Figure 2). 

A.1. UPR involvement in gastrointestinal cancer initiation

The UPR is a central pathway for intestinal functions and differentiation, and the human 

gastrointestinal tract represents an interesting example of UPR specialization. This is well 

illustrated by the immunostaining of UPR components in the normal intestine, which showed 

that UPR activation occurs in a heterogeneous manner in intestinal cell populations. Indeed, 

GRP78 abundance appeared high in transit amplifying cells (TA), low in intestinal stem cells 

(ISC) and heterogenous in Paneth cells [34]. This suggests that the UPR could be induced 

with intestinal cell differentiation or could represent a pathway driving differentiation. One 

element supporting the second hypothesis is that activation of the PERK/eIF2Ŭ axis in itself is 

sufficient to trigger the loss of ISC stemness [34]. Considering that ISCs are thought to 

represent the cells of origin for most colorectal cancers (CRCs) [35], this suggests that ER 

stress could have central implication for cancer initiation in the gastrointestinal tract.

Apart from the PERK/eIF2Ŭ arm, specialization of the UPR in the intestine is partly due to 

the IRE1 branch. Indeed, the gastrointestinal tract is the main tissue where the two IRE1 

paralogs, IRE1Ŭ and IRE1ɓ are expressed (in the epithelial cells) [36]. Although the functions 

of IRE1ɓ are not entirely understood, IRE1ɓī/ī mice showed a role in the control of mucin 

production in goblet cells [37] and in resistance to chemically induced colitis [36]. Moreover, 

XBP1 deficiency or expression of XBP1 variants was associated with Crohn’s disease and 

ulcerative colitis [38]. Interestingly, IRE1ɓ and XBP1 deficiency were both associated with 

increased ER stress and inflammation of the intestine. A more recent report described the 

association between inflammatory bowel disease and tumorigenesis upon targeted deletion of 

XBP1 in the intestine [39]. In this model, XBP1 loss in epithelial cells results in an increase in 

colorectal cancer and colitis-associated cancer. This effect was attributed to an increase in ISC 

and TA cells, and a dysfunction of Paneth cells. ISC hyperproliferation was linked to 

increased WNT11 expression in Paneth cells and TA cells hyperproliferation to the activation 

of an ER stress-dependent interleukin/STAT3 pathway. Interestingly, in this study, a 

transgenic mouse model presenting a double deletion of XBP1 and IRE1Ŭ was found to not 
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present ISC hyperproliferation observed in XBP1 deficient mice. Although one can ask the 

question of the roles of others components of the UPR, and especially IRE1ɓ in these 

processes, the authors proposed that IRE1Ŭ is an important mediator of ER stress induced ISC 

expansion, in an XBP1-independent manner, which might leave room for an instrumental role 

of RIDD. In addition, XBP1 deletion in Paneth cells revealed that the IRE1Ŭ-TNFŬ/NF-əB 

pathway was central for ER stress-induced inflammation [40]. Parallel to these mechanisms, 

autophagy induced by the PERK/eIF2Ŭ/ATF4 signaling axis partly restrained IRE1 activation 

and ER stress-induced intestinal inflammation. This was proposed as an explanation for the 

identification of mutations in autophagy components as risk factors in Crohn’s disease [40]. 

Finally, adding to the role of the UPR in intestinal epithelium, XBP1 was also identified as a 

susceptibility locus associated with oesophagus squamous cell carcinoma [41] and ER stress 

was shown to induce epithelial differentiation in precursor cells in the oesophagus [42] and 

also may be linked to Barett’s syndrome [43].

These studies provide good examples of i) how the UPR can fine-tune the entire 

functions and differentiation of the gastrointestinal epithelia by integrating information from 

the microenvironment and ii) how deregulation of this molecular pathway (XBP1 deletion) 

can impact inflammatory bowel disease and gastrointestinal cancer initiation. 

A.2. UPR in blood cancers: transformation, progression and drug resistance

Blood associated cancers represent interesting models in which UPR signals might determine 

tumor phenotypes. First of all, the expression and activity of UPR components including BiP, 

IRE1Ŭ, BLIMP1, and XBP1 are required for terminal differentiation of B cells into plasma 

cells and are found overexpressed in plasma cell-derived multiple myeloma (MM). MM 

evolves from a highly prevalent premalignant condition termed monoclonal gammopathy of 

undetermined significance (MGUS). A MGUS/MM phenotype was recently reported in 

transgenic mice with Em-directed expression of the XBP1 spliced isoform (XBP1s). This was 

corroborated with the aberrant expression of known human MM dysregulated genes and thus 

implicates XBP1s dysregulation in MM pathogenesis [44]. Interestingly, Cre-mediated and 

inducible deletion of BiP, BLIMP1 or XBP1 consistently induces cellular stresses and cell 

death in normal pre-B cells and in pre-B-cell acute lymphoblastic leukemia (ALL) driven by 

BCR-ABL and NRAS [45]. Moreover, two ALL clinical trials revealed that high XBP1s 

levels at the time of diagnosis predicted poor outcome. As such, pharmacological inhibition of 

IRE1-induced selective cell death in patient-derived pre-B ALL cells and significantly 

prolonged survival of transplanted mice. As a consequence, pre-B ALL cells appeared 

uniquely vulnerable to ER stress [45]. In a recent study, the Hypoxia Inducible Factor (HIF)-
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2Ŭ was implicated in the engraftment ability of human acute myeloid leukemia (AML) cells 

and in the maintenance of hematopoietic stem and progenitor cells (HSPCs). The mechanism 

controling maintenance of HSPCs also involved ER stress signaling as HIF-2Ŭ-deficient 

HSPCs displayed increased production of reactive oxygen species (ROS), which subsequently 

triggered apoptosis by activation of the UPR [46]. Hence these results might suggest an 

instrumental role of the UPR in HSPC differentiation program and in maintenance of the 

AML phenotype. In another model of blood-derived cancer, Chronic Myeloid Leukemia 

(CML), apoptotic death triggered by the BCR-ABL inhibitor, Imatinib, is activated 

downstream of ER stress [47]. Moreover, Imatinib resistance in CML K562 cells was 

bypassed when preventing the activation of the ATF6 arm of the UPR, thus demonstrating the 

strong interconnection of these pathways in acquisition of tumor cell phenotypes [48].

B. UPR and EMT: an intricate relationship

Epithelial to Mesenchymal Transition (EMT) enables carcinoma cells to acquire key 

malignant traits such as migratory and invasion properties, induces stem cell properties and 

drug resistance [49 , 50 , 51]. Hallmarks of this transition are repression of epithelial markers, 

up-regulation of mesenchymal markers and changes in morphology. During EMT, the 

phenotype of carcinoma cells is largely modified, for example the loss of epithelial polarity 

and zonula adherens mediated by the down-regulation of E-cadherin. E-cadherin is a cell 

adhesion protein and its cytosolic domain is associated at the membrane of the cell to ɓ-

catenin, which is a major player of the canonical WNT pathway [52]. Through EMT, 

diminution of E-cadherin leads to the release of ɓ-catenin, resulting in its nuclear 

translocation. In the nucleus, ɓ-catenin associates with transcription factors of the TCF/LEF 

family to regulate transcription of genes involved in EMT, migration and invasion. Activation 

of the UPR has been involved in a growing number of cancers [53], but the link between UPR 

and EMT has been studied recently in breast cancers. Indeed, recent reports show an 

interrelationship between UPR signals and EMT, in a context specific manner [54 , 55 , 56].

B.1. Activation of the UPR is instrumental for EMT induction

This phenomenon was first reported in thyroid cells, in which tunicamycin or thapsigargin 

triggered signaling by the proto-oncogene tyrosine kinase SRC, caused dedifferentiation 

through the down-regulation of thyroid specific genes and induced an EMT-like phenotype. 

This included the change in the organization of the polarized epithelial monolayer, the 

formation of actin stress fibers, the loss of trans-epithelial resistance, the down-regulation of 

E-cadherin and the up-regulation of mesenchymal markers such as vimentin, Ŭ-smooth actin, 
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Ŭ1I collagen and SNAI1/SIP1. Moreover the use of PP2, a SRC kinase inhibitor prevented 

dedifferentiation and EMT, thus confirming the involvement of the SRC pathway [54].

Moreover, the UPR (induced by tunicamycin or overexpression of a variant protein) in 

alveolar epithelial cells was shown to trigger the SRC and ɓ-catenin pathways [57]. Again, the 

use of PP2 also blocked the EMT and maintained the epithelial phenotype. Notably no 

increase in TGF-ɓ1, an important mediator of EMT, was observed in this report. Interestingly, 

in renal proximal tubular epithelial cells, thapsigargin induced an EMT whereas tunicamycin 

did not [58]. ER stressors that alter calcium fluxes between the ER lumen and the cytosol such 

as thapsigargin lead to an increased expression of TDAG51 and TGF-ɓ1. TDAG51 interacts 

with the cytoskeleton and induces shape changes as well as the activation of WNT signaling 

thereby leading to EMT. As such, overexpression of TDAG51 alone was able to induce an 

EMT phenotype in HK-2 cells. The serine/cysteine protease inhibitor SCCA1 is deregulated 

in many cancers associated with poor differentiation and aggressiveness. In mammary 

epithelial cells (MCF10A), overexpression of SCCA1 induces chronic UPR. This non-lethal 

chronic UPR activates NF-kB that leads to IL-6 production, resulting in EMT-like phenotypes 

[59]. It has been recently reported that IL-6 signaling plays a critical role in driving EMT 

through cell autonomous inflammation [60 , 61]. In light of these reports, activation of UPR 

can lead to EMT trough several mechanisms including IL-6, SRC and/or WNT signaling, but 

how the UPR is triggered, either through alteration of calcium concentrations or increase of 

improperly folded proteins, might also determine the biological outcome. Thus, one might 

hypothesize that ER stressed cells enter dedifferentiation/EMT to change their phenotypes and 

consequently lower ER stress [57]. 

B.2. EMT induces activation of the UPR in colorectal and breast carcinoma

Cells subjected to EMT are also known to display an important secretory phenotype notably 

by changes in ECM protein secretion [62 , 63]. This could represent a cause for ER stress and 

UPR activation. In colorectal carcinoma cells (SW480, HCT116), stabilization of HIF1Ŭ 

through CoCl2–mediated inhibition of proline hydroxylase, or serum starvation, induces EMT 

and the subsequent activation of the UPR [64]. This mechanism is in part dependent upon 

ZEB-1, which is the main factor for EMT in colorectal carcinoma cells and a transcriptional 

repressor for E-cadherin [52 , 65 , 66]. In mammary epithelial cells, EMT induction by 

TWIST overexpression correlates with PERK constitutive activation [55]. Other branches of 

the UPR (i.e. IRE1Ŭ and ATF6) were not involved in this process. Interestingly, inhibition of 

PERK activity attenuated cells‘ ability to migrate and to form tumor spheres, thereby 

indicating that PERK might be involved in EMT-dependent cell malignancy. In addition, 
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PERK signaling in EMT dedifferentiated cells leads to constitutive activation of NRF2, a 

master regulator of cellular response to oxidative damage, causing these cells to become 

chemoresistant through expression of antioxidant enzymes and drug efflux pumps [67, 68 , 

69]. These results might therefore explain the correlation observed between PERK activation 

status and highly aggressive and poorly differentiated breast cancer tumors. It is noteworthy 

that in tubular epithelial cells both EMT and UPR are activated simultaneously through 

reactive oxygen species (ROS) and SRC kinase-dependent pathways [70].

C. Targeting UPR as a novel approach to treat EMT chemoresistant cells

As there is a hierarchical relationship between UPR and EMT it could allow the development 

of new treatment strategies. Indeed, in diseases where EMT is induced by UPR e.g. lung 

fibrosis, chronic kidney disease or breast cancer [57 , 58, 59 ] targeting the UPR or the 

downstream activated pathways (e.g. SRC, WNT) with inhibitors might be an efficient way to 

prevent cells from undergoing EMT. In vitro, results were already observed with PP2 

targeting the SRC kinase and preventing both PC C13 cells (thyroid cells) and alveolar 

epithelial cells from undergoing an EMT [54, 57 ]. Currently, ER stress drugs are only used to 

treat multiple myeloma patients [71], however because EMT is associated with 

chemoresistance and invasiveness [49 , 50 , 51], there is a critical need to develop new 

approaches, therefore it might be very attractive to exploit the ER stress-sensitivity exhibited 

by cells subjected to EMT [64]. Indeed it was shown that in breast cancer cells several ER 

stressors such as tunicamycin, thapsigargin, DTT and A23187 render EMT undergoing cells 

more sensitive to cell death (up to 25 fold for thapsigargin). These treatment could even 

selectively eliminated EMT undergoing cells when co-cultivated with normal cells [55]. Also 

targeting the PERK pathway that is constitutively active in breast cancer [56 , 72] could also 

be a promising option. Indeed PERK is required for the cells to secrete new extracellular 

matrix and to enable EMT undergoing cells to invade, metastasize and form tumor spheres. 

PERK is also responsible for the constitutive activation of NRF2 in EMT undergoing human 

breast epithelial cells, causing cells to become MDR. Inhibition of PERK caused the 

decreased expression of 58 of the 142 NRF2 target genes and sensitized cells to 

chemotherapy. Together these observations suggest that targeting the UPR and its 

downstream effectors could be a key therapeutic strategy in the treatment of drug-resistant 

cancer cells.

C.1. UPR control of glioblastoma phenotypes
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Glioblastoma (GBM) is the most common primary brain tumor in humans and remains 

incurable [73]. Despite the therapeutic efforts made in recent years, mortality is still close to 

100% at 5 years. Different factors are involved in GBM aggressiveness, among which 

angiogenesis and tumor cell invasion/infiltration are critical [74 , 75]. Moreover, the 

mesenchymal phenotype is another hallmark of tumor aggressiveness in GBM [76 , 77]. 

Remarkably, a single UPR component, IRE1Ŭ appeared to regulate these three features of 

GBM aggressiveness. Indeed, it was shown that expression of a dominant negative form of 

IRE1Ŭ triggered a mesenchymal drift in glioblastoma, characterized by modulation of the 

expression of extracellular matrix, angiogenesis, and inflammation proteins. This is in 

agreement with other studies reporting IRE1Ŭ coding gene somatic mutations in GBM [78 , 

79] and ranking IRE1Ŭ as the fifth highest mutated kinase, carrying at least one driver 

mutation [78]. The mesenchymal drift accompanied by IRE1Ŭ inactivation was due to a set of 

pathways acting in a synergistically manner. In this model, IRE1Ŭ-driven modulation of 

angiogenesis was attributed to the positive regulation of pro-angiogenic factors such as 

VEGF-A, IL-1ɓ and IL-6 secretion [80, 81] and the cleavage of the mRNA codding for the 

circadian gene PERIOD1 [82]. Adding to its role in the regulation of angiogenesis, PERIOD1 

also regulated IRE1Ŭ–dependent GBM infiltration [82]. Another IRE1Ŭ endoribonuclease 

substrate, the mRNA coding for the extracellular matrix protein SPARC was also found to be 

involved in modulation of GBM invasion ability in an autocrine fashion [83]. Taken together, 

these data underline that IRE1Ŭ in itself, can send both intracrine and autocrine signals to 

control the phenotype, the physiology and the aggressiveness of GBM. 

C.2. UPR in triple negative breast cancer

Triple negative breast cancers (TNBC) represent the most aggressive breast cancer subtype, 

with high rates of tumor recurrence and poor overall survival [84]. Although the lack of 

expression of the estrogen, progesterone and HER2 receptors clusters these tumors within the 

same group, they still comprise heterogeneous and poorly characterized breast cancers with 

no selective therapy [85]. Recently, a study by Chen and colleagues [86] revealed the 

contribution of the UPR to TNBC, in particular through the cross-talk with HIF-1Ŭ, a 

transcription factor previously shown to be of particular importance in the hypoxic response 

in TNBC. Chen and colleagues characterize a new molecular mechanism, XBP1s-dependent 

HIF-1Ŭ  activation in TNBC, thereby indicating potential novel therapeutic strategies 

mediated through the inhibition of XBP1 in TNBC [87]. These observations could also be 

linked to the acquisition of a mesenchymal phenotype by breast tumor cells. Indeed, increased 

expression of XBP1 is associated with the progression of breast cancer and XBP1s is 
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significantly over-expressed in matched metastatic tumors, which can act as a major regulator 

of EMT through SNAIL signaling [88]. Moreover, as autophagy and UPR signaling also 

appear to be interconnected, combined chloroquine (CQ), a pharmacological inhibitor of 

autophagy, with other drugs known to act as ER stress enhancers (nelfinavir (an HIV protease 

inhibitor) and celecoxib (a cyclooxygenase-2 inhibitor) or its non-coxib analog 2,5-dimethyl-

celecoxib (DMC)) were tested in TNBC. Addition of CQ resulted in synergistic enhancement 

of tumor cell killing by ER stress aggravators in vitro and in vivo, thus opening novel 

therapeutic avenues for TNBC [89]. 

D. Conclusions and future perspectives

Collectively, the afore-mentioned information sheds light on the intricate cancer signaling 

networks into which the UPR is involved. From this analysis it becomes evident that 

characterizing the UPR status in tumors might not only represent a good predictor of the 

disease outcome but also constitute an essential toolkit for better defining personalized 

treatments and following up treatment efficacy. As such, a thorough analysis of the UPR in 

tumors could be envisioned to firstly select the best and most relevant markers/predictors of 

tumor characteristics and then secondly to apply the most efficient targeted therapies to those 

tumors. Needless to say that in this context, therapies targeting the UPR itself could also be of 

interest either alone or as adjuvant therapies. In conclusion, the specificity of UPR signals and 

its impact on tumor phenotype represents an interesting avenue to better characterize 

carcinogenesis but also when documented in patients’ tumors will constitute a novel basis for 

tumor typing and specialized treatments.
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Figures and Legends

Figure 1: Cancer relevant UPR signaling components – Major UPR signaling modules are 

drawn.  Relevance to cancer is indicated as follows: Orange - proteins directly implicated in 

the modulation of cancer cell features, including initiation, angiogenesis, inflammation, 

immunogenicity or resistance. Green - proteins whose modulation or activation is observed in 

cancer tissues or involved with cancer development or aggressiveness, but whose role in the 

control of cancer features is not clearly defined.
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Figure 2: Normal vs. cancer cell secretory pathway control and biological outcomes. In 

normal cells, the secretory pathway adapts to fluctuation of environmental stresses and 

intracellular needs, through a complex molecular signaling pathway: the unfolded protein 

response (UPR). This adaptation program is triggered by three ER transmembrane sensors, 

namely IRE1, PERK and ATF6. The cell secretory proteins needs vary depending on cell 

type, differentiation state or on the physiological context. In cancer cells, the secretory 

pathway is subjected to a strong environmental pressure due to environmental stress factors, 

such as hypoxia, oxidative stress or chemotherapies, and to oncogenic pressure (e.g. 

Myc/aneuploidy stimulation of transcription). Furthermore, in these cells, the increase in 

secretion demand is also dependent on a substantial requirement of energy and amino acid 

supply. The integration of both intrinsic and extrinsic challenges results in disturbance of the 

ER homeostasis causing the UPR to be constitutively active in these cells. Disturbance of the 

secretory pathway will, as a consequence, lead to the modulation of the secretion of proteins 

important for cancer features such as growth factors and their associated receptors, 

extracellular matrix proteins, matrix metalloproteases, inflammatory factors, integrins, 

immunogenic factors or pro angiogenic factors.


