
HAL Id: hal-01147734
https://univ-rennes.hal.science/hal-01147734

Submitted on 1 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

#FIVE : High-Level Components for Developing
Collaborative and Interactive Virtual Environments
Rozenn Bouville, Valérie Gouranton, Thomas Boggini, Florian Nouviale,

Bruno Arnaldi

To cite this version:
Rozenn Bouville, Valérie Gouranton, Thomas Boggini, Florian Nouviale, Bruno Arnaldi. #FIVE :
High-Level Components for Developing Collaborative and Interactive Virtual Environments. Pro-
ceedings of Eighth Workshop on Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS 2015), conjunction with IEEE Virtual Reality (VR), Mar 2015, Arles, France.
�hal-01147734�

https://univ-rennes.hal.science/hal-01147734
https://hal.archives-ouvertes.fr

#FIVE : High-Level Components for Developing Collaborative and
Interactive Virtual Environments

Rozenn Bouville ∗ Valérie Gouranton† Thomas Boggini‡ Florian Nouviale§ Bruno Arnaldi¶

INSA de Rennes - IRISA / INRIA

ABSTRACT

This paper presents #FIVE (Framework for Interactive Virtual En-
vironments), a framework for the development of interactive and
collaborative virtual environments. #FIVE has been developed to
answer the need for an easier and a faster conception and devel-
opment of virtual reality applications. It has been designed with a
constant focus on re-usability with as few hypothesis as possible on
the final application in which it could be used. Whatever the cho-
sen implementation for the Virtual Environment (VE), #FIVE : (1)
provides a toolkit that eases the declaration of possible actions and
behaviours of objects in the VE, (2) provides a toolkit that facili-
tates the setting and the management of collaborative interactions
in a VE, (3) is compliant with distribution of the VE on different
set-ups and (4) proposes guidelines to efficiently create a collabo-
rative and interactive VE. It is composed of several modules, among
them, two core modules : the relation engine and the collabora-
tive interaction engine. On the one hand, the relation engine man-
ages the relations between the objects of the environment. On the
other hand, the collaborative interaction engine manages how users
can collaboratively control objects. The modules that compose the
#FIVE framework can be used either independently or simultane-
ously, depending on the requirements of the application. They can
also communicate and work with other modules thanks to an API.
For instance, a scenario engine can be plugged to any or both of
the #FIVE modules if the application is scenario-based. #FIVE is a
work in progress, new core modules will later be proposed. Never-
theless, it has already been used in some VR applications by several
persons in our lab. The feedbacks we obtained are rather positive
and we intent to further develop #FIVE with additional functional-
ities, notably by extending it to the control of avatars whether they
are controlled by a user or by the system.

∗e-mail: rozenn.bouville berthelot@irisa.fr
†e-mail:valerie.gouranton@irisa.fr
‡e-mail:thomas.boggini@irisa.fr
§e-mail:florian.nouviale@irisa.fr
¶e-mail:bruno.arnaldi@irisa.fr

1 INTRODUCTION

Over the past 25 years, many software systems and tools have
been proposed to support the building of virtual reality applications.
Since the RB2 system [3], these initiatives have followed the trend
to match hardware and network capacities. For that reason, but also
whether the solution was more or less generic, some have met a
large adoption whereas others have now been forgotten. Despite all
of these initiatives, in many cases, people still prefer to build than
to reuse. To our point of view, a strong impediment of many of the
previous solutions is that they depend on a specific engine or on
a third-party library. Indeed, when a solution is tool-dependent, it
significantly hampers its usage. For instance, the tool on which the
solution depends on could no longer be maintained. Another rea-
son can be that the developer already uses a concurrent tool which
he/she prefers to keep. The third-party tool could also become less
efficient given hardware and/or network evolutions. These obser-
vations led us to design a solution that is totally independent to any
third-party tool or engine. Thus, the #FIVE framework is an high-
level toolkit that provides an abstraction layer to support the process
of making a virtual environment collaborative and interactive.

The purpose of #FIVE is to support the development of our col-
laborative and interactive demonstrators and lower the cost of creat-
ing new ones. It focuses on how to define the behaviours of virtual
objects and also on interaction in VE, including collaborative inter-
actions. Indeed, one of the main usage of a VE is to immerse users
so that they can act in the virtual world. Nevertheless, our work
does not focus on AI and Intelligent Virtual Environment such as
those described in [11]. To do so, every possible action and be-
haviour of interactive objects must be described. This mandatory
task is, without an appropriate tool, fastidious and full of redun-
dancy. The relation engine of #FIVE proposes a set of models to
support this task; its role is to determine how and which objects
of the world can be used. Furthermore, thanks to the broadening
of high bandwidth networks and to the possibility of running 3D
graphics on a large panel of devices, collaboration in virtual envi-
ronments has become widely used. Therefore, providing models to
ease the implementation of collaborative manipulation and distri-
bution of virtual reality applications is relevant. This is the purpose
of the collaborative interaction engine of #FIVE which provides a
set of models for the collaborative control of virtual objects. The
goal of the collaborative interaction engine is not to describe the
semantic of interactions but to abstract the exchange of data for
collaborative interaction without preventing the developer from de-

ciding how concurrent commands are merged and applied to the
object. Eventually, the #FIVE framework comes with guidelines
that allows the developer to efficiently use the tools provided by
#FIVE. Indeed, as #FIVE does not made any assumption on the
implementation choice of the developer, its usage is versatile.

2 RELATED WORK

Designing and implementing virtual environment (CVE) has long
been recognize as a complex and a time-consuming task, especially
when they are collaborative. To assist and facilitate the develop-
ment of these applications, many authors agreed in the fact that the
community needs tools [9]. In this section, we present some exist-
ing software systems and tools that help in the design and imple-
mentation of Collaborative Virtual Environments (CVE). We then
present a selection of works that highlights guidelines for designing
and implementing VE in general. Finally, we conclude this section
with a discussion on requirements for frameworks for CVE.

2.1 Frameworks for CVE
In this section, we focus on frameworks that allow collaborative in-
teraction (i.e simultaneous interaction of several users on the same
object) for two reasons. First, this is a strong requirement for our
own projects. Second, even among widely used and interesting
frameworks like MR toolkit [15], FlowVR [1] or VRJuggler [2],
it is a very restrictive criterion. Indeed, collaborative interaction
is not a mandatory feature of VE but, nonetheless, it is one of the
most complex feature to implement because it takes into account,
at once, graphics hardware capacities and networks constraints. In
addition to the collaboration criteria, we study the existing systems
through 4 other criteria :

1. interaction design model, i.e the interaction level allowed by
the system (device independence, definition of relations be-
tween objects, description of object behaviours, etc.),

2. distribution, i.e whether the system takes into account si-
multaneous executions and deployment among different plat-
forms,

3. independence, i.e whether the system is independent from
third-party tools,

4. versatility, i.e how much freedom of implementation is of-
fered by the system,

5. factorization, i.e the level of re-usability achieved by the sys-
tem.

One of the first software system to propose collaborative inter-
actions is DIVE [5]. The DIVE system is more than 20 years old
and since its first version, it went through several iterations. These
iterations improved the system by adding features while preserving
its independence on third-party tools. DIVE succeed in providing
versatility in its usage but not in achieving re-usability.

The MASCARET system [4] is another framework for CVE. It
focuses on CVE for training, nonetheless, it has already been used
for other kind of application. Here, the interaction design model
relies on a language to describe behaviours of objects and their re-
lations, allowing an high level of interaction. Moreover, it also takes
into account, the semantic of the interaction using ontologies. Even
though MASCARET enables multi-user application we could not
find information on its distribution capability. Moreover, the mod-
ules that compose MASCARET are interdependent hence a little
versatility.

Similarly to MASCARET, the GVT [8] framework focuses on
CVE for training. GVT provides an high interaction level through a
description language that allows to precisely described behaviours
of objects and their relations. In its last version, GVT relies on the

Unity 3D engine and the distribution of an application developed
using GVT is managed by Unity 3D. Moreover, the development of
an application through GVT is really constrained, the modules of
GVT are inter-dependants.

A more recent initiative, called ARTiFICe [13], proposes a
framework to develop both distributed and collaborative applica-
tions as well as augmented reality applications. They do not pro-
pose a proper interaction design model since they focus more on
a solution that can be easily adapted to support novel devices and
interaction techniques. Several existing interaction techniques are
proposed (VirtualHand[12], Go-Go[14], ...) but they are not cus-
tomizable. Besides, ARTiFICe relies on Unity 3D making it de-
pendent from this engine. The distribution model is based on the
Unity 3D network layer enabling an efficient deployment on sev-
eral platforms. Moreover, ARTiFICe allows to run simultaneous
executions of a VE application, however, collaborative control of a
single object is not possible. The strong coupling to Unity makes
this solution not independent and not versatile.

It is worth noting that another initiative called FIVE (Framework
for Immersive Virtual Environments) has already been proposed in
1997 by Slater et al. [16]. Their work focuses on immersion and
presence in VE and the purpose of this framework is to make pres-
ence a central concern in VE. Therefore, it does not address the
same issues.

2.2 Reflecting on an Easier and Faster Development of
CVE

The issues raised by the building of VE applications are pointed by
several works as in [20]. In an exhaustive study, the authors identify
no less than 67 issues on VE design and implementation, that they
arrange in 3 theme categories: human aspect, design and develop-
ment. To conclude this study, several research challenges are pro-
posed and two of them are close to the #FIVE concerns. First, they
claim that representation and functionality must be divided into lay-
ers to narrow their focus since no single tool can address every VE
needs. Second, they state that models of systems must be proposed:

A model operates at a higher level of representation;
affording easier iterative development, improving reuse,
containing complexity, reducing chaos, and addressing
many of the issues with callbacks and events.

Moreover, in [18], Taylor et al. discussed the lessons learned
from 20 years of VE building. The creators of the widely used
VRPN library [19] for VR peripheral system discuss several topics
concerning VE design and implementation. On the topic related
to object interaction, they recommend to split application specific
interaction behaviours from the general event behaviour in VE sys-
tems. Thus, all sorts of interaction techniques can be built and used
generally while the application specific behaviour remains the only
part to be implemented on a case-by-case basis.

This is in accordance with the observations shared by Steed in
[17] who proposes some abstractions to make VE platforms re-
usable. In this paper, the author justifies his point of view by the
fact that over a 15-years period, at least 40 VE software systems
have been used in his lab.

Eventually, in [7], the authors are especially interested in the
development of collaborative VE. They highlight three limitations
that must be addressed by CVE frameworks. First, CVE frame-
works should provide facilities to focus more on the behaviour of
the shared virtual objects than on 3D graphics management or dis-
tribution and synchronisation issues. Second, they should allow
designers to describe the content of the shared world in order to
make the shared virtual objects easier to instantiate and configure.
Lastly, CVE frameworks should provide support for the deployment
on different rendering devices.

2.3 Discussion
None of the frameworks presented in section 2.1 answer all our
needs. To our knowledge, there is no existing framework for CVE
that covers all our requirements. Yet, these requirements follow
the recommendations that can be found in the literature. Indeed,
our will to provide an high-level interaction model is in accordance
with the statement for systems of model in [20], the statement for
splitting interaction behaviour from event behaviour in [18] or the
statement for focusing more on the behaviour of the shared virtual
objects than on 3D graphics management or distribution and syn-
chronisation issues in [7].

The three other criteria result from the same idea. Independence
ensures that the framework is decoupled from hardware or software
issues. In the same way, enabling versatility makes it possible to
cover more needs and to answer more technical constraints that de-
velopers can met. Furthermore, the factorization concern reflects
our will to not rebuild from scratch each time we begin the devel-
opment of a new VR application. Eventually, we observed that, for
the past 5 years, powerful game engines have been released. They
propose an all-in-one solution to quickly and easily generate game-
like real-time VE. A framework for CVE should take advantage of
this kind of tool while remaining technologically independent.

3 OVERVIEW OF #FIVE
#FIVE is a novel framework that offers a set of models to ease the
development of new VE applications in order to make them: collab-
orative, interactive and distributed. First, #FIVE provides a model
to ease the declaration of possible actions of objects in the VE. We
need, for instance, to easily declare that every screw in the virtual
world can be involved in a screwing task. Furthermore, we want
to easily declare that a relation exists between a screwdriver and a
screw that can result in a screwing action. Second, #FIVE gives a
model to facilitate the setting and the management of collaborative
interactions in a VE. Indeed, being able to collaboratively control an
object is an essential task in CVE, therefore, it is relevant to support
an easier set-up of how objects can be controlled and how concur-
rent control order must be managed. Third, the models proposed
by #FIVE are distribution-friendly in order to ease the distribution
of the VE for multiple users. Given the variety of available setups
and use-cases of CVE, it makes sense to take into account the dis-
tribution of a VE early in its development. That is why, #FIVE’s in-
ner models is not only compliant with multiple platforms (desktop,
CAVE, tablet, ...) but they also provides support for distribution.
Fourth, #FIVE provides guidelines that allow users to be more effi-
cient in the development of the VE. In fact, #FIVE can be integrated
in a VE in several ways. It lets the developer free of its implemen-
tation choices but guidelines are nonetheless proposed based on our
experience on CVE design and implementation.

As shown in figure 1, #FIVE is, for now, composed of two core
components : the relation engine and the collaborative interaction
engine. The Relation Engine computes the possible the actions
of objects in the virtual environment whereas the Interaction En-
gine manages the interactions performed by users (collaborative or
single-user ones) in the virtual environment. Both of them provide
an API dedicated to communication with the VE as well as com-
munication between each other. For instance, an action triggered
by the relation engine can trigger an interaction that uses the col-
laborative interaction engine.

#FIVE also assists the developer with the distribution of the vir-
tual environment and manages collaborative interaction on the ob-
jects of the world.

The main originality of #FIVE is that it lets developers free of
their implementation; letting them free to use any engine or third-
party tool they feel comfortable with. Indeed, recent years have
shown us that the VR domain is subject to lots of changes from
hardware devices to rendering and interface techniques as well as

Figure 1: Architecture of #FIVE : collaborative interaction between
several instance of the same simulation are supported by #FIVE.
#FIVE also supports the definition of action of objects of a VE.

softwares. Hence, this strong constraint in the design of #FIVE.
Thus, the interactions managed by #FIVE are low-level making it
possible to use #FIVE with any kind of input device whatever the
degrees of freedom enable by the device. Indeed, #FIVE does not
describe interactions but rather proposes a system that can hide the
complexity of data exchange for collaborative interactions. We do
not work on the semantic level, which is why we do not consider
protocols for description but it can be added by the developer.

As for the actions and relations of objects, even if #FIVE man-
ages their run-ability, the precise action is described by the devel-
oper inside the VE.

Besides, #FIVE does not force the developer to use all the mod-
ules. Finally, another benefit of #FIVE is that it makes it possible to
reuse components from one application to another. Several compo-
nents developed for a #FIVE-based application can be reused (see
figure 2): the abilities of objects and their behaviours as well as the
descriptions of the interactions.

Figure 2: The VE and the #FIVE engines (blue) can use at once
custom reusable components (red) and application specific elements
(green).

The next two sections present the functioning of the relation en-
gine and of the collaborative interaction engine then the section 6
gives examples of the integration of #FIVE in a virtual environment
applications.

4 THE RELATION ENGINE

The relation engine of #FIVE proposes a set of models to support
the definition of actions and behaviours of objects of a VE. Its role
is to determine how and which objects of the world can be used. In
this section, we present the data model behind the relation engine.
Afterwards, we explain how this data model is used by the relation
engine and we illustrate this with an example. We conclude this
section by a discussion on the benefits of the relation engine.

4.1 Data Models of the Relation Engine
The data model of the relation engine is based on two concepts:
relational object and relation. First, we call relational object any

object of the world that can be involved in a relation. For that
purpose, #FIVE types are attached to relational objects. #FIVE
types (noted type in the remainder of the paper) are properties that
an object has and that is required for involving it in a relation. Each
type of an object has an identifier that is unique in the context of the
object. Next, we call a relation a template of actions; it is defined
using a set of object patterns. Object patterns are patterns of ob-
ject that are defined by a set of type. Figure 3 illustrates these two
main concepts: a relational object Oa that has two types (t1 and t2)
and a relation Ra that connects two object patterns (X and Y).

Figure 3: The 2 main concepts used by the relation engine. The
object Oa has two #FIVE types : t1 and t2. The relation Ra connects
two object patterns : one describing objects that possess at once t1
and t2 at least, and another for objects that possess t4 at least.

For instance, let us suppose that we have a threaded rod with
two threaded extremities and a nut in our virtual world. In or-
der to involve them in a screwing action ruled by the relation en-
gine, we must attribute types to both objects. As the threaded
rod (noted ORod) has two threaded extremities, it can be typed as
”male” twice. In the same way, the nut (ONut) can be typed as ”fe-
male” twice. We call the two male types of ORod ”Extremity a”
and ”Extremity b” respectively and the two female types of (ONut)
”Side a” and ”Side b” respectively :

ORod = (tmale : Extremity a, tmale : Extremity b)

ONut = (t f emale : Side a, t f emale : Side b)

Then, to be able to perform the action ”screw” in our virtual envi-
ronment, we can define a relation screw. This relation connects two
objects; one must be typed as female and the other must be types as
male. We define the relation RScrew with two object patterns OPx
and OPy that define this requirements like this :

RScrew = OPx(tmale),OPy(t f emale)

Of course, any other object of the world that possesses the types
tmale and t f emale can be involved in the relation RScrew. If we want
a more specific screwing relation that only takes into account nuts,
we must add a type to every nut (tnut) in our world and define a
new relation similar to RScrew except that it also contains the object
pattern that defines nuts like this :

RScrew−Nut = OPx(tmale),OPy(t f emale, tnut)

4.2 Usage of the Relation Engine
Based on this data model, the relation engine can instantiate re-
lations. We call, the instantiation of a relation a realization. For a
relation to be instantiated as a realization, each one of its object pat-
tern must match a relational object of the world. There is a match
between a relational object Oa and an object pattern OPx when Oa
possesses at least all types contained in OPx. Using our sample of
threaded rod and nut, a possible realization of the relation RScrew
could be instantiated with one extremity of the rod and one extrem-
ity of the nut. Thus, a possible realization for the relation RScrew
can be realized with Extremity a of ORod and the Side a of ONut :

RScrew = (ORod(Extremity a),ONut(Side a))

Indeed Extremity a of ORod matches the first object pattern of
RScrew and side a of ONut matches the second object pattern. An-
other possible realization is :

ReScrew = (ORod(Extremity a),ONut(Side b))

Before executing the realization, the actual value of variables
that takes part into the action defined by the realization must be
checked. Indeed, the developer must specify in the realization on
which conditions it can be run, for example, using the state of the
world, the parameters of the objects involved or the state of the
object. For that purpose, an intermediate step is runned to ensure
that the realization can really be runned given data external to the
relation engine.

In order to help the developer to trigger realizations from the
context of the VE, the API of the relation engine provides methods
to trigger realizations. To do so, the API provides a query inter-
face that proposes methods to interrogate the relation engine. The
relation engine can actually answer several queries deduced from
the completion of its data model. This completion results from the
declaration of relational objects and relations. The relation engine
can answer three basic queries:

1. What are the realizations where all objects of a given set of
objects can be involved ?

2. What are the possible realizations of a given relation ?

3. What are the possible realizations given a relation and a set of
objects ?

The figure 4 illustrates all three queries. In our sample VE, we
have four objects (0a,0b,0c and 0d) and one relation (Ra) declared.
Query 1 takes a set of objects (0a and 0d) and gives the possible re-
alizations. In our case, only one realization is possible : R1. Query
2 takes a relation, (Ra), and gives all possible realizations. Here,
two realizations are possibles : R1 and R2. Finally, query 3 takes
a relation (Ra) and a set of objects (0a and 0c) to give all possible
realizations. Given our input data, the only possible realization is
R2.

4.3 Benefits of the Relation Engine
The data model and the capacities of the relation engine make it
possible to ”annotate” a virtual world in a rather straightforward
way. Indeed, the concept of type is close to the way humans appre-
hend their surrounding environments; mentally arranging the avail-
able objects function of their capacities. Thus, the same type can
be attributed to several objects if they share the same property. Fur-
thermore, the concept of type and relation is flexible and extensi-
ble: as many types as required by the application can be defined.
Moreover, types and relations can be re-used in other applications.
Thanks to #FIVE, we can not only re-used 3D models but also their
behaviours and the actions they may be involved in. Using the stan-
dard signature defined in relation engine’s API, relations are ac-
cordingly hard-coded by the developer, making the link with the
VE. Indeed, when simulated by the virtual environment, a nut will
always be screw-able in any virtual world and the action of screw-
ing will result in (slightly) the same behavior for this nut.

The usage of the virtual environment is also rather intuitive.
Based on our experience in interactive VE, we extract the most use-
ful queries but, if required by a specific application, new ones can
easily be added. Besides, the time-response of the queries provided
through the API is compatible with real-time VE. The relation en-
gine can be interrogated any time during a simulation, taking into
account the context at the time of the query. It allows the developer
to propose to users a list of every possible actions at a given time
function of the context (state of the world, of objects,...). Thus, the

Figure 4: Given the relational objects and the relations declared for the VE through #FIVE, the relation engine can answer 3 types of queries to
check what are the possible actions anytime during the simulation runned by the VE.

relation engine opens new perspectives and possibilities of inter-
action in a VE by providing efficient tools to the developer to be
aware of every possible actions continually during a simulation.

5 THE COLLABORATIVE INTERACTION ENGINE

The purpose of the collaborative interaction engine of #FIVE is to
provide a set of models for the collaborative control of virtual ob-
jects. In this section, we first detail the data model behind our col-
laborative interaction engine and, afterwards, we explain its usage
and its features. To conclude this section, we discuss the possibili-
ties offered by the collaborative interaction engine in a VE.

5.1 Data Models of the Collaborative Interaction Engine
With a view to keeping the model as generic as possible, the data
model behind the collaborative interaction engine relies on only
two distinct entities: interactive objects and interactors (see figure
5). On the one hand, an interactive object can be any object in the
virtual world that possesses a set of controllable parameters. Con-
trollable parameters are parameters that can be modified by an
interaction. A controllable parameter is defined by an access man-
ager, a data type, a data identifier and a merger. The access manager
defines the access rights that rules the controllable parameter. The
merger describes the merging policy employed when concurrent
modifications are induced by a collaborative interaction.

Figure 5: In order to use the collaborative interaction engine, ob-
jects of the VE are given controllable parameters of different types
(01 has 2 controllable parameters CP1 and CP2). Besides, interactors
are defined along with a type that specifies which type of controllable
parameters they can modify.

For instance, let us take the nut of the example presented in the
previous section. We want the nut to be controlled in two ways: its
rotation around the Y axis and its translation on the Y axis. Thus,
we can add to the nut two controllable parameters like this :

ONut = (RotationY : Float (Merger1), TranslationY :
Float (Merger2))

On the other hand, an interactor is an entity that can alter a con-
trollable parameter. Each interactor comes with a type that defines
the type of parameter it can control. An interactor can be attached
to an object if we need to represent it visually in the VE. Besides, an
interactor describes how the interaction should be performed given
the parameter. For instance, to interact with the nut, we can add an
interactor for rotating an object around an axis. Our interactor will
only be allowed to control parameters typed as float. We note our
interactor like this :

IRotate = (f loat)

5.2 Usage of the Collaborative Interaction Engine
An interaction managed by the collaborative interaction engine is
always initiated by an interactor. Moreover, an interactor is only
able to control objects that possess a controllable parameter that
matches its own type.

Interactions are made up of 5 steps :

1. The interactor asks permission to an interactive object to ac-
cess one of its controllable parameter.

2. If the access is granted then the interaction begins. The in-
teractor sends a value to the controllable parameter. The
way the value is computed is defined in the interactor and
is specific to an interactor. For example, the interactor can be
linked to an input device that provides it some values. The in-
teractor processes it before sending a value to the controllable
parameter of an object.

3. If the controllable parameter is already being accessed by an-
other interactor, the values received are merged according to
the merging policy defined in its merger. For example, when
controlling the position of an object, if the merging policy is
the mean between the values then the position of the object
will be halfway between the position asked by the two inter-
actors.

4. The value of the controllable parameter is actually updated
and the state of the interactive object is updated accordingly.

5. The interactor releases its control over the controllable pa-
rameter.

Figure 6 summarizes the usage of the collaborative interaction
engine when the virtual environment is distributed on two differ-
ent platforms with one user on each. As shown in the example 1

Figure 6: Collaborative interactions with the collaborative interaction engine. In the first case, interactor I1 is controlling CP1 whereas I3 is
controlling CP2. Their values (respectively (v1) and (v5)) are send to the object 0b. In the second case, two interactors (I1 and I2) access CP1,
sending value v2 and v3 respectively. A merged value (v4) is send to Oa according merger M1.

in figure 6, an interactor can only alter one controllable parameter
but one object can be controlled by several interactors; each one
of them controlling one controllable parameter. This is useful to
make complex interaction that results in complex trajectories for
the controlled object. For instance, if we want to simulate a screw-
ing task with our nut by translating it while it rotates, we must use
another interactor that will control its translation. The other inter-
actor could be noted like this :

ITranslate = (f loat)

5.3 Benefits of the Collaborative Interaction Engine
The API of the collaborative interaction engine provides a set of
methods to easily settle how users can collaboratively control ob-
jects. The collaborative interaction engine not only takes into ac-
count access rights and concurrent interactors but can also merge
the commands of several interactors, using a customizable merging
strategy. Furthermore, the model of the collaborative interaction
engine is independent from what triggers the interaction; it can be
any event happening in the VE: proximity, user input as well as
a realization launched by the relation engine. In fact, thanks to
this model, the interactions managed by the collaborative interac-
tion engine can be independent of the inputs of a specific device,
whatever its degrees of freedom. Moreover, by using the model
behind the collaborative interaction engine, it is possible to chain
interactions. An interactor Ia can indeed possess controllable pa-
rameters that another interactor Ib can control. While Ib controls
Ia, Ia can control another object. An example of chained interac-
tions can be a hand that controls a screwdriver that itself controls
a screw. Furthermore, interactors can be reused in several applica-
tion. Indeed, interactors can describe complex interaction (opening
a drawer, screwing, ...) so that it is interesting to reuse it in another
virtual environment.

6 INTEGRATION OF #FIVE IN UNITY 3D
In this section, we present the integration of #FIVE in the context
of Unity 3D. We only rely on Unity 3D for authoring tools and
network data transfer so that other platforms can similarly be used
such as Simulator X [10]. We first discuss about the adaptation of
our framework with the 3D engine and the need of a common inter-
face in-between. Motivations and their corresponding applications
are addressed step by step. We finally show several demonstrators
as concrete implementations based on this work. They focus on this
or that aspect of #FIVE to enforce the understanding. However, as
it is still an ongoing work, these applications tend to integrate all
the features of the framework.

6.1 The Unity 3D-#FIVE layer
The core modules of the framework are implemented using C#.
They are compiled as DLL. They are distributed in this form com-
ing along with their documentation (i.e. mainly a detailed API and
developer guidelines).

Our main concern in the integration process was to transform the
Unity 3D editor in a #FIVE authoring interface following the al-
ready existing UI philosophy of Unity 3D; each #FIVE entity (e.g.
relation, object, interactor, ...) matches a Component linked to
a Game Object of the Scene and it is fully configurable from the
Inspector (c.f. Figure 7). This mapping emphasizes the straightfor-
wardness of the model and focuses on the ease-of-manipulation of
its concepts.

Figure 7: The selected Game Object stands for a relational ob-
ject which can be involved in a relation; it has a UF Object Com-
ponent. Its type states it has the ability to be grabbed; it has the
S3PM Grabbable Component.

Although this set-up enables authors to script their own #FIVE
items from software abstractions, we aimed at providing them es-
sential entities as Unity 3D components off-the-shelf. We are grow-
ing this set empirically on the basis of our subsequent implemen-
tations of the framework. For instance, we noticed that ”take” (i.e.
some user can take some object) is a highly common relation, like-
wise ”pull” (i.e. a user moves an object along a predefined axis)
is a very frequent interaction. This catalogue considerably speeds-
up the building of simulations, developers only need to focus their
creativity on more specific behaviours.

We were also looking to make #FIVE profit of high level features
provided by Unity 3D such as networking. Our integration takes

advantage of the Unity 3D networking API to implement the distri-
bution model of #FIVE. For instance, interactions can be performed
in different executions of a same simulation, on different platforms
and by different users acting simultaneously. This aspect enhances
the collaboration capability of #FIVE and makes it available at no
extra-effort for the Unity 3D developers.

Finally, we intended to supply a strong information resource to
the 3D designers to value this integration intention. The exten-
sion on the top of #FIVE and Unity 3D comes along with a ref-
erence documentation. This document is an exhaustive index of the
Unity 3D components we implemented, their parameters and their
authorized values. However the added-value of this manual lies in
the listing of the possible usages of the framework. Although the
full potential cannot be addressed, we aim at covering many appli-
cation as a feedback to the developers. For example, we suggest
that the running of a relation can trigger an interaction, further-
more a third-party scenario engine can impact the set of allowed
relations, etc. In addition, these software engineering guidelines
are implemented in demonstrators included in the package which
comes with the Unity 3D-#FIVE layer.

6.2 The Bolt demonstrator

This minimalist demonstrator consists of a threaded rod with two
nuts at its extremities. They can be screwed back and forth along
the stem by multiple users at the same time. They can choose to
apply concurrent or opposite forces on a same nut to speed-up or to
slow-down its movement. Above everything else, this implementa-
tion strongly highlights the distributed faculties of the collaborative
interaction engine. Indeed, simultaneous interactions are echoed in
all the executions of the simulation using the networking feature
of the Unity 3D-#FIVE layer. Furthermore the merger function of
the engine handles the way concurrent interactions are taken into
account.

Since there is a unique relation defined for this demonstrator (i.e.
linking of a user, a threaded rod and a nut), the set-up is very limited
and there is no dynamicity in the scenario, the simulation does not
really benefit from the query interface of the relation engine; the
processed realizations are quite expected.

Thanks to the multi-platform export feature of Unity 3D, the in-
teroperability of #FIVE has been put to test and confirmed. Using
the MiddleVR middleware, this scene was executed concurrently on
different hardware systems: Android tablet, iPad, Oculus Rift DK2
with Razer Hydra, VR rooms (a.k.a. CAVE), desktop and laptop
computers (c.f. Figure 8).

Figure 8: The Bolt demonstrator is running simultaneously on various
platforms: a CAVE in the background, a laptop computer on the left,
the video capture of an Oculus DK2 on the right, an iPad and an
Android tablet in the foreground.

6.3 The Operating Room demonstrator
The ambition of this demonstrator is to train nurses to prepare an
operating room prior to a surgery. The trainee is mainly asked to
move objects to their target location. A scenario develops the pro-
cedure giving visual hints using a colour-based code; take-able sur-
gical instruments are highlighted in blue, handles of the movable
apparatus are yellow, scenario targets are green and so on. (c.f.
Figure 9).

Figure 9: The user must move the appliance to match its green ghost.
He can grab it from the yellow handle. Then he can bring it to its
target.

The application demonstrates an eventual conjunction of #FIVE
with an external scenario module, here, the #SEVEN scenario en-
gine [6]. This narrative engine defines the whole of the relations
at every key moment of the scenario. Once a relation is intro-
duced, the objects of the scene which are potentially involved in
it are tinted; in blue whether they contribute to the ”take” relation,
in yellow if they are involved in ”move”, etc.

This implementation also makes an extensive use of the query
interface of the relation engine. It is interrogated each time the
scenario engine updates the set of the relations in order to determine
the objects to highlight in the scene. It is questioned anew when the
type of a relational object is modified. For instance, when the nurse
participates to a realization she can no longer be involved in any
other relation.

There are numerous possible interactions in this scene: the user
can open and close drawers, push and pull appliances on the floor,
open and close doors, etc. As well, this demonstrator is a proof-of-
concept which reveals that various interactions can be implemented
with very few predefined generic components from our suite: mov-
ing along an axis, moving on a plane, rotating along an axis, etc.

6.4 The Bar demonstrator
In this demonstrator, the user finds himself in a bar with many
items. Some of them have no real use, they can just be taken and
thrown on the ground. Some others can be combined in order to
make a tool which can repair the flawed light system of the place.

Building this application was the opportunity to experiment dif-
ferent graphical metaphors to highlight the interactive objects of
the scene. Besides the Operating Room demonstrator, this imple-
mentation introduces a visual representation of the relations: when
the user targets an object with a pointing device, it is linked with
semi-transparent rays to the other objects which it is related (c.f.
Figure 10).

This application also proves that our system can dynamically
handle the updates of the world: combination, introduction, de-
struction and modification of relational objects. In our combina-
tion use-case, the query interface of the relation engine is used to
determine and to recompute the impacted relations.

7 DISCUSSION AND CONCLUSION

In this paper, we present #FIVE, a framework that provides a set of
models to support the development of collaborative and interactive
virtual environments. Its particularity resides in the fact that #FIVE
has been conceived with no assumption on the implementation of

Figure 10: The user points the hammer. The rays show that it can
take part in a relation with the right hand and/or the left hand and/or
the switch, etc. It gives the user indications of what can be per-
formed.

the final virtual reality application. Indeed, it is not dependent on
a specific rendering engine nor on any hardware configuration. In
fact, #FIVE gives to the developer, an abstraction layer that sup-
port the process of making a VE interactive, collaborative and dis-
tributed. Thanks to the two core module of #FIVE, the relation
engine and the collaborative interaction engine, the developer is
given a versatile tool to precisely describe the behaviours of the ob-
ject of the world, the relations between the objects as well as how
an object can be manipulated. Besides, the models proposed by
#FIVE allows the user to develop customizable components that
can be reused from an application to another.

The development of the framework is a work in progress. We are
currently looking forward to release a second version. Firstly, this
will introduce a user model: their role, their ability, their knowl-
edge, etc. This way, the system will filter the interaction options
of real and/or virtual users. Secondly, an all-knowing observer will
analyse and evaluate the actions of the users in real time or ret-
rospectively for pedagogical reasons. This will offer to #FIVE a
training orientation and make it ready for CVET. Lastly, a porting
to another 3D engine is under consideration, in order to demonstrate
the independence of the framework regarding virtual environments.

ACKNOWLEDGEMENTS

This publication is supported by the S3PM project of the Comin-
Labs Excellence Center and the FUI PREVIZ.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert. Flowvr: a middleware for large scale virtual reality
applications. In Euro-par 2004 Parallel Processing, pages 497–505.
Springer, 2004.

[2] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: a virtual platform for virtual reality application
development. In IEEE Virtual Reality, 2001. Proceedings, page 8996,
Mar 2001.

[3] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Ober-
man, and M. Teitel. Reality built for two: a virtual reality tool.
In ACM SIGGRAPH Computer Graphics, volume 24, pages 35–36.
ACM, 1990.

[4] C. Buche, R. Querrec, P. De Loor, and P. Chevaillier. Mascaret: ped-
agogical multi-agents systems for virtual environment for training. In
Cyberworlds, 2003. Proceedings. 2003 International Conference on,
pages 423–430. IEEE, 2003.

[5] C. Carlsson and O. Hagsand. DIVE a multi-user virtual reality sys-
tem. In Virtual Reality Annual International Symposium, 1993., 1993
IEEE, pages 394–400. IEEE, 1993.

[6] G. Claude, V. Gouranton, R. Bouville Berthelot, and B. Arnaldi. Short
Paper: #SEVEN, a Sensor Effector Based Scenarios Model for Driv-
ing Collaborative Virtual Environment. In T. Nojima, D. Reiners, and
O. Staadt, editors, ICAT-EGVE, International Conference on Artificial
Reality and Telexistence, Eurographics Symposium on Virtual Envi-
ronments, pages 1–4, Bremen, Germany, Dec. 2014.

[7] T. Duval, A. Blouin, and J.-M. Jézéquel. When Model Driven En-
gineering meets Virtual Reality: Feedback from Application to the
Collaviz Framework. In Software Engineering and Architectures for
Realtime Interactive Systems Working Group, 2014.

[8] S. Gerbaud, N. Mollet, F. Ganier, B. Arnaldi, and J. Tisseau. GVT: a
platform to create virtual environments for procedural training. In Vir-
tual Reality Conference, 2008. VR’08. IEEE, pages 225–232. IEEE,
2008.

[9] G. D. Kessler, D. A. Bowman, and L. F. Hodges. The simple virtual
environment library: an extensible framework for building VE appli-
cations. Presence: Teleoperators and virtual environments, 9(2):187–
208, 2000.

[10] M. E. Latoschik and H. Tramberend. Simulator x: A scalable and
concurrent architecture for intelligent realtime interactive systems. In
Virtual Reality Conference (VR), 2011 IEEE, pages 171–174. IEEE,
2011.

[11] J.-L. Lugrin and M. Cavazza. Making sense of virtual environments:
action representation, grounding and common sense. In Proceedings
of the 12th international conference on Intelligent user interfaces,
pages 225–234. ACM, 2007.

[12] M. R. Mine, F. P. Brooks Jr, and C. H. Sequin. Moving objects in
space: exploiting proprioception in virtual-environment interaction.
In Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, pages 19–26. ACM Press/Addison-Wesley
Publishing Co., 1997.

[13] A. Mossel, C. Schönauer, G. Gerstweiler, and H. Kaufmann. Artifice-
augmented reality framework for distributed collaboration. Interna-
tional Journal of Virtual Reality, 2013.

[14] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa. The go-
go interaction technique: non-linear mapping for direct manipulation
in vr. In Proceedings of the 9th annual ACM symposium on User
interface software and technology, pages 79–80. ACM, 1996.

[15] C. Shaw, J. Liang, M. Green, and Y. Sun. The decoupled simula-
tion model for virtual reality systems. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 321–328.
ACM, 1992.

[16] M. Slater and S. Wilbur. A framework for immersive virtual environ-
ments (FIVE): Speculations on the role of presence in virtual environ-
ments. Presence: Teleoperators and virtual environments, 6(6):603–
616, 1997.

[17] A. Steed. Some useful abstractions for re-usable virtual environment
platforms. Software Engineering and Architectures for Realtime In-
teractive Systems-SEARIS, 2008.

[18] R. M. Taylor, J. Jerald, C. VanderKnyff, J. Wendt, D. Borland,
D. Marshburn, W. R. Sherman, and M. C. Whitton. Lessons about
virtual environment software systems from 20 years of VE building.
Presence: Teleoperators and Virtual Environments, 19(2):162–178,
2010.

[19] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. Vrpn: a device-independent, network-transparent vr pe-
ripheral system. In Proceedings of the ACM symposium on Virtual
reality software and technology, pages 55–61. ACM, 2001.

[20] C. Wingrave and J. LaViola. Reflecting on the design and implemen-
tation issues of virtual environments. Presence, 19(2):179195, 2010.

