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Earthworms are crucial for production and maintenance of soil structure and their activities can strongly impact soil functioning (e.g. water regulation, nutrient dynamics). This laboratory study investigated the bioturbation activity of three endogeic species, A. chlorotica, A. icterica and A. caliginosa, as affected by different locations of organic matter (OM) in the soil profile: OM scattered on the soil surface (surface-OM) or homogeneously mixed into the soil (mixed-OM). Microcosms, each containing a combination of one species (three individuals) and one OM location, were subjected to controlled environmental conditions (temperature, humidity and day/night cycle) for 60 days. At the end of the experiment, microcosms were cut into multiple horizontal cross-sections every centimetre and bioturbation activities were analysed based on the number of burrows, the burrowed area and the percentage of burrowed area totally refilled with casts.

Results showed that regardless of species, there was significantly fewer burrows and a greater percentage of burrowed area refilled with casts under mixed-OM than under surface-OM. A. chlorotica and A. caliginosa had a significantly greater burrowed area under mixed-OM than under surface-OM. Regardless of OM location, as depth increased, burrow number and area decreased for A. chlorotica and generally increased for A. icterica. In contrast, burrowing activity of A. caliginosa was affected by OM location as depth increased: under A c c e p t e d M a n u s c r i p t 2/2 mixed-OM, burrow number decreased but burrowed area remained constant, whereas under surface-OM, burrow number remained constant and burrowed area increased.

These results improve understanding of effects of endogeic species on soil structure and highlight effects of OM location on earthworm bioturbation. Especially this study gives information about the burrowing activity of A. icterica which has so far been little documented, and also informs about refilled burrows which is a major parameter for soil functioning.

Introduction

Earthworms have been described as soil engineers [START_REF] Jones | Organisms as ecosystem engineers[END_REF][START_REF] Lavelle | Soil function in a changing world: the role of invertebrate ecosystem engineers[END_REF] because of their ability to modify their own environment and notably the soil structure via their bioturbation activity which consists of burrowing and producing casts. This ingestionegestion of soil strongly affects soil structure [START_REF] Dexter | Advances in characterization of soil structure[END_REF][START_REF] Lee | Soil fauna and soil structure[END_REF] depending on the context, earthworms increase porosity [START_REF] Pérès | Relationships between earthworm communities and burrow numbers under different land use systems[END_REF][START_REF] Lamandé | Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[END_REF][START_REF] Van Schaik | Linking spatial earthworm distribution to macropore numbers and hydrological effectiveness[END_REF] or increase bulk density [START_REF] Blanchart | Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d'Ivoire[END_REF]. Consequently, earthworms affect several soil functional properties and ecosystem services, such as soil moisture, water infiltration and water regulation, soil organic matter (OM) availability, nutrient cycling and primary production [START_REF] Jouquet | Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops[END_REF][START_REF] Capowiez | The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration[END_REF][START_REF] Blouin | A review of earthworm impact on soil function and ecosystem services[END_REF][START_REF] Crittenden | Effect of tillage on earthworms over short-and medium-term in conventional and organic farming[END_REF]. To understand the functional links between earthworms and soil structure, scientists have focused on one aspect of bioturbation (i.e. burrows) (Pérès et al., 2010;[START_REF] Lamandé | Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[END_REF][START_REF] Van Schaik | Linking spatial earthworm distribution to macropore numbers and hydrological effectiveness[END_REF] but without integrating other aspects of its complexity, especially casts.

Earthworm bioturbation results from complex interactions and can be affected by various parameters, such as the location of OM, which is a food resource for earthworms and affects earthworm foraging activity [START_REF] Jeanson | Essai de pédozoologie expérimentale: morphologie d'un sol artificiel structuré par les Lombricidés[END_REF][START_REF] Martin | Interaction between organic matter in soil and the burrowing activity of three species of earthworms (Oligochaeta: Lumbricidae)[END_REF][START_REF] Pérès | Relationships between earthworm communities and burrow numbers under different land use systems[END_REF]. However, this aspect needs further study, especially in relation to cast production.

Bioturbation properties of anecic earthworms are well described: these dwelling earthworms build a relatively permanent burrow system, vertically oriented, bring soil from the depth to the soil surface and cover their burrow walls with their casts [START_REF] Kretzschmar | Experimental burrow system: pathway patterns and building behaviour[END_REF][START_REF] Kretzschmar | 3D images of natural and experimental earthworm burrow systems[END_REF][START_REF] Daniel | Computer-assisted tomography of macroporosity and its application to study the activity of the earthworm Aporrectodea nocturna[END_REF][START_REF] Jégou | Characterization of the burrow system of the earthworms Lumbricus terrestris and Aporrectodea giardi using X-ray computed tomography and image analysis[END_REF][START_REF] Jégou | Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems[END_REF][START_REF] Shipitalo | Occupancy and geometrical properties of Lumbricus terrestris L. burrows affecting infiltration[END_REF][START_REF] Bastardie | X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores[END_REF][START_REF] Nuutinen | Interaction of Lumbricus terrestris L. burrows with field subdrains[END_REF].

Bioturbation properties of endogeic earthworms, however, are less well known, despite existing studies [START_REF] Bolton | Burrowing, feeding, egestion and energy budgets of Allolobophora rosea (Savigny) (Lumbricidae)[END_REF][START_REF] Capowiez | Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions[END_REF][START_REF] Jégou | Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems[END_REF][START_REF] Felten | Earthworm burrowing behaviour in 2D terraria with singleand multi-species assemblages[END_REF], these earthworms are reported to burrow through the soil, creating horizontal and randomly oriented burrows considered to be temporary structures [START_REF] Bouché | Lombriciens de France Ecologie Animale[END_REF]. Only few data exist about their casting activity in soil and especially the proportion of burrows refilled with casts which is an important parameter for soil functioning [START_REF] Schrader | Semi-automatic image analysis of earthworm activity in 2D soil sections[END_REF][START_REF] Francis | The burrowing characteristics of three common earthworm species[END_REF][START_REF] Perreault | Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture[END_REF][START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF]. Additionally, some endogeic species have received attention, e.g. A. chlorotica [START_REF] Capowiez | Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions[END_REF][START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF] and A. caliginosa [START_REF] Schrader | Semi-automatic image analysis of earthworm activity in 2D soil sections[END_REF][START_REF] Francis | The burrowing characteristics of three common earthworm species[END_REF][START_REF] Jégou | Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems[END_REF][START_REF] Perreault | Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture[END_REF][START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF], but other species are not well documented such as A. icterica which has been only assessed once, through its burrow network (Bastardie et al., 2005a).

A study of earthworm bioturbation encounters several challenges, of which difficulty in accessing burrows and casts due to soil opaqueness is one. Several authors have used A c c e p t e d M a n u s c r i p t 4/4 transparent 2D-terrariums [START_REF] Schrader | Semi-automatic image analysis of earthworm activity in 2D soil sections[END_REF][START_REF] Whalen | Quantifying surface and subsurface cast production by earthworms under controlled laboratory conditions[END_REF][START_REF] Perreault | Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture[END_REF][START_REF] Felten | Earthworm burrowing behaviour in 2D terraria with singleand multi-species assemblages[END_REF]. Their relative thinness, however, may influence earthworm behaviour and therefore this 2D approach appears less relevant than 3D microcosms [START_REF] Capowiez | Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions[END_REF][START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF]. Several authors have used 3D X-ray tomography [START_REF] Joschko | Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurements[END_REF][START_REF] Jégou | Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi, and Aporrectodea caliginosa using X-ray computed tomography[END_REF][START_REF] Capowiez | 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores[END_REF], which is relevant for burrow network assessment but this does not allow direct assessment of cast production [START_REF] Joschko | Earthworm burrow system development assessed by means of X-ray computed tomography[END_REF]. As an alternative, the study by [START_REF] Hirth | Volume density of earthworm burrows in compacted cores of soil as estimated by direct and indirect methods[END_REF] is particularly interesting because it used cross sections of cylindrical microcosms to analyse both burrowing and casting by endogeics. Another challenge to studying earthworm bioturbation is correctly identifying which species produced observed burrows and casts, especially in natural conditions, in which several species bioturbate the soil [START_REF] Capowiez | 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores[END_REF][START_REF] Pérès | Identification et quantification in situ des interactions entre la diversité lombricienne et la macro-bioporosité dans le contexte polyculture breton[END_REF]Bastardie et al., 2005b). Thus, despite their artificiality, microcosms remain necessary to describe bioturbation activity of a species (Bastardie et al., 2005b).

The aim of this study was to assess under controlled conditions, burrowing and casting activities of three endogeic earthworms (i) as a function of OM location in the soil profile, and (ii) as a function of soil depth. The destructive method used is based on soil cross sections of microcosms and was used to observe, classify and quantify bioturbation, i.e. number of burrows, burrowed area and percentage of total burrowed area totally refilled with casts.
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Materials and Methods

Our experimental system takes benefits from previous studies such as [START_REF] Jégou | Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems[END_REF] for the design of microcosms and from [START_REF] Hirth | Volume density of earthworm burrows in compacted cores of soil as estimated by direct and indirect methods[END_REF] for the assessment of burrowing activity.

Experimental system

Microcosm characteristics

Twenty four microcosms were built using PVC cylinders (20 cm in length and 15 cm in internal diameter). They were cut lengthwise into two equal halves to facilitate their final opening. A 500 µm nylon mesh was placed at the upper and lower openings to retain earthworms.

Soil and organic matter features

The soil was collected from an arable field in Le Rheu, Brittany, France (N 48°09, W 1°81) and was a silt loam soil [START_REF] Fao | FAO/Unesco Soil Map of the World. Revised Legend with corrections[END_REF] with 16% sand, 69% silt, 15% clay. Soil organic matter content (2%) and pH H2O (6.1) were in accordance with the values observed in cultivated soils in Brittany ("BDAT," 2002). Soil was air-dried before being passed through a 2 mm sieve to remove biostructures already present.

We used ryegrass (Lolium perenne L.) from an unmown and untreated grassland as the OM resource for earthworms. This OM was oven-dried for 48h at 60°C before being ground to a maximum width of 1 mm. OM was supplied at 20.7 g dry weight (dw) per microcosm, i.e. 100 g of soil with 0.6 g dw of OM, corresponding to a non-limiting food resource for earthworms [START_REF] Curry | The feeding ecology of earthworms -A review[END_REF]. Two OM treatments were defined: OM mixed with all the soil (mixed-OM treatment, 12 microcosms) and OM evenly scattered on the soil surface (surface-OM treatment, 12 microcosms).
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Microcosm filling

Microcosms were filled with five layers of soil. Each layer had a bulk density of 1.3 g.cm -3 : it was made of 690 g dw of soil that was packed down to obtain a 3-cm-high layer. Thus, soil in the columns was 15 cm deep. The bulk density of each layer has been recorded in some cultivated fields [START_REF] Peigné | Earthworm populations under different tillage systems in organic farming[END_REF][START_REF] Bottinelli | Response of soil structure and hydraulic conductivity to reduced tillage and animal manure in a temperate loamy soil[END_REF] and in other microcosm experiments [START_REF] Jégou | Characterization of the burrow system of the earthworms Lumbricus terrestris and Aporrectodea giardi using X-ray computed tomography and image analysis[END_REF]. Additionally, the use of dry soil and thin layers prevented inter-layer smoothing when soil was packed down. Once constructed, microcosms were remoistened by capillary absorption and freely-drained for 48 h to reach field capacity which was kept by re-wetting the surface every two weeks.

Earthworm introduction

Three endogeic species, according to [START_REF] Bouché | Lombriciens de France Ecologie Animale[END_REF], were collected from an arable field:

Allolobophora chlorotica (Savigny, 1826), Allolobophora icterica (Savigny, 1826) and Aporrectodea caliginosa (Savigny, 1826). These species are commonly found in cultivated soil in France [START_REF] Cluzeau | Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types[END_REF]. All earthworms were sub-adults or adults and were acclimated to the soil for one week before being introduced into microcosms [START_REF] Fründ | Using earthworms as model organisms in the laboratory: Recommendations for experimental implementations[END_REF].

Experiments involved use of earthworm monocultures: one endogeic species employing three individuals per microcosm and corresponding to 170 earthworms.m -2 and a mean fresh biomass (± standard deviation) of 0.8±0.1 g for A. chlorotica, 2.1±0.1 g for A. icterica and 1.3±0.1 g for A. caliginosa per microcosm. Earthworm biomass and density values were consistent with those found in cultivated fields in Brittany [START_REF] Pélosi | Reducing tillage in cultivated fields increases earthworm functional diversity[END_REF]. The experimental design had two OM locations with three earthworms species replicated four times (2x3x4=24 microcosms). Earthworms were placed on the soil surface and allowed to burrow down. Then, microcosms were placed on a raised grid in a climatic chamber at 10°C with a day/night cycle corresponding to the external one (18/6h in June and July). Microcosms were maintained for 60 days after earthworm inoculation, at which time they were microwaved to stop earthworm activity by killing them in situ (5 minutes, 400 Watts).

They were then slowly oven dried at 45°C for one week to help cutting cross-sections and to prevent their smoothing.

Bioturbation assessment

Each microcosm was cut from top into eleven cross sections every centimetre corresponding to sections z 0 to z 10 . The surface of each section was lightly brushed using a paintbrush and blown using a compressor at its lowest pressure to remove dust and studied with the following procedure:

1) Outlines of burrows were identified with the naked eye and traced with pen on a transparent sheet of plastic placed on the surface. Casts that completely obstructed the burrows were similarly recorded.

2) After digitizing the drawings (resolution: 600 ppi), they were analyzed with Fiji software [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF] and a homemade script in the Jython programming language (http://www.jython.org/). Each burrow was identified and described by its total area and the area occupied by casts. The percentage of burrow refilled with casts (area occupied by casts divided by the burrowed area) was calculated.

Statistical analysis

Data analysis was performed using R software (R. [START_REF] Team | R: A language and environment for statistical computing[END_REF]. If the normality of residues (Shapiro test) and the heteroscedasticity (Bartlett test) were verified, we used multiway ANOVA and post-hoc LSD Tukey's tests with species, depth and OM location as factors.

Otherwise, the Kruskall-Wallis test checked for factor effect, and pairwise Wilcoxon tests with Bonferroni correction were used as post-hoc tests. Linear regressions were calculated to test the relation between bioturbation and depth. If linear regression was not significant, the nls 

Results

At the end of the experiment, some OM remained on the surface of the surface-OM treatment, which suggested that excess OM had been applied. We observed that surface casts were still being produced at the end of the experiment which suggests that earthworms were still active.

Bioturbation of earthworms as affected by organic matter location

Number of burrows:

The number of burrows per section was significantly (p < 0.001) affected by earthworm species, OM location, and by 2-way interactions: species × OM location, species × depth, and OM location × depth.

The number of burrows per section was significantly higher under surface-OM vs. mixed-OM regardless of species (Fig. 1a). It was approximately 2.3, 2.1 and 1.5 times as large under surface-OM vs. mixed-OM for A. icterica, A. caliginosa and A. chlorotica, respectively.

Under surface-OM, the number of burrows per section decreased from A. icterica to A. caliginosa to A. chlorotica, with a significant difference between each pair. Under mixed-OM, A. icterica had a significantly higher number of burrows per section than A. chlorotica.

Burrowed area per section

Burrowed area was significantly (p < 0.001) affected by species, OM location, and the 2-and 3-way interactions (species × OM location × depth).
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Under surface-OM, the area burrowed per section significantly decreased from A. icterica to A. caliginosa to A. chlorotica.

Percentage of burrowed area refilled with casts

The percentage of refilled area was significantly (p < 0.05 for species × depth and p < 0.001 for other factors) affected by species, OM location, and all 2-and 3-way interactions.

Earthworms refilled their burrows more under mixed-OM than under surface-OM (Fig. 1c). This percentage was approximately 3.1, 1.7 and 2.5 times as high under mixed-OM vs. surface-OM for A. chlorotica, A. icterica and A. caliginosa, respectively. Under mixed-OM, A. caliginosa had a higher percentage of burrowed area refilled with casts than the two other species. This percentage was not significantly different for the three species under surface-OM.

Effect of soil depth on bioturbation

Earthworms bioturbated all sections of all microcosms, except one microcosm with A. chlorotica under surface-OM, in which no burrow was found in the two deepest sections. The top section (i.e. z 0 ) of several microcosms could not be analyzed, placing the first analyzed section at a depth of 1 cm (i.e. z 1 ).

Number of burrows as depth increased

Under both OM-location treatments, the number of burrows produced by A. chlorotica decreased as depth increased (Figs. 2a and2d) whereas it increased as depth increased for A. icterica (Figs. 2b and2e). A. caliginosa had a varied response: the number of burrows A c c e p t e d M a n u s c r i p t 10/10 decreased as depth increased under mixed-OM, but remained constant as depth increased under surface-OM (Fig. 2f). For all combinations of species and OM location, except A. caliginosa under surface-OM, regressions predicting the number of burrows as depth increased were statistically significant.

Burrowed area as depth increased

A linear relation exists between burrowed area and depth in most treatments (Fig. 3). The burrowing activity of A. chlorotica was concentrated within the first 3 cm under mixed-OM (Fig. 3a). Unlike the mixed-OM treatment, the upper sections under surface-OM did not noticeably differ from others, even though food resources were located at the surface. However, A. icterica and A. caliginosa under surface-OM had burrowed areas at the surface (i.e. z 1 ) that were higher than those at 1 cm (Figs. 3e and3f). In both cases, this surface point was excluded from linear regression since its standard error was extremely high, and the surface burrowing could reflect a specific behaviour due to OM location on the soil surface.

For both OM locations, burrowing of A. icterica linearly increased as depth increased (Figs. 3b and3e). There was no significant linear correlation between the area refilled with casts and depth (data not shown).

Discussion

Earthworm sensitivity to OM location

Our results showed major differences in the bioturbation of the three species studied, even though all belong to the endogeic group. According to this study, species is a key factor that must be considered when linking earthworms to bioturbation. Additionally, our results highlighted the need to account for effects of OM location on earthworm bioturbation, since it might influence the number of burrows produced, the burrowed area, and the burrowed area refilled with casts. Total burrowed area of A. icterica was noteworthy unaffected by OM A c c e p t e d M a n u s c r i p t 11/11 location, even though its behaviour was changed, notably by increasing the number of burrows. However, A. chlorotica and A. caliginosa were greatly influenced by OM mixed with soil, which led them to increase the area burrowed. These observations are consistent with their food consumption habits: under spruce forest conditions, Bernier (1998) observed that A. icterica's digestive tract contained a higher mineral content than that of other species, including A. caliginosa. Conversely, the diets of A. chlorotica and A. caliginosa are known to be similar [START_REF] Piearce | Gut contents of some lumbricid earthworms[END_REF]. Since OM is a known food resource for the three endogeic species, this study showed that less of it in the soil could lead earthworms to build more burrows supporting previous study under field conditions [START_REF] Pérès | Relationships between earthworm communities and burrow numbers under different land use systems[END_REF]. It should be noted that interspecific competition can affect the burrowing activity of earthworm species. In particular, the burrow system of A. chlorotica was unaffected by Aporrectodea nocturna [START_REF] Capowiez | Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions[END_REF] and A. caliginosa had a significantly lower burrowing activity in the presence of several other species [START_REF] Felten | Earthworm burrowing behaviour in 2D terraria with singleand multi-species assemblages[END_REF]. Thus both OM location and interspecific competition should be included in further studies of earthworm bioturbation activity.

It is worthwhile to note that the measured percentage of burrowed area refilled with casts is far from equal among documented studies. For example, the percentage for A. caliginosa in our study (10-35%) was much lower than that of [START_REF] Francis | The burrowing characteristics of three common earthworm species[END_REF] and Capowiez et al.

(2014) (40-85%) but higher than that observed by [START_REF] Perreault | Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture[END_REF] 

(<10%).

Differences among studies may stem from the methods used, but also from the influence of food quality, food quantity, temperature and bulk density, which differed among studies. For example, [START_REF] Perreault | Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture[END_REF] observed that surface casting of A. caliginosa was greater with wetter soil. Our results showed that OM location is another factor that affects the percentage of burrowed area refilled. We observed a lower percentage of burrowed area refilled with casts under surface-OM vs. mixed-OM. There could be several explanations for this: (i) casts were less stable under surface-OM and were undetectable at the end of the experiment; (ii) casts under the surface-OM treatment had a greater bulk density; (iii) burrows were built by pushing particles; (iv) casts were egested at the soil surface and (v) more casts were crushed against burrow walls under surface-OM vs. mixed-OM. Further studies are needed to explain this difference between the two OM locations and to study the mechanisms of cast production. The measured percentage of burrowed area refilled with casts is an indicator of burrow continuity, notably because reported casts are those that completely obstructed the burrows. Our study suggests that burrows built under mixed-OM are more discontinuous, which can impact on water movements [START_REF] Allaire-Leung | Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity[END_REF] and burrow lifespan [START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF].

Bioturbation activity as depth increased

We assessed differences in burrow number and burrowed area as depth increased. A. chlorotica burrowing activity was concentrated in the top few centimeters which was not observed by [START_REF] Capowiez | Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions[END_REF]. This result agrees with an intermediate position of A. chlorotica between the ecological categories "endogeic" and "epigeic" [START_REF] Bouché | Strategies lombriciennes[END_REF][START_REF] Pérès | Identification et quantification in situ des interactions entre la diversité lombricienne et la macro-bioporosité dans le contexte polyculture breton[END_REF]. Nevertheless, we observed that this epi-endogeic behaviour was more marked with OM mixed into the soil than with OM on the soil surface. This seems counterintuitive, because OM on the soil surface would induce earthworms to burrow at the surface to feed. But our study does not reveal whether earthworms expressed true epigeic behaviour when OM was on the surface by feeding in the thin organic layer at the top of microcosms.

Nevertheless, the effect of A. chlorotica on the soil volume was smaller when OM was on the surface. The burrowed area of A. caliginosa slightly increased as depth increased when OM was located on the soil surface, which contradicts other studies [START_REF] Mckenzie | Size and orientation of burrows made by the earthworms Aporrectodea rosea and A. caliginosa[END_REF][START_REF] Jégou | Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi, and Aporrectodea caliginosa using X-ray computed tomography[END_REF], but no trend was found when OM was mixed into the soil. A. icterica is reported to be a typical endogeic earthworm (Bastardie et al., 2005a). This corresponds with A c c e p t e d M a n u s c r i p t 13/13 the observation that OM location significantly influenced A. icterica, but less than the two other species in our study. Like Francis et al. (2001), we observed no significant decrease in the area refilled with casts as depth increased, which is contrary to results of [START_REF] Capowiez | Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores[END_REF].

Conclusion

Data on the effect of endogeic earthworms on soil structure are rare in the literature, especially concerning A. icterica. Our study provides insights into the burrowing activity of three endogeic species according to organic matter location. Bioturbation is crucial in agriculture particularly in no-till fields which are not mechanically treated to create favourable soil structure and in which structure and soil functioning are strongly affected by biological activity [START_REF] Capowiez | The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration[END_REF][START_REF] Peigné | Earthworm populations under different tillage systems in organic farming[END_REF][START_REF] Crittenden | Effect of tillage on earthworms over short-and medium-term in conventional and organic farming[END_REF].

Our results obtained under controlled conditions have now to be confirmed under field conditions, in which soil heterogeneity can be integrated and interspecific competition between earthworms occur. Among other parameters such as bulk density, OM location may change according to tillage practices: for example, no-till systems keep OM on the soil surface and ploughed systems mix OM into the soil. Our results suggest that the three species do not bioturbate the soil in the same way under these tillage practices because of these differences in OM location. However the combined effect of OM location and other parameters, e.g. bulk density, must be studied to confirm this statement. Moreover, even though these species are endogeic, they do not preferentially burrow the soil at the same depth, but are complementary and thus our results suggest that these species do not occupy the same ecological niche. This is one reason why species diversity within the same ecological category must be maintained or increased. Results of this study will be integrated Earthworm ecological categories are still disputed. This study shows that the bioturbation activity of A. chlorotica and A. icterica agrees with their classification as epi-endogeic and true endogeic, respectively. Recent work has begun to focus on addressing the ecological traits of earthworm species [START_REF] Lowe | Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions[END_REF][START_REF] Fernández | Life cycle and reproductive traits of the earthworm Aporrectodea trapezoides (Dugès, 1828) in laboratory cultures[END_REF][START_REF] Pey | Current use of and future needs for soil invertebrate functional traits in community ecology[END_REF] and this needs to be continued. 

  was used to estimate parameters of a non-linear model. The goodness of fit of the non-linear model was assessed with a Pearson test of correlation between estimated and observed values. Significance threshold was set at

  model that simulates impacts of earthworms on soil structure and accounts for tillage practices.
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 1 Figure 1. Measured bioturbation parameters of three endogeic earthworm species. Error
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 2 Figure 2. Mean number of burrows per section by depth of three endogeic earthworm

Figure 3 .

 3 Figure 3. Mean burrowed area per section by depth of three endogeic earthworm species.
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