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Abstract  

Antibiotics and antibiotic resistance genes have shown to be omnipresent in the 2 

environment. In this study we investigated the effect of Vancomycin (VA) on denitrifying bacteria 

in river sediments of a Waste Water Treatment Plant (WWTP), receiving both domestic and 4 

hospital waste. We exposed these sediments continuously in flow-through reactors to different VA 

concentrations under denitrifying conditions (nitrate addition, anoxia) in order to determine 6 

potential nitrate reduction rates and changes in sedimentary microbial community structures. The 

presence of VA had no effect on sedimentary nitrate reduction rates at environmental 8 

concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community 

structures was observed (determined by PCR-DGGE). The bacterial and denitrifying community 10 

structure within the sediment changed upon VA exposure indicating a selection of a non-

susceptible VA population.  12 

 

Key words: nitrate reduction; Vancomycin; community structure; nosZ; bacterial antibiotic 14 

resistance; flow-through reactors.  
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Introduction 16 

The use of pharmaceuticals, their disposal and consequent presence in the environment has 

raised concern regarding its ecological impact (Santos et al., 2010). Among these pharmaceuticals, 18 

antibiotics are of special interest as the intensive use in human and veterinary medicine has resulted 

in the emergence of bacterial antibiotic resistance, nowadays considered as a worldwide public 20 

health problem. The environmental occurrence of antibiotics ranging from ng L-1 in surface water 

to µg L-1 in Waste Water Treatment Plant (WWTP) and hospital effluents, and up to mg L-1 in the 22 

vicinity of discharges of pharmaceutical plants, has received attention over the past decade (Brown 

et al., 2006; Hernando et al., 2006; Oberle et al., 2012; Tamtam et al., 2008).  24 

The effect of environmental levels of antibiotics on microorganisms and their role in the 

maintenance and dissemination of antibiotic resistance genes in the environment is still poorly 26 

understood. Chronic or significant contamination by one or several antibiotics could exert a 

selective pressure on the microbial community and favour the growth of antibiotic resistant or non-28 

susceptible bacteria (Davies et al., 2006; Kohanski et al., 2010). Although antibiotic concentration 

in surface water is lower than the minimal inhibitory concentration (MIC, around 1 mg L-1), it has 30 

been reported that sub-inhibitory or sub-lethal concentrations (0.25- 0.9 x MIC) can trigger 

bacterial DNA transcription or are involved in mutagenesis (Davies et al., 2006; Gullberg et al., 32 

2011; Kohanski et al., 2010). Moreover, this chemical contamination is accompanied by a supply 

of antibiotic-resistant faecal bacteria, mainly released via WWTP effluents or by run off or 34 

leaching from soils. This input of genes from allochtonous bacteria could be involved in the spread 

and development of antibiotic resistance genes within autochthonous microbial communities. The 36 
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presence of resistance genes may enhance the environmental resistome, i.e. all genes encoding 

antibiotic resistances within the microbial community, which could in turn be retro-transferred to 38 

potential pathogens (Baquero et al., 2008).  

Beyond the problem of the emergence of antibiotic-resistant bacteria, the presence of 40 

antibiotic compounds in the environment can also affect diversity and activity of microbial 

communities involved in biogeochemical cycling (Kümmerer 2009; Thiele-Bruhn 2003). The 42 

presence of antibiotics in soils and sediments has indeed shown to affect denitrification rates 

(Costanzo et al., 2005; Kotzerke et al., 2008). However, most of these studies were carried out 44 

using high, therapeutic concentrations (mg L-1 or mg kg-1), which is in contrast with the 

environmentally observed concentrations (ng-µg L-1). Recently, Underwood et al. (2011) 46 

demonstrated the inhibiting effect of environmentally relevant Sulfamethoxazole concentrations 

on denitrifying abundance and community structure as well as on nitrate reduction rates in 48 

groundwater enrichments.  

Vancomycin (glycopeptide family, VA) is among the older antibiotics of clinical use – for 50 

almost 60 years. It is effective against most Gram-positive cocci and bacilli, inhibiting cell wall 

synthesis (peptidoglycan) thus affecting dividing bacteria. Like most antibiotics vancomycin is 52 

partially metabolized and discharged to sewage treatment plant or directly in water or soil (Dolliver 

et al, 2008). The presence of vancomycin in treated effluents from hospitals in France has been 54 

reported with concentrations ranging from 1.6 to 37.3 µg L-1 (Passerat et al, 2010; Dinh, 2012), 

and at 29 ng L-1 in wastewater effluents (Zuccato et al, 2010). The removal of vancomycin 56 

occurring during the activated sludge process or UV treatment has been estimated to 52% and 
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28%, respectively (Li and Zhang, 2011). This antibiotic has also been detected in surface water 58 

impacted by wastewater effluents with concentrations ranging from 0.44 to 5.17 ng L-1 (Zuccato 

et al, 2010; Dinh et al, 2012). In Gram positive bacteria, such as enterococci, resistance to 60 

vancomycin is due to the presence of eight operons (vanA, vanB, vanD, and vanM, vanC, vanE, 

vanG, and vanL), that encode enzymes involved in (1) production of modified peptidoglycan 62 

precursors and (2) removal of the vancomycin-binding target (Lebreton et al, 2011). The actual 

origin of the genes responsible for high-level vancomycin resistance in enterococci has been linked 64 

to soil Paenibacillus spp. (Guardabassi et al, 2005).  

Denitrification, the anaerobic reduction of nitrate (NO3
-) to gaseous nitrogen (N2), is a key 66 

process in the biogeochemical nitrogen cycle and the primary biological pathway by which 

biologically fixed or synthetic added nitrogen is converted to a gaseous form and removed from 68 

ecosystems. Denitrifying bacteria are facultative anaerobes and a phylogenetically diverse group 

of microorganisms found in the domain Archaea and Bacteria, being either Gram-negative or 70 

Gram-positive (Cheneby et al., 2000; Philippot 2002). The enzyme involved in the last step during 

denitrification, nitrous oxide reductase (nosZ) converting nitrous oxide (N2O) to N2, has been 72 

widely used as a molecular marker for this process (Scala and Kerkhof, 1998), targeting mainly 

the Gram-negative bacteria (Jones et al., 2011; Philippot 2002). Possible negative effects of 74 

antibiotics, or more specifically VA, on denitrification rates in riverine sediments might affect the 

natural transformation of nitric pollution into inert gas. Furthermore, to the best of our knowledge, 76 

resistance of denitrifiers towards VA, including possible acquisition of resistance genes from 

pathogens towards this functional group, has not been explored.  78 
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Therefore, the goal of this study was to determine the effects of VA on nitrate reduction 

rates and structure of the denitrifying and whole bacterial community structure in river sediments. 80 

In addition to this we investigated the resistance towards VA among denitrifying enrichments from 

the same sediments. To this end, we used sediments exposed to different VA concentrations, 82 

collected near a Waste Water Treatment Plant (WWTP) receiving both domestic and hospital 

waste (effluent WWTP up to 8 µg L-1 VA, Dinh, 2012). Nitrate reduction rates in sediments were 84 

determined using flow-through reactors (Laverman et al., 2006) allowing continuous supply of 

VA for 3 weeks. To determine the effect of VA on the total bacterial (16S rDNA) and the 86 

denitrifying (nosZ) communities, we compared the community structure in VA amended 

sediments using the PCR-DGGE approach (Muyzer et al., 1993; Throbäck et al., 2004). 88 

Furthermore, we investigated the resistance towards VA of denitrifying enrichments by an 

adaptation of the Minimal Inhibiting Concentrations (MIC) approach.  90 
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Material and Methods 

 92 

Study site  

The sediments used for this study were collected from the Charmoise River, a small 94 

tributary of the Orge River (North of France) in February 2010 (sediment incubations) and 

February 2012 (MIC enrichments). The site in the Charmoise River was chosen due to its vicinity 96 

to a Waste Water Treatment Plant, receiving both hospital and domestic effluents of Fontenay-lès-

Briis (Seine basin, France). The hospital fuelling the WWTP contains 363 beds and the 98 

glycopeptide (mainly vancomycin) use in 2010 was 1.495 kg (T. Dinh, pers. comm.) The WWTP 

has a capacity of 5000 equivalent inhabitants and treats 1000 m3 waste per day and discharges its 100 

drain via a 50 m long channel in the Charmoise River. Sediments (0-1 cm depth) for our study 

were sampled 10 meters upstream and 10 meters downstream of the WWTP output.  102 

Turbidity, oxygen concentrations, temperature and pH of the overlying water at the time of 

sampling were determined using a multi parameter sensor (YSI 6600 V2-4). The sediment 104 

moisture content was calculated from determining the weight loss of a known quantity of sediment 

(5 cm-3) after drying at 105°C for 24 hours. Vancomycin (VA) was extracted from the sediment 106 

with methanol (Tamtam et al., 2011) and analyzed by an LC-MS/MS system, for details regarding 

this method see Dinh et al. (2011). 108 
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Determination of nitrate reduction rates 110 

Sediments were placed in flow-through reactors (FTRs) and continuously supplied with 

nitrate (5 mM NaNO3) and different VA concentrations (0, 1, 200, 1000 µg L-1) by a peristaltic 112 

pump (Gilson, France) with a flow rate of 4 ml h-1. All treatments were run in triplicates for a 

period of three weeks at 20°C (± 2°C) in the laboratory in the dark to minimize the 114 

photodegradation of the antibiotics as well as to prevent photosynthesis in the sediment. To assure 

anoxic conditions, the inflow solutions were purged once a day with nitrogen gas (30 minutes) to 116 

remove all traces of oxygen. The outflow was collected once a day and stored at 4°C until analysis 

of NO3
-. Concentrations of nitrate (NO3

-) were analyzed with a Dionex ICS 3000 ion 118 

chromatograph using an auto sampler AS50. 

Nitrate reduction rates were calculated over the period 7 to 24 days using the following 120 

equation:  

V

QC
R

*
     (Eq. 1) 122 

Where ΔC is the difference of NO3
- between inflow and outflow solution (nmol L-1), Q is 

the volumetric flow rate (mL h-1), V volume of the reactor (cm3). Nitrate reduction rates are used 124 

throughout the text, as only net nitrate reduction rates were measured. Note that the rates 

determined are potential rates as nitrate is supplied to the sediment, whereas carbon used during 126 

this process is derived from the sediment. For further details regarding the FTR approach see 

Laverman et al. (2006) and Yan et al. (2013).  128 
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Minimal Inhibiting Concentration of the Environmental microbial community (MIC-E) 130 

In order to determine the effect of VA on the denitrifying community, we used a 

denitrifying medium amended with different VA concentrations. A bacterial suspension of the 132 

sediment was prepared by suspending 5 cm3 of fresh sediment in 45 mL saline solution (2 % NaCl 

w/v; 0.3 % MgCl2 w/v) and vortexed for 1 minute (2500 rpm). Sterile Hungate tubes with Durham 134 

tubes containing medium for denitrifiers (1.5 mM KH2PO4, 1.5 mM K2HPO4, 5.0 mM NH4Cl, 4.0 

mM KCl, 1.0 mM CaCl2.2H2O, 2.5 mM MgCl2.6H2O, 0.10 g L-1 of yeast extract, 5.0 mM KNO3, 136 

5 mM Na-Succinate, 5 mM Na-Acetate, 5 mM Lactate, 1.0 mL resazurin at 0.5 g L-1 and 1.0 mL 

of SL9 solution (Tschech and Pfennig 1984), pH adjusted to 7.0-7.5 using a 10M NaOH solution) 138 

were then inoculated with these suspensions (1 mL suspension in 9 mL medium). The denitrifying 

enrichment after 3 days of growth was diluted in saline solution to achieve an optical density (OD) 140 

of 0.01 at 580 nm. One mL of this suspension was then injected in a Hungate tube containing a 

Durham tube and 9 mL of medium with VA (at different concentrations), and 1 tube per 142 

experiment without VA serving as a control. Each experiment was conducted in triplicate, and 

tubes were incubated at 30°C for 6 days. The range of VA concentrations tested was: 0; 4; 8; 16; 144 

32; 64; 128; 256 mg L-1. Growth of dentrifiers was determined according to turbidity and gas 

production inside the Durham tubes. As a MIC is defined being a Minimal Inhibiting 146 

Concentration for pure culture, the concentration of VA that inhibits the enrichment will hereafter 

be indicated as a MIC-E (the minimal inhibiting concentration of an enrichment or environmental 148 

community).  
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 150 

Molecular analysis 

Bacterial and denitrifying community structures in the sediments (3 weeks) subjected to 152 

different vancomycin concentrations were determined by PCR and DGGE analyses. DNA was 

extracted from sediment using the ‘PowersoilTM DNA Isolation Kit’ (MoBio). In order to study 154 

the whole bacterial community structure, PCR amplification with GoTaq (Promega, Madison, WI 

- USA) of a 180-bp fragment of 16S rDNA was conducted using the primer sets and conditions 156 

described by Muyzer et al. (1993) (R518 5′-ATTACCGCGGCTGCTGCTGG and F357 

5′CCTACGGGAGGCAGCAG with a 40-bp GC-clamp attached to the 5′ end). Primer annealing 158 

took place at 55°C, and PCR reaction was 30 cycles long. To characterize the N2O reducing 

bacteria, PCR amplification with MyTaq (BioLine, London, UK) of a 411-bp fragment of the nosZ 160 

gene was conducted using the nosZ-F (5′-CGYTGTTCMTGGACAGCCAG; (Kloos et al., 2001) 

and nosZ1622Rb (5′-CGCRASGGCAASAAGGTSCG; (Throbäck et al., 2004) primer set, with a 162 

33-bp GC-clamp attached to the 5′ end of the latter primer. Primer annealing was conducted with 

a touchdown from 62 to 55°C during 35 cycles followed by 10 cycles at 55°C for sediment 164 

samples, and 45 cycles at 55°C for enrichment samples. The 16S rDNA fragments will be referred 

to throughout the text as the bacterial community, and the nosZ fragments will be referred to as 166 

the denitrifying community.  

After checking amplification and normalizing DNA quantity on a 2 % agarose gels, the 168 

PCR products were then separated in relation to their sequence with the Denaturing Gradient Gel 

Electrophoresis (DGGE) technique using the Ingeny phorU system (Ingeny, Goes, the 170 
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Netherlands) using a 9% (w/v) polyacrylamide gel (acrylamide:bisacrylamide ratio, 37.5:1) in 1X 

TAE buffer (40 mM Tris acetate, 40 mM acetic acid, and 10 mM EDTA, pH 7.6). The denaturants 172 

used were urea and formamide at respectively 33.6 % (g/v) and 32 % (v/v) for a 80 % denaturing 

solution. The gradients used were 40-70 % denaturant for 16S rDNA and nosZ, and the migration 174 

was realized in 1X TAE at 62°C with a voltage between 130 and  160 V for optimum amperage of 

70 mA per gel for 17h. After electrophoresis, gels were stained with 1X TAE buffer containing 176 

1% Sight DNA Stain (Euromedex, Souffelweyersheim, France) and then photographed using a 

UV imaging system. The DGGE gel images were then analysed with ‘GelCompar, fingerprint and 178 

gel analysis software II’ version 6.5 (Applied Maths, Sint-Martens-Latem, Belgium) to compare 

the lanes of migration (number and position of bands) using either the Jaccard or Bray-Curtis 180 

coefficient and building a tree with the Unweighted Pair Group Method with Arithmetic mean 

(UPGMA). Bacterial species richness was determined from the number of bands on DGGE 182 

corresponding to the number of OTUs (operational taxonomic units) 

 184 

Statistical analyses  

The Kruskal-Wallis non parametrical test and Tukey pairwise comparison were used to 186 

identify significant effects of antibiotic contaminated sediment versus uncontaminated sediment 

on nitrate reduction rates. Significant differences were accepted at p<0.05. All statistical analyses 188 

were calculated using SigmaPlot Version 11.0 (Systat Software Inc, San José, CA, USA).  



13 

 

 

Results 190 

Site characteristics  

The different characteristics for the two sampling sites, upstream and downstream of the 192 

WWTP outlet can be found in Table 1. Overall, pH, temperature, conductivity and oxygen 

concentrations in the overlying water were similar for the two sites. In contrast, the turbidity was 194 

higher in the downstream waters with the input of suspended solids by the treated waste water. VA 

concentrations were below the detection limit (5 ng g-1, Dinh et al., 2011) in the upstream 196 

sediments, whereas on average 62 VA ng g-1 was detected in the downstream sediments. Species 

richness, i.e. the number of operational taxonomic units (OTUs), was not different between the 198 

upstream and downstream site for either the total or the denitrifying bacterial communities (Table 

1). However, the structure of the total and denitrifying bacterial communities were different 200 

between both sites (65 and 20% similarity in band pattern, Table 1).  

 202 

Effect of VA on nitrate reduction rates and community structure 

An overview of the nitrate reduction rates in the upstream and downstream sediments amended 204 

with different VA concentrations can be found in Table 2. Average nitrate reduction rates (NRR) 

in upstream sediments were 156 (±16) nmol NO3
- cm-3 h-1 and 165 (±21) nmol NO3

- cm-3 h-1 in 206 

downstream sediments. No significant differences in NRR were observed for the different VA 

concentrations compared to the control in the upstream sediments (Kruskal-Wallis, p > 0.05). A 208 
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small, but significant decrease in nitrate reduction rates (Tukey Test, p < 0.05) was observed in 

the downstream sediments supplied with 1000 µg L-1 VA compared to the control.  210 

The number of total bacterial (16S rRNA) OTU’s observed in the upstream and downstream 

sediments decreased after the 3 week exposure to nitrate in the anaerobic flow-through reactors, 212 

regardless of treatment with vancomycin (Fig 1.).   The number of OTU’s for the un-treated 

controls (no vancomycin) were unaffected or reduced by 16% for the upstream and downstream 214 

sediments, respectively. In the downstream community, there was a trend of a decreasing number 

of OTUs with increasing vancomycin treatment.  For the upstream and downstream communities, 216 

samples clustered by vancomycin treatment, low vancomycin treatments were more similar to the 

un-treated control than the high vancomycin treatments (Figure 1). In the upstream sediments the 218 

addition of vancomycin changed the bacterial community structure as shown by a decrease in 

similarity of the bacterial communities; from 73% similarity between the 0 and 1 µg L-1, to 63% 220 

between 0 and 200 and only 54% similarity between 0 and 1000 µg L-1 vancomycin. For the 

downstream sediments a similar change in community was observed with the non-vancomycin 222 

amended sediments showing a 65% similarity with 1 and 200 µg L-1 and 59.5% similarity with 

1000 µg L-1. The corresponding dendrograms show that the change in bacterial community 224 

structure is similar in the upstream (53% similarity with structure of all other communities) and 

the downstream (59.5%) sediments.  226 

The richness of the denitrifying community represented by the N2O reducing bacteria (i.e. 

nosZ gene) in the sediments supplied with and without VA is shown in Fig. 2. The number of 228 

OTUs, varied between 5 and 7 in these sediments. Overall the comparison between the DGGE 
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patterns of nosZ in initial sediments and those incubated for 3 weeks with and without VA in both 230 

upstream and downstream sediments, exhibits little variation in richness of the denitrifying 

bacterial community. On the contrary, in the downstream sediments the initial nosZ diversity was 232 

very distinct (30.5% similarity) from the incubated sediments (Fig. 2), showing 75.5% similarity 

between them. In the upstream sediments, a 54% and a 37% similarity between the control and 234 

respectively the lowest (1 µg L-1) and highest (200 and 1000 µg L-1) vancomycin concentrations 

indicates a shift in community structure. Overall, a 75% similarity between non-amended and 236 

vancomycin amended sediments indicate a minor impact of vancomycin on the community 

structure. 238 

 

Vancomycin resistance of the culturable denitrifying bacteria  240 

In order to investigate to what extent denitrifiers were resistant to vancomycin we 

determined the MIC of denitrifying Enrichments (MIC-E) towards VA of a culturable denitrifying 242 

subpopulation. Denitrifying enrichments were grown on denitrifying medium containing different 

VA concentrations in order to determine the concentration of VA that inhibited growth of this 244 

enrichment. The VA concentrations tested were above the known MIC of pathogenic bacteria (8 

mg L-1), allowing determination of MIC of the denitrifying community from a medical perspective. 246 

Figure 3 shows the number of positive denitrifying growth among the triplicate cultures, at the 

different VA concentrations in time (5 days).  Growth after one day showed that the downstream 248 

denitrifying communities were most sensitive towards VA with inhibition observed (MIC-E) at  8 

mg L-1, compared to 64 mg L-1 for the upstream enrichments. However from 2 days, all 250 
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enrichments were able to grow at VA concentrations up to 256 mg L-1 (Fig. 3), suggesting that at 

least one strain was able to grow, albeit at lower growth rates for the upstream sediments. 252 

 

Discussion  254 

In this study, we investigated the effect of VA on the total bacterial and denitrifying 

communities in river sediments upstream and downstream of a WWTP effluent. The sediments 256 

downstream of the WWTP receive the effluent of the treatment plant that treats both domestic and 

hospital waste waters and have shown to be contaminated by several antibiotics including VA 258 

(Dinh et al., 2011). To our knowledge, there are only a limited number of studies that report the 

effect of antibiotics on the structure and function of bacterial communities in river sediments and 260 

in particular on the activity of denitrifiers. Our study shows that nitrate reduction rates were 

unaffected in these river sediments, except at therapeutic concentrations in the downstream 262 

sediment. In similar river sediments, nitrate reduction rates were unaffected by a chronic exposure 

to tetracycline at environmentally relevant concentrations (0.5, 20 and 10,000 µg L-1; Roose-264 

Amsaleg et al. (2013) or to concentrations (< 1 mg L-1) of flumequine and sulfamethoxazole (Yan 

et al 2013). In contrast, exposure to erythromycin, clarithromycin and amoxicillin at 1 mg L-1 led 266 

to the decrease in denitrification rates in sediments (Costanzo et al., 2005). In groundwater, Ahmad 

et al (2014) also reported an inhibition of the activity of denitrifying bacteria in the presence of 268 

sulfamethazine (0.01 mg L-1) and chlortetracycline (1.0 mg L-1). As VA only affects Gram positive 

bacteria, the lack of inhibition in our study can be related to (i) the initial presence of Gram negative 270 

denitrifiers (ii) by the initial occurrence of non-susceptible bacteria (Wright, 2003) or (iii) a shift 
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in initial bacterial communities chronically exposed to microbial and chemical contamination from 272 

the treated input of the WWTP favoring non susceptible bacteria (Rizzo et al., 2013). 

In upstream and downstream sediments, VA contamination induced a change in the 274 

diversity of the total microbial community. At low and intermediate VA concentrations (up to 200 

µg L-1), the sedimentary bacterial community structures show a minor shift. Changes in the 276 

bacterial community structure were observed at the highest VA concentration (1000 µg L-1), 

approaching therapeutic concentrations. Antibiotics, even those designed to be broad-spectrum 278 

drugs, have their selective effects on various groups of microbes. The selective antibiotic effects 

alter the relative abundance of microbial species (Ding et He, 2010). A change in bacterial 280 

community structure upon the application of antibiotics has been observed in soil (Hammesfahr et 

al., 2008; references in Ding et He, 2010). In this study the modification of the structure of 282 

microbial communities could be explained by the disappearance of susceptible strains whereas 

active but non-growing Gram positive bacteria persisted, and maintenance or development of non-284 

susceptible or resistant bacteria. Moreover, the persistence of bacteria in the presence of 1000 µg 

L-1 of VA can also be explained by the degradation of this antibiotic by heterotrophic denitrifiers 286 

as previously shown for sulfamethoxazole (Nodler et al, 2014). 

The impact of antibiotics on denitrifying bacteria has been assessed mainly through the 288 

quantification of genes encoding the nitrate, nitrite, and nitrous oxide reductases and diversity 

analysis of these genes by DGGE (Kleineidam et al, 2010; Ollivier et al, 2010; Hammesfahr et al, 290 

2008). Ollivier et al (2010) reported that the abundance of nosZ was affected by sulfadiazine but 

the impact on the transcript level was less pronounced, suggesting that a part of the denitrifiers 292 

was tolerant or resistant towards this antibiotic. In soils amended with manure and sulfadiazine 
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(SDZ, 40 and 100 mg SDZ kg-1 soil), the community composition of nirS nitrite reducers 294 

investigated by DGGE did not change despite the observed alterations in abundance (Kleineidam 

et al, 2010). In contrast, DGGE patterns showed effects of SDZ (10 and 100 mg g-1) on soil 296 

bacterial community structures (Hammesfahr et al, 2010). In our study, the richness of the 

denitrifying community (nosZ) was not affected by VA concentrations whereas shifts in the 298 

structure of these communities were observed. In upstream sediments, the different VA 

applications were not correlated to the denitrifying community structures (nosZ). In downstream 300 

sediment, despite a clear shift in denitrifying community structure compared to the initial sediment, 

this structure is highly comparable in sediments incubated for 3 weeks with and without VA. This 302 

could be explained by the fact that the primers used for the nosZ gene amplification targets mainly 

Gram negative denitrifiers (Jones et al, 2011), which are naturally resistant to vancomycin. 304 

The MIC-E determined from denitrifying enrichments indicated the presence of resistant 

or non-susceptible denitrifiers in upstream and downstream sediments, which were able to grow 306 

at VA concentrations higher than environmental concentrations (> 1mg L-1). This is consistent with 

the detection of denitrifying activity in sediments exposed to therapeutic tetracycline 308 

concentrations (10 mg L-1; Roose-Amsaleg et al, 2013). Further work will require the 

characterization of culturable denitrifiers (Gram negative vs Gram positive bacteria) growing at 310 

environmental (< 1 mg L-1) and higher VA concentrations. Furthermore, there is a need to confirm 

the presence of VA resistance genes among these culturable denitrifiers. 312 

In conclusion, our results demonstrated a minor effect of VA towards nitrate reduction rates, 

partly due to a change in community structure, and due to the resistance of the denitrifiers in these 314 

sediments towards VA. Further research regarding the occurrence of VA resistance genes is 
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required to investigate whether the nitrate reduction rates detected in presence of VA is related to 316 

resistant or non-susceptible bacteria. 

 318 
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Table and Figure legends 326 

 

Table 1. Overview of the characteristics of the sampling sites, upstream and downstream of the 328 

WWTP outlet. Concentrations of VA in the sediments were measured in February 2010 (n=2) and 

expressed per gram dry sediment (gds-1). The total bacterial and denitrifying richness were 330 

determined in February 2012.  

 332 

Table 2. Overview of the nitrate reduction rates in sediments upstream and downstream of the 

WWTP outlet supplied with different VA concentrations. The effect of VA on the nitrate reduction 334 

rates were tested within the sediments of the same site. 

Figure 1 Cluster analysis (Bray –Curtis) of the total bacterial community structure of the 336 

sediments before (T0) and after VA exposure, upstream (A) and downstream (B) of the WWTP 

outlet. The number of bands (OTU), representing richness is displayed with a histogram and the 338 

similarity of community composition with a dendrogram. T0 stands for initial sediments and 0, 1, 

200, 1000 µg/L VA supply during 3 weeks of incubation. 340 

Figure 2. Cluster analysis (Jaccard) of the denitrifying bacterial community structure of the 

sediments before (T0) and after VA exposure, upstream (A) and downstream (B) of the WWTP 342 

outlet. The number of nosZ bands (OTU), representing richness is displayed with a histogram and 

the similarity of community composition with a dendrogram. T0 stands for initial sediments and 344 

0, 1, 200, 1000 µg L-1 VA supply during 3 weeks of incubation.  

Figure 3. Growth of denitrifiers (gas production) during the MIC-E experiment of the different 346 

denitrifying communities from the Charmoise sediment upstream (A) and downstream (B) 

 348 

 

 350 

  



21 

 

 

References 352 

 

Ahmad M, Vithanage M, Kim K, et al (2014) Inhibitory Effect of Veterinary Antibiotics on 354 

Denitrification in Groundwater: A Microcosm Approach. Sci. World J. 2014: 

Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water 356 

environments. Curr Opin Biotech 19, 260-265. 

Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of antibiotics 358 

in hospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New 

Mexico. Sci Total Environ 366, 772-783. 360 

Cheneby D, Philippot L, Hartmann A, Henault C  Germon JC (2000) 16S rDNA analysis for 

characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol 362 

Ecol 34, 121-128. 

Costanzo SD, Murby J  Bates J (2005) Ecosystem response to antibiotics entering the aquatic 364 

environment. Mar Pollut Bull 51, 218-223. 

Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. 366 

Curr Opin Microbiol 9, 445-453. 

Dinh T, Alliot F, Moreau-Guigon E, Eurin J, Chevreuil M, Labadie P (2011) Measurement of trace 368 

levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS.  

Talanta 85, 1238- 1245. 370 

Dinh MQT (2012) Transfert et comportements d’antibiotiques a l’echelle du bassin elementaire. 

PhD thesis, L’Ecole Pratique des Hautes Etudes, Universite Pierre et Marie Curie.  372 

Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl 

Microbiol Biotechnol 87:925–941. 374 

Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ 

Qual 37, 1245–1253. 376 

Guardabassi L, Perichon B, van Heijenoort J, Blanot D, Courvalin P (2005) Glycopeptide 

resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother 378 

49, 4227–4233. 

Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI (2011) Selection 380 

of resistant bacteria at very low antibiotic concentrations. Plos Pathog 7. 



22 

 

 

Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic 382 

Sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol 

Biochem 40, 1583-1591. 384 

Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D (2006) Environmental risk assessment 

of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69, 334. 386 

Jones CM, Welsh A, Throback IN, Dorsch P, Bakken LR, Hallin S (2011) Phenotypic and 

genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates 388 

harboring the nosZ gene. FEMS Microbiol Ecol 76, 541-552. 

Kleineidam K, Sharma S, Kotzerke A, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter 390 

M (2010) Effect of Sulfadiazine on abundance and diversity of denitrifying bacteria by 

determining nirK and nirS genes in two arable soils. Microbial Ecol 60, 703-707. 392 

Kloos K, Mergel A, Rosch C, Bothe H (2001) Denitrification within the genus Azospirillum and 

other associative bacteria. Aust J Plant Physiol 28, 991-998. 394 

Kohanski MA, DePristo MA, Collins JJ (2010). Sublethal antibiotic treatment leads to multidrug 

resistance via radical-induced mutagenesis. Mol Cell 37, 311-320. 396 

Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M 

(2008) Alterations in soil microbial activity and N-transformation processes due to Sulfadiazine 398 

loads in pig-manure. Environ Pollution 153, 315-322. 

Kümmerer K (2009) Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75, 400 

417-434. 

Kümmerer K (2010) Pharmaceuticals in the environment- Annual review. Annu Rev Environ 402 

Resour 35, 57-75. 

Laverman AM, Van Cappellen P, van Rotterdam-Los D, Pallud C, Abell J (2006) Potential rates 404 

and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiol Ecol 58, 179-

192. 406 

Lebreton F, Depardieu F, Bourdon N, et al (2011) D-Ala-D-Ser VanN-type transferable 

vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55, 4606–4612. 408 

Li B, Zhang T (2011) Mass flows and removal of antibiotics in two municipal wastewater 

treatment plants. Chemosphere 83, 1284–1289. 410 



23 

 

 

Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by 

denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes 412 

encoding for 16S rRNA. Appl Environ Microbiol 59, 695-700. 

Nödler K, Licha T, Barbieri M, Pérez S (2012) Evidence for the microbially mediated abiotic 414 

formation of reversible and non-reversible sulfamethoxazole transformation products during 

denitrification. Water Res 46:2131–2139. 416 

Oberle K, Capdeville MJ, Berthe T, Budzinski H, Petit F (2012) Evidence for a complex 

relationship between antibiotics and antibiotic-resistant Escherichia Coli: From medical center 418 

patients to a receiving environment. Environ Sci Technol 46, 1859-1868. 

Ollivier J, Kleineidam K, Reichel R, et al (2010) Effect of sulfadiazine-contaminated pig manure 420 

on the abundances of genes and transcripts involved in nitrogen transformation in the root-

rhizosphere complexes of maize and clover. Appl Environ Microbiol 76:7903–7909. 422 

Passerat J, Tamtam F, Le Bot B, Eurin J, Chevreuil M, Servais P (2010) Rejets hospitaliers 

d’antibiotiques et de bactéries fécales antibiorésistantes dans les rivières du bassin de la Seine. Eur 424 

J Water Qual 41, 1–13. 

Philippot L (2002) Denitrifying genes in bacterial and Archaeal genomes. BBA-Gene Struct Expr 426 

1577, 355-376. 

Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) 428 

Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread 

into the environment: a review. Sci Total Environ 447, 345–360. 430 

Roose-Amsaleg C,  Yan C, Hong AM, Laverman AM (2013) Chronic exposure of river sediments 

to environmentally relevant levels of tetracycline affects bacterial communities but not 432 

denitrification rates. Ecotoxicology 22, 1467-1478. 

Santos  L, Araujo AN, Fachini A, Pena A, Delerue-Matos C,Montenegro M (2010) 434 

Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J 

Hazard Mater 175, 45-95. 436 

Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for 

detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162, 438 

61-68. 

Tamtam F, Le Bot B, Dinh T, Mompelat S, Eurin J, Chevreuil M, Bonte P, Mouchel JM, Ayrault 440 

S (2011) A 50-year record of Quinolone and Sulphonamide antimicrobial agents in Seine River 

sediments. J Soil Sed 11, 852-859. 442 



24 

 

 

Tamtam F, Mercier F, Le Bot B, Eurin J, Dinh QT, Clement M, Chevreuil M (2008) Occurrence 

and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393, 444 

84-95. 

Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils - a review. J Plant Nutr Soil 446 

Sc  166, 145-167. 

Throbäck IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK 448 

and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 

49, 401-417. 450 

Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium 

woodii. Arch  Microbiol 137, 163-167. 452 

Underwood JC, Harvey RW, Metge DW, Repert DA, Baumgartner LK, Smith RL, Roane TM,  

Barber LB (2011) Effects of the antimicrobial Sulfamethoxazole on groundwater bacterial 454 

enrichment. Environ Sci Technol 45, 3096-3101. 

Wright GD (2003) Mechanisms of resistance to antibiotics. Curr Opin Chem Biol 7:563–569. 456 

Yan C, Dinh QT, Chevreuil M, et al (2013) The effect of environmental and therapeutic 

concentrations of antibiotics on nitrate reduction rates in river sediment. Water Res 47:3654–3662. 458 

Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli, R (2010) Source, occurrence and fate of 

antibiotics in the Italian aquatic environment (2010) J Haz Mater 179, 1042-1048  460 

 

  462 

http://apps.webofknowledge.com.gate1.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2pLqxciErFxovO2elv&author_name=Zuccato,%20E&dais_id=10087147&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.gate1.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2pLqxciErFxovO2elv&author_name=Castiglioni,%20S&dais_id=10683640&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.gate1.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2pLqxciErFxovO2elv&author_name=Bagnati,%20R&dais_id=10310535&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.gate1.inist.fr/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q2pLqxciErFxovO2elv&field=AU&value=Melis,%20M
http://apps.webofknowledge.com.gate1.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=Q2pLqxciErFxovO2elv&author_name=Fanelli,%20R&dais_id=11166535&excludeEventConfig=ExcludeIfFromFullRecPage


25 

 

 

Table 1 

 464 

 variable unit Upstream Downstream 

Water pH  8.25 7.98 

 T °C 3.19 3.91 

 Conductivity  mS 0.632 0.678  

 Turbidity NTU(1) 7.6  23  

 O2  mg L-1 9.83  10.12  

Sediment [VA] (2) ng gds-1 < 5  62  

 16S rRNA bands (2) 

nosZ bands (2) 
 32  

6  
33 
 6  

 16S rRNA similarity % 65 

 nosZ similarity % 20  

(1) NTU : Nephelometric Turbidity Unit 

(2) two separate sediment or DNA extractions  (n=2) 466 
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Table 2 468 

Site  Vancomycin 

concentration  
Nitrate reduction 

rates 

 µg L-1 nmol cm-3 h-1 

Upstream control 156 ± 16 

 1 133 ± 26 

 200 122 ± 35 

 1000 130 ± 11 

Downstream control 165 ± 21 

 1 143 ± 12 

 200 184 ± 21 

 1000 130 ± 15* 

* indicates significant difference (Tukey , p<0.05) 

 470 
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