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Abstract 

 

For the first time, gold nanoparticle-based electrodes have been used as platforms for efficient 

immobilization of the [NiFe] hydrogenase from the hyperthermophilic bacterium Aquifex 

aeolicus. AuNPs were characterized by electronic microscopy, dynamic light scattering and 

UV-Vis spectroscopy. Two sizes around 20.0±5.3 nm and 37.2±4.3 nm nm were synthesized. 

After thiol-based functionalization, the AuNPs were proved to allow direct H2 oxidation over 

a large range of temperatures. A high current density up to 1.85±0.15 mA.cm
-2

 was reached at 

the smallest AuNPs, which is 170 times higher than the one recorded at the bare gold 

electrode. The catalytic current was especially studied as a function of the AuNP size and 

amount, and procedure for deposition. A synergetic effect between the AuNP porous deposit 

and the increase surface area was shown. Compared to previously used nanomaterials such as 

carbon nanofibers, the covalent grafting of the enzyme on the thiol-modified gold 

nanoparticles was shown to enhance the stability of the hydrogenase. This bioanode was 

finally coupled to a biocathode where BOD from Myrothecium verrucaria was immobilized 

on AuNP-based film. The performance of the so-mounted H2/O2 biofuel cell was evaluated, 

and a power density of 0.25 mW.cm
-2

 was recorded. 
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1. Introduction  

Enzymatic biofuel cells (EBFCs) have emerged as sustainable biodevices alternative to 

low temperature proton membrane exchange fuel cells for small portable electrical 

alimentation [1-3]. A new generation of EBFCs has been developed very recently based on 

[NiFe] hydrogenases and multicopper oxidases such as bilirubin oxidases as efficient 

biocatalysts for H2 oxidation and O2 reduction respectively [4]. Thanks to the use of inhibitor-

tolerant and thermostable enzymes immobilized on 3D-carbon networks, power densities in 

the range of the mW/cm
2
 were reached at neutral pH over a large range of temperatures [5-8]. 

Some limitations were however highlighted which need to be overcome before EBFCs can be 

used in commercial devices. Especially, mass transfer processes require design and modeling 

of the porous electrodes, and stability of the biohybrids is to be circumvented. One more key 

requirement to improve enzyme connection, then to yield higher current densities, is the 

accurate knowledge of the electrically connected enzymes at the electrochemical interface. 

This will also provide the fundamental missing data which are necessary to understand than 

remediate the instability of the electrocatalytic signal.  

In the search for efficient electron transfer between enzymes and electrified interfaces, 

nanoparticles have attracted increasing interest. Due to quantum size effect, nanoparticles 

display physical properties that are different from bulk metal [9]. It is particularly important 

when they are used in electrochemistry because they exhibit size-dependent surface 

adsorption properties and charge donation/acceptance capabilities which determine the 

electrocatalytic pathways and kinetics [10]. Long distance electron transfer can be affected in 

case of very small size nanoparticles which approach the effective electron tunneling 

distances (< 5 nm). In bioelectrochemistry, AuNP variable size and electronic properties are 

expected to provide versatile building blocks as well as large surface area-to-volume ratios 

suitable for high enzyme loading. The activity, stability and electron transfer properties may 

be altered at nanostructured interfaces compared to flat surfaces, especially when the 

curvature of the nanoparticle is comparable to the size of the enzyme [11-13]. Because gold 

nanoparticles (AuNPs) with controlled sizes can be quite easily prepared and functionalized 

by versatile thiol chemistry, AuNP films on electrochemical interfaces have been targeted. It 

was demonstrated that AuNPs can act as conductive wires between the enzymes and the 

electrode. Long range electron transfer and efficient catalysis were highlighted for various 

proteins and enzymes immobilized on AuNP films, such as heme proteins including 

membrane cytochrome oxidases [14-17], azurin, a blue copper protein [18], glucose oxidase 

[19, 20], and sulfite oxidase [21]. Porous 3D-networks of AuNPs obtained by drop casting of 

concentrated gold colloids were shown to enhance electrocatalysis by bilirubin oxidase 

(BOD) [22, 23], cellobiose dehydrogenase [24], and laccase [25-28]. Sugar/O2 BFCs were 

accordingly constructed with AuNP-based bioanode and biocathode [29-31].  

Aquifex aeolicus [NiFe] membrane bound hydrogenase (Aa MbH1) is one of the identified 

hydrogenases which present O2-, CO- and temperature tolerances [32-34]. Direct electrical 

connection of this enzyme was already shown on graphite, carbon nanotubes, carbon 

nanoparticles and carbon nanofibers (CNFs) [35-37]. Thiol modified gold electrodes were 

also studied as platforms for hydrogenases [38-39]. Electron transfer proceeds from the 

[NiFe] active site buried inside the large subunit to the surface of the enzyme via a conductive 

line of three FeS clusters. Combining electrochemistry, Atomic Force Microscopy, 

Polarization Modulation Infrared Reflection Adsorption Spectroscopy (PMIRRAS) and 

molecular dynamics at self-assembled-monolayers on gold, it was demonstrated that the 

transmembrane helix close to the surface FeS electron relay and surrounded by detergent 

controlled the immobilization of the enzyme [38, 40]. Decrease of the catalytic current with 
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time was however often observed. But because the amount of enzyme effectively participating 

to the current is unknown, the reasons for such a decrease are difficult to establish. Release 

but also change in orientation or in structural conformation of the enzyme upon time, applied 

potential or environmental conditions may account for the signal evolution. One elegant way 

would be to couple electrochemistry to other methods such as Quartz Crystal Microbalance 

(QCM), Surface Plasmon Resonance (SPR) and surface spectroscopies (SEIRA, SERRS or 

PMIRRAS for example), which most often rely on gold substrates. In this context, it would be 

of high interest to increase the signal/noise ratio by enzyme immobilization on NPs. We 

report here the first step toward this objective. The direct electrocatalytic oxidation of 

hydrogen by Aa MbH1 immobilized on AuNP deposited on gold electrodes is demonstrated 

for the first time. The influence of AuNP film structure on both the amount of electrically 

connected enzymes and the electron transfer rate is studied. The bioanode is coupled to a 

biocathode based on BOD from Myrothecium verrucaria (Mv BOD) also immobilized on 

AuNP-based film, and the performance of the so-mounted H2/O2 EBFC is evaluated. 

Promising results are obtained which compare well to the previous H2/O2 EBFC based on 

carbon nanomaterials. 

 

2. Experimental 

 

2.1. Chemicals and materials 

All solutions were prepared with Milli-Q water (18.2 MΩ
.
cm). Biphenyl-4,4’-dithiol 

(BPDT), 3-mercaptopropionic acid (3-MPA), 6-mercaptohexanoic acid (6-MHA), 4-

aminothiophenol (4-ATP) for gold electrode or AuNP functionalization were prepared to a 

final concentration of 5 mM in 90/10 v/v ethanol/water solutions. 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used as a substrate for bilirubin oxidase 

activity. 50 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer pH 7.2, 

and 10 mM phosphate buffer pH 6 were used for hydrogenase solution deposited on pyrolytic 

graphite (PG) and gold electrodes respectively. Bilirubin oxidase solution was prepared in 10 

mM phosphate buffer pH 7. Covalent grafting of the enzymes was realized with 14 mM 1-(3-

dimethylamino-propyl)-3-ethylcarbodiimide (EDC) and 21 mM N-hydroxysuccinimide 

(NHS) in the presence of 10 mM morpholino-ethanesulphonic acid (MES) buffer pH 6. Gold 

(III) chloride solution 30 wt. % and sodium citrate were used for AuNP synthesis. CNF were 

synthesized as in [39] and prepared in solution (50:50) of Milli-Q water and 

dimethylformamide to a final concentration of 4 mg.mL
-1

 and sonicated for 30 min. n-

Dodecyl α-D-maltoside (DDM) with a critical micelle concentration (CMC) of 0.18 mM at 

25°C was diluted in water. It was quantified using thin layer chromatography as described in 

Ciaccafava et al. [35]. All chemicals were purchased from Sigma-Aldrich. Aa MbH1 was 

purified as described in Luo et al. [32]. Mv BOD was a gift from Amano Enzyme Inc. 

(Nagoya, Japan). Purity of the enzymes was checked on 12% SDS-PAGE gel.  

 

2.2. Instrumentation and measurement procedures 

Electrochemical experiments were performed using a potentiostat from Autolab with 

Nova software. The Ag/AgCl (NaCl sat.) reference electrode was separated from the 

electrolyte using a side junction maintained at room temperature. A polycrystalline gold 

electrode from Materials Mates was the working electrode (projected surface area A=0.0078 

cm
2
). Unless specified, all current densities reported in this paper were calculated using the 

real gold electroactive surface area obtained by integration of the gold oxide reduction peak at 

+0.9 V, taking into account a charge of 390 µC.cm
-2

 for the reduction of a gold oxide 

monolayer [41] (the electroactive surface area of the gold electrodes are between 2 and 5 
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times higher than the projected geometric area according to the electrode). Measurements of 

the electroactive gold surface of the bare gold electrode (AuE) and of the gold nanoparticle 

modified gold electrode (AuNP/AuE) were done by cyclic voltammetry in 0.05 M H2SO4, 

under N2 and room temperature. The gold electroactive surface increase due to nanoparticle 

casting was defined as the ratio between the surface developed by the gold nanoparticles and 

the bare gold surface. It is denoted AuNPs/AuE. For the biofuel cell measurement, the 

electrodes were placed at 6 cm from the Nafion
®

 membrane (Nafion
®
 117 from DUPONT-

USA) separating the compartments. The biofuel cell performances were examined with a 

constant supply of substrate of 100 % H2 and 100 % O2 for anode and cathode respectively. 

Gas bubbling at an optimized flow rate of 5 cm
3
/s was maintained into the electrolyte solution 

to limit substrate depletion. Each half-cell was independently thermo-regulated. The cell 

current and voltage were measured by polarization curves, after stabilization of the system. 

Scan rate was 3 mV/s. All the experiments are at least three times replicated. 

Transmission Electron Microscopy (TEM) was performed with the high transmission 

resolution electron microscope JEM 3010 (JEOL HRTEM). 1 µL of AuNP suspensions were 

deposited on 300 mesh copper grid carbon film and let dry. Scanning Electron Microscopy 

(SEM) was performed with the high scanning resolution microscope JSM 6320F (JEOL 

FEGSEM). Three successive castings of 1µL of AuNP dispersion were deposited on a flat 

gold support to mimick the gold deposit on the gold electrode and let dry. Average AuNP 

diameter and standard deviations were calculated from each sample using ImageJ software.  

Dynamic Light Scattering (DLS) experiments were performed using a Zetazizer Nano 

Series (Malvern Instruments, London, UK). The AuNPs were analyzed in a disposable micro-

cuvette ZEN0040 after 2 min equilibration within the instrument at 25°C. All measurement 

conditions were optimized automatically by the instrument software. The results are reported 

as the average of 3 measurements consisting of 11 runs each with a run duration of 10 

seconds. The size determination in polydisperse samples was determined by the distribution 

analysis based on Multiple Narrow Modes non-negative least squares analysis in high 

resolution with 300 classes to give a more detailed spectrum. 

UV-visible experiments were recorded using a Cary-Win UV-visible 

spectrophotometer.  
 

2.3. Nanoparticle synthesis 

AuNP synthesis was performed by citrate reduction of HAuCl4 in water as previously 

described [42]. Briefly, 12.5 mL of 38.8 mM sodium citrate were added to 125 mL of boiling 

1mM HAuCl4 solution under vigorous stirring leading to nanoparticle formation. After 15 min 

of reaction, the reactants were let to cool down at room temperature. The deep red color of 

AuNPs in water reflects the Surface Plasmon Band (SPB), a broad absorption band in the 

visible region around 520 nm, whose intensity decreases and position increases with the size 

of the NP [43, 44]. AuNP size was followed by UV spectrophotometry and additionally 

confirmed by DLS and TEM. To increase the number of AuNPs per volume, the AuNP 

solution was centrifuged (15 min, 10 000g) in 1.5 mL Eppendorf tubes; then 98% of the 

remaining supernatant volume was thrown away. The precipitant was suspended by 

ultrasonication and stored at 4°C. To prepare larger nanoparticles, less amount of the sodium 

citrate reducing agent (19 mM) was used while keeping the same auric chloride concentration. 

 

2.4. Electrode preparation 

Gold electrode surface (AuE) was cleaned by immersion in Regia water (3:1 

concentrated HCl:HNO3), rinsed with Milli-Q water and then polished successively with 1, 

0.3 and 0.04 µm alumina slurry (ESCIL, Lyon, France) on a cloth polishing pad (PRESI). 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

During the polishing step intervals the electrodes were rinsed with Milli-Q water, then 

electrodes were dipped in a Milli-Q ultrasonic water bath for few seconds. Finally, 

electrochemical cleaning was done by cycling in 0.05 M H2SO4 solution between -0.35 V and 

+1.5 V at 0.1 V/s until reproducible voltammograms were obtained. To obtain nanostructured 

AuNP/AuE electrodes, 1µL of concentrated AuNPs was cast on the surface of a previously 

cleaned AuE and evaporated. This procedure was repeated consecutively. To determine the 

increase in the electroactive gold surface cyclic voltammetry measurements were performed 

in 0.05 M H2SO4 solution between -0.35V and +1.5V at a scan rate of 0.1 V/s
 
under N2 

atmosphere until stable voltammograms were obtained (around 30 cycles). The AuE or 

AuNP/AuE electrodes were then immersed in 5 mM thiolated compound solutions for 12 

hours for chemical functionalization. The thiol-modified electrodes were thoroughly rinsed 

with ethanol then with Milli-Q water to remove physically absorbed thiols.  

Aa MbH1 and Mv BOD were either physically adsorbed to the thiol layer or covalently 

bound with 5.5µL of 14 mM EDC and 4.5 µL of 21 mM NHS. The mixture was left for 90 

min at 4°C, then the enzyme-modified electrodes were rinsed with Milli-Q water to remove 

non covalently attached enzymes. 

CNF/PG electrodes were prepared by three successive deposits of 5µL CNF solution. 

Between each layer the deposit was dried at 60°C for 5 min. Current densities for the CNF/PG 

electrodes were calculated using the geometric area of the PG electrode (0.0706 cm
2
). 

Electrochemical experiments were carried out in 10 mM phosphate buffer, pH 6 and 50 

mM HEPES buffer, pH 7.2 for Au-based electrodes and PG-based electrodes respectively. 

 

3. Results and Discussion 

 

3.1. Characterization of AuNP deposit on gold electrodes 

 

The morphology and size distribution of the AuNPs were evaluated by DLS, HRTEM 

and UV-visible spectroscopy (Figure 1). DLS experiments showed that the AuNP preparation 

is stable over a 6 month storage period. According to the size distribution by mass, the AuNP 

preparation synthesized with 38.8 mM sodium citrate contains two populations around 27 nm 

and 140 nm (Figure 1A). 94 % of the population is 26.6±2 nm however. The surface plasmon 

band in UV-Visible spectra is obtained at 524 nm (Figure 1B), as expected for AuNPs with a 

size range around 25 nm [43]. TEM images of AuNP solutions reveal a non-strictly uniform 

size most probably due to some aggregation during solvent evaporation. The AuNPs are 

however well resolved with average diameter size of 20.0±5.3 nm (Figure 1C). As 

hydrodynamic diameters from DLS measurements represent the size of particles continuously 

moving in the solution and as it takes into account the citrate-coating corona around the 

particles, larger size dimensions are generally obtained than observed by microscopy where 

the samples are fixed and dried. The three methods are then in good agreement. For the 

nanoparticles synthesized with 19.4 mM sodium citrate, the plasmon band shifted towards 

532 nm (Figure 1B). In accordance with this plasmon band shift, larger size nanoparticles are 

observed by TEM yielding AuNPs with average size of 37.2±4.3 nm (Figure 1D).  

To modify the bare gold electrode (AuE), 1 µL of concentrated AuNPs was deposited, 

followed by evaporation. Increasing cycles of “casting-evaporation” were repeated, and the 

consecutive increases in the electroactive surface area were evaluated using cyclic 

voltammetry (CV). Typical CVs obtained by consecutive AuNP colloid drops on the AuE are 

shown in Figure 2A. The amount of charge under the gold oxide reducing peak at + 0.9 V vs. 

Ag/AgCl increases with increasing castings. From integration of this reduction peak, the real 

electroactive surface area is evaluated taking into account a theoretical charge of 390±10 

µC.cm
-2 

for the reduction of a gold oxide monolayer [41]. When reported to the real 
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electroactive surface of the unmodified AuE evaluated similarly than the modified electrode, a 

linear relationship is obtained at least for up to four drop casting layers (Figure 2B). This 

suggests that all the AuNPs participate to the electroactive surface. A value for AuNPs/AuE 

of more than 50 is reached after four drop castings. Similarly, Murata et al. showed that even 

with 15 drop castings of AuNPs almost all the AuNPs were interconnected [45].  

The AuNPs/AuE developed surface was further analyzed using SEM (Figure 2C). A 

three dimensional nanostructured network develops in which well-defined spherically-shaped 

AuNPs separated by nanoholes are observed. The average size of the AuNPs is 22 ± 3.2 nm 

which agrees with the size previously determined. Both the preservation of size and 

morphology of the AuNPs and the porous nature of the deposit are expected to be of great 

interest for enzyme electrochemistry. Enzyme attachment will take benefit of the AuNP 

property, while the porosity will help mass transport of substrates.  

 

3.2. Electroenzymatic oxidation of H2 on AuNPs 

 

CVs of direct H2 oxidation by Aa MbH1 directly adsorbed on one casting of AuNPs on 

a gold electrode are shown in Figure 3. Because this hydrogenase is O2-tolerant, a high 

current for H2 oxidation can be obtained under H2 atmosphere with the electrochemical cell 

directly on the bench. H2 was first maintained in over pressure above the electrolyte (Figure 3, 

curve a). A plateau shape was recorded which is very much like the shape previously 

observed by modification of a graphite electrode by CNFs [37]. We demonstrated that this 

particular shape was related to mass transport limitation inside the mesoporous CNF film, and 

could be circumvented by bubbling H2 inside the electrolyte. AuNP deposit generates the 

same limitation since recording the CV with continuous H2 flow inside the electrolyte results 

in an increase in the catalytic current and the appearance of a classical CV shape for H2 

oxidation by adsorbed [NiFe] hydrogenase (Figure 3, curve b) [33]. This classic bell shape is 

characterized at pH 6 and 60°C by an onset potential of - 0.5 V vs. Ag/AgCl for H2 oxidation 

in relation with the redox potentials of the FeS cluster, an increase in current as the catalysis 

proceeds, followed by a decrease of the current at potentials higher than - 0.2 V vs. Ag/AgCl 

related to the formation of an inactive state of the enzyme. This is a reversible process as H2 is 

again oxidized on the reverse scan. No reduction of protons can be observed as expected for 

O2-tolerant hydrogenases [33]. The addition of a redox mediator in solution (methylene blue 

is suitable for mediated oxidation using this typical hydrogenase [38]) resulted in a very small 

additional catalytic current. Most hydrogenase molecules are thus electrically connected to the 

AuNPs. As expected, no oxidative currents can be detected under N2 or in the absence of 

hydrogenase (Figure 3, curve c and SI 1).  

Previous studies dedicated to Aa MbH1 immobilization on thiol-based self-assembled-

monolayer emphasized that efficient catalytic H2 oxidation can be obtained either with amino- 

or carboxylic-end functions [38]. This behavior was rationalized by taking into account the 

low value of the dipole moment of the protein which furthermore presents a large variation in 

direction [40]. Similarly, immobilization of the hydrogenase on 4-ATP or 3-MPA modified 

AuNPs allows direct and efficient H2 oxidation (data not shown). The affinity of the 

hydrogenase for both positively and negatively charged interfaces is thus preserved at the 

nanoparticles. In this work, 4-ATP was preferred over 3-MPA to functionalize the 

nanoparticles because of a higher stability over time under the reducing experimental 

conditions that are required for the catalytic H2 oxidation by the hyperthermophilic 

hydrogenase. This is in agreement with the previous study dedicated to hydrogenases from 

Desulfovibrio on gold electrodes [46]. Compared to the signal obtained at the bare AuE, 

AuNP nanostructure induces a great enhancement of the catalytic current. The higher the 

AuNP developed surface, the higher the catalytic current (Figure 4A). Current density for H2 
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oxidation reaches 1.85 ± 0.15 mA.cm
-2

 for AuNPs/AuE around 50, which is up to 170 times 

higher than at the bare AuE. Although the electroactive surface is greatly increased, and even 

for the highest AuNPs/AuE values, no non catalytic signals could be observed under N2 atm. 

Horse heart cytochrome c (cyt c) was also adsorbed on AuNP deposits modified by 6-

MHA (Table 1 in SI). The AuNP modified gold electrode was incubated with 10 µL of 50 µM 

cytochrome c for 1 h at 4°C. A well defined redox wave developed at 0 V vs. Ag/AgCl 

characteristic of the Fe
III

/Fe
II
 transition of the hemic center. The increase in the peak currents, 

either anodic or cathodic, was almost proportional to the increase in the surface area, hence 

denoting that it was mostly related to more proteins immobilized on a larger electroactive 

surface area. The same linear relation between the amount of cyt c and the number of deposits 

was mentioned by Murata et al. [22]. In contrast, the authors reported that O2 reduction by 

bilirubin oxidase (BOD) rapidly reached a saturation value, suggesting that the difference in 

size between cyt c and BOD could control the immobilization process in the depths of the 

AuNP assembly. To have a better understanding of the behavior of hydrogenase, the catalytic 

current density was reported to the electroactive surface developed by the AuNPs (Figure 4B) 

calculated for each electrode by CV and peak integration as described above. Three domains 

can be clearly defined as a function of AuNPs/AuE. For the lowest AuNPs/AuE, between 1 

and 10, the increase in the catalytic current is simply related to the increase in the surface 

area, as denoted by the constancy of the current densities reported to the electroactive area 

developed by the AuNPs. In this first domain, the current density reported to the surface 

developed by the AuNPs is in the order of 10 µA.cm
-2

. This value is very close to the current 

density obtained at the bare AuE. This most probably reflects the first step of AuNP 

deposition on the electrode as a rather flat deposit. A second domain can be observed for 

higher AuNPs/AuE, i.e. between 10 and up to 25. An enhancement of the current density 

much above the enhancement of the surface is observed as highlighted in Figure 4B. In this 

domain, the current density reported to the AuNP developed surface area gradually increases 

up to 0.08 mA.cm
-2

. A synergic effect between the increase in the electroactive surface and 

the morphology of the AuNP film may account for that phenomenon. This step involves most 

probably the formation of the microporous structure as shown in Figure 2C, which is 

favorable to a high amount of connected hydrogenase displaying a high electron transfer rate. 

The third domain concerns AuNPs/AuE between 25 and 50, where the current density 

reported to the surface developed by the AuNPs decreases then tends to stabilize as the value 

AuNPs/AuE increases. In this step, as the thickness increases, it can be hypothesized that the 

structure of the deposit becomes less porous, thus less adapted to a high efficiency of the 

enzyme.  

When the hydrogenase is adsorbed on higher size AuNPs obtained by using a lower 

citrate concentration, the catalytic current is lower as already noticed for other enzymes such 

as cytochrome bo3 oxidase [17] or laccase [25] (Figure SI 2). A lower increase in the surface 

area was also measured. AuNPs/AuE was experimentally always inferior to 6. The catalytic 

current reported to the surface area developed by the AuNPs is close to 10 µA.cm
-2

, falling 

into the current density range obtained for the same AuNPs/AuE domain with the smaller size 

AuNPs. As shown in Figure SI 2 whatever the nanoparticle size, no shift in the catalytic 

potential can be observed. It thus appears that the size of the AuNP has little influence on the 

electron transfer rate. In a recent work, Shleev’s group investigated the influence of NP size 

on the electron transfer rate for O2 reduction by BOD [47]. The main conclusion was that the 

use of NPs with size higher than the enzyme dimension induced no influence on the electron 

rate. The same conclusion can be drawn from our experiments. One must suspect however 

that the formation of a microporous structure with suitable cavities for hydrogenase 

entrapment may help in the enhancement of the electrocatalysis once a certain thickness of 
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AuNPs is reached. Other methods than electrochemistry are now necessary to confirm this 

assumption. 

The stability of the AuNP/Aa MbH1 biohybrid was first followed over one hour by 

chronoamperometry at a potential of -0.3 V vs. Ag/AgCl (Figure 5). During this short period, 

all the weakly attached materials, AuNPs and enzyme-AuNPs are expected to contribute to 

the current loss. It is observed that 50% of the initial catalytic current is lost after continuous 

working of the enzyme absorbed on the AuNP modified electrode at 60°C and under H2 

atmosphere (Figure 5A, curve a). If a covalent attachment is done between the hydrogenase 

and the amino group of the 4-ATP layer via EDC/NHS coupling there is an improvement of 

the stability of the bioelectrode. The current decrease is only 25% (Figure 5A, curve b). 

Because Aa MbH1 is a membrane bound hydrogenase, it is extracted from the cell membrane 

using the neutral detergent DDM. We previously demonstrated that the amount of detergent 

was crucial for enzyme stability, while a high amount of detergent might affect the 

electrochemical signal [39]. In this work, an optimized amount of DDM in the enzyme 

solution was found to be close to 3 times the CMC (i.e. 0.54 mM). In these conditions, the 

current loss is only 11 % after one hour of continuous catalysis (Figure 5A, curve c). Stability 

improvement by covalent attachment of the enzyme then DDM addition, suggests that 

catalytic current decrease originates from multiple factors, including enzyme leaching and 

enzyme activity loss.  

Temperature is a key factor for the catalytic reaction but also for the stability of the 

whole system. Chronoamperometry experiments were thus recorded at -0.3V vs. Ag/AgCl 

during consecutive increments of temperatures (Figure SI 3). It can be observed that the 

enzyme/AuNP biohybrid can work in the full range of temperatures from 30°C to 70°C. A 

good stability is obtained at 30°C. The current obtained at 70°C is at least four times higher 

than at the lowest temperature, but it is also less stable mostly because of the instability of the 

thiol-AuNP architecture at high temperatures. As the temperature decreases back to 60°C, the 

stability of the system is recovered describing a current more than twice the current recorded 

at 30°C.  

We also carried out hydrogenase immobilization on AuNPs attached to the AuE via 

dithiol bridges (BPDT) (Figure SI 4). Because in this case only an AuNP monolayer was 

expected to be formed, AuNPs/AuE value was much less yielding values around 1.4. The 

catalytic process was also very much like the process obtained by immobilization of Aa 

MbH1 on an adsorbed layer of AuNPs directly onto the gold electrode. This confirms that the 

use of the BPDT as a linker does not preclude electron transfer because of the high 

conductance of the linker [18]. AuNPs are expected to be strongly attached to the gold surface 

through the BPDT linker in comparison with AuNPs simply adsorbed. However, the stability 

of the two bioelectrodes followed by chronoamperometry over 1 h was very similar, 

suggesting that the attachment of the AuNPs on the gold electrode is not the limiting factor.  

The stability of the AuNP/hydrogenase biohybrid was then followed over several days 

by checking the maximum CV current for H2 oxidation each day (Figure 5B). The modified 

electrodes and enzyme solution were daily preserved at 4°C in 10mM phosphate buffer pH 6, 

previously saturated with N2 to remove O2 traces all along the experiments. After 24h the 

AuNP electrodes keep 20% of the initial current, and after 30 h the current tends to stabilize. 

During the following days only a slight change is recorded, and the current remains more than 

60% of the initial current after 4 days. The AuNP-based bioelectrode appears to be more 

stable than the previous biohybrid developed in our lab which was based on hydrogenase 

immobilization in carbon nanofiber network [37] (Figure 5B). This carbon material was 

proved to be very efficient for direct enzymatic H2 oxidation leading to current densities 

higher than 4.5 mA.cm
-2

 (based on the geometric area). However, the CNF/Aa MbH1 

bioelectrode was shown to be poorly stable with time, losing 50% of current after 48 h, and 
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90% after 4 days. The absence of covalent attachment between the CNFs and the enzyme can 

mainly account for this instability. But it is worth noting that the evolution of the catalytic 

current on CNFs is identical to the evolution of the current recorded with a PG electrode daily 

freshly modified by the enzyme, and very different from the one recorded at the AuNP 

modified electrode. This most probably reflects that the AuNP nanostructure is more suitable 

for enzyme protection than the CNF film. 

 

3.3. H2/O2 biofuel cell 

 

AuNP based electrodes were used to build a biofuel cell operating with Aa MbH1 at the 

anode and Mv BOD at the cathode (Figure 6). The cell configuration was previously described 

[6, 8]. The temperature of each half cell, separated by a Nafion membrane, can be 

independently regulated. The performances of the biocathode and the bioanode were first 

evaluated in the fuel cell configuration (Figure 6A). To balance the cathodic and anodic sides, 

AuNPs/AuE values of around 15 and 40 were used for H2 oxidation and O2 reduction 

respectively. A high current density at a temperature of 60°C in the anodic compartment was 

recorded for H2 oxidation by hydrogenase, in agreement with the one obtained in the 

conventional three electrode configuration. Immobilization of Mv BOD on AuNP based 

electrodes was previously studied [22, 30]. Direct electron transfer for O2 reduction was 

reported in the case of the commercially available Mv BOD on unmodified AuNPs or AuNPs 

modified by carboxylate-terminated SAMs. Accordingly, we verify in this work that 

modification of the AuNPs by 3-MPA allows efficient immobilization of Mv BOD. Current 

densities in the order of 0.4 mA.cm
-2

 with an onset around + 0.5 V are obtained for O2 

reduction at a temperature of 25°C and in condition of O2 bubbling inside the electrolyte of 

the cathodic compartment (Figure 6A). We noted however that increasing the temperature 

progressively to 40°C in the cathodic compartment resulted in a progressive decrease of the 

catalytic activity, as expected for a non thermostable enzyme such as Mv BOD.  

No covalent attachment was done for the biocathode. Actually, the addition of 

EDC/NHS resulted in a strong decrease of the catalytic current. Some structural 

rearrangements were previously suggested in order to explain the decrease in the electron 

transfer rate after covalent BOD immobilization on gold electrodes [48]. We performed both 

SDS-PAGE gels and ABTS activity in agarose gels in the presence of Mv BOD with 

increasing EDC/NHS concentrations (i.e. 6/10, 14/21 and 20/30 mM) (data not shown). These 

gels proved that at least under these experimental conditions no denaturation of the protein 

occurs. The loss of activity in the present work might imply either structural rearrangement or 

release of BOD after EDC/NHS treatment on AuNPs modified by MPA. Pita et al. also 

immobilized Mv BOD on AuNPs treated through a mixture of MPA and diazonium salts. No 

deactivation of the enzyme upon covalent attachment was reported, but it was noted that the 

MPA modification alone resulted in the disappearance of the catalytic signal in serum media 

[23]. This was attributed to the lower stability of the MPA modification compared to the one 

prepared by diazonium salt reduction. Accurate assessment is however needed for which 

coupled spectroscopy/electrochemistry methods would be of great interest. 

The open circuit voltage of the biofuel cell was 1.08±0.05 V. Temperature was 

maintained at 60 °C and 25 °C in the anodic and cathodic compartment respectively. The 

polarization curve for the biofuel cell is shown in Figure 6B. When decreasing the cell 

voltage, a sharp increase in the current can be observed at around 0.4 V. The voltage of each 

electrode was concomitantly monitored during the cell polarization. Because the cathode is 

the limiting electrode in the system, the BOD bioelectrode varied much more quickly than the 

hydrogenase bioelectrode. As shown in Figure 6B, the biocathode reaches negative values in 

the same domain where a sudden increase of the current in the polarization curve is observed. 
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At these potentials O2 can be directly reduced at some bare parts of the AuNP electrode, 

producing hydrogen peroxide. Consequently, whereas the bioanode current was almost 

unchanged after the polarization experiment, the biocathode lost around 50% in current 

density (Figure 6A). Attempt to increase the stability of the biocathode by co-immobilization 

of catalase with Mv BOD as proposed in [49] did not result in an improved stability. 

Nevertheless, at a cell voltage of 0.8 V a power density of 0.25 mW.cm
-2

 is reached (Figure 

6C). This power density compares well with the previous power densities reported with the 

same enzymes immobilized at carbon nanotube networks [8]. In the absence of enzymes, a 

power density less than 2 µW.cm
-2

 is obtained (Figure SI 5). Immobilization of enzymes on 

AuNPs has been already demonstrated to enhance the power densities of sugars/O2 EBFC 

[22]. But this is the first time that a H2/O2 biofuel cell based on hydrogenase immobilization 

on AuNPs is reported. Our results prove that H2/O2 biofuel cells can be efficient in many 

electrode configurations such as carbon nanomaterials but also metal nanoparticles. 

 

4. Conclusion  
 

In this work, the O2- CO- and temperature-tolerant [NiFe] hydrogenase from Aquifex 

aeolicus hyperthermophilic bacterium was immobilized on gold nanoparticle deposits. For the 

first time, it is shown that direct H2 enzymatic oxidation is very efficient on such 

nanostructured interfaces with no need of any redox mediator and over a large range of 

temperatures. It is underlined that the microporosity of the AuNP film allows both an 

enhancement of the electroenzymatic activity beyond the surface enhancement and 

stabilization with time of the enzyme. Combined with Mv BOD at the cathode, a biofuel cell 

was designed able to deliver a power density of 0.25 mW.cm
-2

. Future work will focus on 

immobilization of thermostable enzymes on AuNPs for O2 reduction at high temperatures. 

This work provides the first investigation of enzymatic H2 oxidation on nanoparticles which is 

deisrable to develop coupled methods involving electrochemistry and spectroscopy. This is in 

progress in the laboratory with the aim to determine the key factors controlling the stability of 

a bioelectrode as a function of various experimental conditions.  
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Legends 

 
Figure 1: Size distribution and morphology of the gold nanoparticles. (A) AuNP hydrodynamic size 

distribution by DLS; (B) UV-visible spectra of AuNPs obtained with 38.8 mM (bold line), and 19.4 

mM (dot-dashed line) sodium citrate; TEM images of AuNPs synthesized with 38.8 mM (C) and 19.4 

mM (D) sodium citrate. 

 
Figure 2: (A) CVs of gold electrodes modified with consecutive AuNP drop castings: 1 (grey line), 3 

(dashed line), 4 (dotted line) deposits; Inset: CV of the bare polycrystalline gold electrode; (B) 

AuNPs/AuE values as a function of AuNP casting number. 0.05 M H2SO4; scan rate 0.1V/s
 
under N2 

atmosphere and room temperature. (C) SEM image of the top view of the AuNP modified gold 

surface.  

 
Figure 3: CVs for H2 oxidation by Aa MbH1 immobilized on a gold electrode modified with one 

AuNP deposit: (a) H2 in over pressure above the electrolyte; (b) H2 in continuous flow in the 

electrolyte solution; (c) H2 is replaced by N2. 10 mM phosphate buffer, pH 6, 60°C, 5 mV/s.  

 

Figure 4: (A) H2 catalytic currents for increasing AuNPs/AuE values (a) 28, (b) 38 and (c) 50. Inset: 

H2 oxidation by Aa MbH1 absorbed on a bare gold electrode (B) Catalytic current densities for H2 

oxidation reported to the electroactive surface area of the AuNP deposit as a function of AuNPs/AuE. 

10 mM phosphate buffer, pH 6, 60°C under H2 flow, 5mV/s. 

 
Figure 5: (A) H2 oxidation current loss with the Aa MbH1 immobilized on 4-ATP modified AuNPs: 

(a) without EDC/NHS (dotted line), (b) with EDC/NHS (dashed line); (c) with EDC/NHS and 3CMC 

DDM addition (solid line). E = -0.3 V vs. Ag/AgCl, 10 mM phosphate buffer, pH 6, 60°C under H2 

flow; (B) long term H2 oxidation current loss with the Aa MbH1 immobilized on (a) CNF modified PG 

electrode (dotted line), (b) freshly daily adsorbed on bare PG electrode (dashed line), (c) covalently 

bounded to 4-ATP modified AuNP gold electrode (solid line); 60°C under H2 flow, 5 mV/s.  

 

Figure 6: (A) Direct H2 oxidation and O2 reduction at AuNP nanostructured electrodes in the fuel cell 

configuration, before (solid line) and after (dashed line) cell measurements; (B) Polarization curve of 

AuNP-based H2/O2 biofuel cell (black line) and cathode potential evolution during the polarization 

experiment (grey line); (C) Operational performance of the AuNP-based H2/O2 biofuel cell: power 

density (grey line) and cell voltage (black line) as a function of the current density. 10mM phosphate 

buffer pH 7, under continuous H2 (bioanode) or O2 (biocathode) flow, 3 mV/s.  
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Supplemental Informations 

 

Surface 

Increment 

Ipa / A Ipc / A Γ / 

mol.cm
-2

 

Em / V rE Γ 

Increment 

1 3.5 10
-9

 5.7 10
-9

 7.6 10
-12

 0.004 0.027 1 

20 7.9 10
-8

 7.8 10
-8

 1.3 10
-10

 0.009 0.002 17.7 

36 2.3 10
-7

 2.4 10
-7

 3.9 10
-10

 0.001 0.002 51.5 

 

Table 1: Electrochemistry of Horse heart cytochrome c at 6-MHA-AuNP modified gold electrode. Ipa 

and Ipc: anodic and cathodic peak currents respectively, Γ: protein surface coverage, Em : average 

redox potential, DE : potential difference between the anodic and cathodic peak potentials. 10 mM 

phosphate buffer pH 6, 0.1V/s. 

 

Figure SI 1: CVs for H2 oxidation on AuNP deposit in the absence of Aa MbH1; 10 mM phosphate 

buffer pH 6, 60°C under continuous H2 flow, 5 mV/s. 

 

Figure SI 2: Comparative CVs for H2 oxidation by Aa MbH1 covalently immobilized on (a) 25 nm 

AuNPs and AuNPs/AuE of 14 (solid line) and (b) 35 nm AuNPs and AuNPs/AuE of 3 (dashed line). 

10 mM phosphate buffer pH 6, 60°C under continuous H2 flow, 5 mV/s. 

 

Figure SI 3: Chronoamperometry measurement at -0.3V vs. Ag/AgCl for H2 oxidation current at 

consecutive temperature increasing conditions. 10 mM phosphate buffer pH 6, 60°C under continuous 

H2 flow. 

 

Figure SI 4: CVs for H2 oxidation by Aa MbH1 covalently immobilized on a gold electrode modified 

with AuNPs on a BPDT layer (dashed line), or AuNPs directly adsorbed on the gold electrode (solid 

line). 10 mM phosphate buffer pH 6, 60°C under continuous H2 flow, 5 mV/s. 

 

Figure SI 5: Polarization and power curves on AuNPs in the absence of enzymes. 10mM phosphate 

buffer pH 7, under continuous H2 (bioanode) or O2 (biocathode) flow, 3 mV/s.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Highlights 

- 20.0±5.3 and 37.2±4.3 nm gold nanoparticles were deposited on a gold electrode 

- O2- and CO-tolerant [NiFe] hydrogenase was immobilized on the AuNP deposits 

- Direct H2 oxidation was obtained with current densities up to 1.85±0.15 mA.cm
-2

 

- A biofuel cell was designed delivering 0.25 mW.cm
-2

 


