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Abstract 

  

Transition metal complexes containing stimuli-responsive systems attract extensive 

attention for potential applications in optical devices, photonic memory, photosensing, 

as well as luminescence imaging. Among them, photochromic metal complexes offer 

the possibility to combine the specific properties of the metal centre and the optical 

response of the photochromic group. Here we report on the synthesis, the 

electrochemical properties and the photophysical characterization of a series of 

donor-acceptor azobenzene derivatives that possess bipyridine groups connected to 

a 4-dialkylaminoazobenzene moiety through various linkers. DFT and TD-DFT 

calculations are performed to complement experimental findings and contribute to 

their interpretation. Position and nature of the linker (ethynyl, triazolyl, none) are 

engineered and shown to induce different electronic coupling between donor and 

acceptor, in ligands and complexes. This in turn leads to strong modulations in terms 

of photoisomerization of the ligands and complexes. 
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Introduction 

 

Multi-mode photo-functional materials are currently attracting significant attention in 

relation with the emergence of molecular electronics. Light-driven real-time 

information-transmitting systems may be achieved by using photochromic switches[1] 

and this issue raises growing interest in the field of materials chemistry.[2] In 

particular, azobenzene derivatives are known to undergo efficient trans-to-cis 

isomerization upon irradiation with UV or blue light, which can be reversed either 

thermally or photochemically.[3] Thanks to the simplicity of this moiety, the ease in 

molecular structure modification, their optical properties and photo-fatigue-resistance, 

azobenzene-based chromophores form a very attractive class of molecules. They are 

currently widely investigated for various applications.[3-4] In order to develop 

azobenzene-based photoswitches that can exchange from the trans to the cis states 

under visible light, various strategies have been implemented. Among these, the 

most popular relies on the incorporation of electron-withdrawing or -donating 

substituents in the π-system of azo-chromophore, shifting the π−π* transition to the 

visible region. This route has already been explored in terms of dyes, polymers and 

materials processing methods.[5] An alternative approach to red-shift the activation 

wavelength consists in gathering a transition metal group and an azobenzene moiety 

through a suitable linker. In this way, the specific properties of the metal centre and 

the optical response of the organic group are combined in a single entity.[6] For 

instance, this has already been implemented by linking the azo unit to a polypyridine 

and coordinating the resulting ligand to a transition metal atom.[7] Some of these 

complexes show photochromism[7c] or luminescence switching upon irradiation.[7a, 8] 

Even if the isomerization is assumed to take place from intraligand excited states 
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localized on the azobenzene unit, the choice of the metal centre is known to drive the 

photochromic properties of the azobenzene unit.[7c] In fact, the photoisomerization 

was reported to be suppressed in azobenzene-containing polypyridine Ru(II) 

complexes, presumably due to an energy transfer from the reactive azobenzene-

localized intraligand (IL) state to low-lying MLCT states.[9] The location of the 

azobenzene unit in the bipyridine ligands was also established as an alternative way 

to influence the photochromic properties of the azobenzene unit in such 

complexes.[10]  

In this paper, we report on the synthesis, the characterization and the 

photophysical properties of a series of azobenzene-containing bipyridines (L1-3) and 

their respective monometallic ruthenium complexes (Scheme 1). These ruthenium (II) 

heteroleptic complexes, Ru(bpy)2(L1-3)(PF6)2 (abbreviated as RuL1-3) differ by the 

nature of the azobenzene-containing bipyridine ligands L in which both the linker and 

its position were modified. L1 and L2 exhibit a donor/conjugated bridge/acceptor (D-

π-A) structure, but difference stems from the position, nature and length of the 

conjugated bridge. While for L1 the azo unit is directly linked to position 4 of the 

bipyridine, it is linked to the bipyridine by an ethynyl bridge at position 5 in L2. L3 is 

similar to L2 except for the linker that contains a triazole moiety. The effect of the 

ligand types on the photophysical properties (absorption, emission and 

photoisomerization) of the ligands (L1-3) and complexes RuL1-3 are investigated 

experimentally and theoretically, and compared to the simple models L4[11] (Scheme 

1) and Ru(bpy)3(PF6)2.  
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Results and Discussion 

Synthesis. A specific strategy was considered for the synthesis of the azo-bipyridine 

ligand L1 which is different from compounds L2-3 as the azo unit is directly fixed to 

one of the pyridine cycles, in position 4 (Scheme 2; for experimental details, see SI). 

L1 was prepared via a Negishi cross-coupling reaction between the (E)-4-((2-

bromopyridin-4-yl)diazenyl)-N,N-dibutylaniline 2 and a pyridyl zinc reagent 4, 

obtained from the 2-bromopyridine 3[12] (Scheme 2). The (E)-4-((2-bromopyridin-4-

yl)diazenyl)-N,N-dibutylaniline 2 was previously obtained in high yield (83%), by 

reacting N,N-dibutyl aniline with the appropriate diazonium salt formed by the 

reaction of aqueous tetrafluoroboric acid[13] with 4-amino-2-bromopyridine 1. The 

second step consists of a lithium-halogen exchange by reaction of tert-butyllithium 

with 2-bromopyridine at -78 °C. After transmetallation to Zn, a CHCl3 solution of 

Pd2(dba)3, t-Bu3PH·BF4 and 2 were added, and the reaction was refluxed until 

completion. L1 was obtained in high yield (89%) after aqueous workup in the 

presence of ethylenediaminetetraacetic acid (EDTA) and purification by column 

chromatography. The syntheses of the ligands L2-3, both substituted via an ethynyl 

(L2) or a triazolyl (L3) bridge in position 5 (Scheme 3), result from different catalysed 

reactions from 5-(ethynyl)-2,2'-bipyridine 5[14] (Scheme 3). L2 was synthesized by the 

Pd-catalysed Sonogashira cross coupling reaction[15] of 5 with 4-(N,N-dibutylamino)-

4'-iodoazobenzene 6, which was previously prepared by reaction of N,N-dibutyl-

aniline with 4-iodobenzene diazonium chloride. L3 was obtained from 5 and 6, in the 

presence of sodium azide, via a Huisgen-type azide–alkyne cycloaddition[16] to give 

the 1, 4-disubstituted 1, 2, 3-triazole ligand L3. The 1H NMR signals for the bipyridine 

protons of L2 coincide with values reported for other 5’-monosubstituted 

2,2’bipyridines.[12] Shifts for the H4’ and H6’ of the pyridine linked to the triazolyl bridge, 
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in L3, are significantly downfield shifted [H4’: 8.39 (L3) and 7.98 (L2); H6’: 9.20 (L3) 

and 8.85 ppm (L2) respectively], while the CH of the triazole is observed at 8.36 ppm, 

confirming the formation of L3. The Ru(bpy)2(L1-3)(PF6)2 complexes were prepared 

by the reaction of commercial cis-(bpy)2RuCl2.2H2O, in presence of one equivalent 

azo-bipyridine ligands L1-3, in refluxing ethanol/water (8:2). These complexes were 

obtained in good yields (72 to 89%) after silica gel column chromatography, using a 

mixture of acetonitrile and saturated aqueous KNO3 as eluent, and were fully 

characterized by 1H and 13C NMR spectroscopy as well as Zabspec-TOF MS and 

elemental analysis.  

 

Electrochemical Properties. Figure 1 shows typical cyclic voltammograms (CVs) of 

L1, RuL1 and Ru(bpy)3
2+ in acetonitrile (see also Figure S1). All the ligands globally 

display comparable electrochemical features (Table 1). The same holds true for their 

corresponding ruthenium-based complexes. A quasi-reversible oxidation process is 

clearly observed for the ligands which display a redox potential (Eox) in the 0.9 – 1.0 

V range. These values are slightly more positive than that of the N,N’ dimethylaniline 

(0.81 V vs. SCE[17]) due to the electron withdrawing character of the diazo –N=N– 

group in para position, that should promote a better stabilization of the generated 

amine radical cation through an extended charge delocalization. The complexation 

with Ru2+ hardly affects the values of these redox potentials, which indicates a weak 

electronic interaction between the rims of each complex. This effect is also consistent 

with the quasi invariance of the second oxidation potential observed for all complexes 

assigned to the metal-centred oxidation. These potentials nicely match the values 

measured for Ru(bpy)3
2+ (Figure 1). In the cathodic region,  a reversible wave should 

be attributed to the reduction of the azobenzene moiety of L1-3.[18] In all cases, the 
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reduction potential is more positive than that of the 4-diethylamino-azobenzene (–

1.57 V vs. SCE[18a]).  Moreover, Ered shifts in the positive direction by about 0.15 V on 

going from L3 to L1. This suggests that the azobenzene moiety is sensitive to the 

electron withdrawing strength of its bipyridine-based substituent group. Interestingly, 

the presence of Ru2+ strongly amplifies this shift: the first reduction potential of RuL1 

is about – 0.95 vs. SCE as compared to a value of – 1.29 vs. SCE for L1. Finally, all 

ruthenium-based complexes typically display three reversible ligand-centred (i.e. 

bipyridine) reduction waves at the low potential range. Even though such successive 

reduction processes occur at very close potential values, the measured half-wave 

potentials are globally comparable to those measured for Ru(bpy)3
2+ (Table 1) , 

whereas the dialkylamino-azobenzene moieties, whose oxidation potential remains 

invariant, present a better reducibility with a noticeable increase of Ered on going from 

RuL3 to RuL1. Such a change of the first reduction potential should presumably 

impact the relative position of the LUMO of the complexes (vide infra). 

Photophysical Properties. The photophysical data of the compounds are gathered 

in Table 2. Figure 2 shows the absorption spectra of all chromophores in 

dichloromethane. In order to identify the position and the nature of the electronic 

transitions which are present within the longest wavelength absorption bands, DFT 

and TD-DFT calculations were carried out both for the ligands and their respective 

complexes.  

All the ligands exhibit intense structureless bands in the blue visible region (Figure 2), 

with MAX in the 28500  35000 M-1 cm-1 range. TD-DFT calculations predict the 

presence of two low-lying n* and * states and indicate that their energy gap is 

below 0.13 eV for all ligands (Table 2). In particular, the TD-DFT results reveal that 

the symmetry forbidden nπ* transition mainly arising from HOMO-2  LUMO 

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201200061/full#tbl1
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contributions lies close to the ππ* one, for all three ligands L1-3. In other words, the 

observed structureless bands comprise two electronic transitions with distinctive 

symmetries: i) a S0 → S1 transition which has a very weak intensity due to its n* 

nature ii) a S0 → S2 transition which is a strongly allowed * transition with a charge 

transfer (CT) character involving electronic delocalization all along the azobenzene 

backbone.[11, 18a, 19] Due to the electron withdrawing ability of the bipyridine fragment 

which leads to a better energy stabilization of the S0 → 1* transition, the longest 

wavelength band of L2 is red-shifted by about 890 cm-1 as compared to L4 (Figure 

S2). The energy diagram of frontier orbitals (Figure 3) indicates that the * transition 

of L2 mainly corresponds to a HOMO-LUMO transition which exhibits a long range 

electronic delocalization all along the entire structure with a CT character from the 

aminoazobenzene to bipyridine moieties. Such CT character has been quantified by 

the amount of transferred charge (qCT) and the charge transfer distance (dCT) (Table 

S1).  This is consistent with the fact that the * transition is strongly sensitive to 4,4’-

azobenzene substitution effects and shifts to low energy region when increasing the 

strength of donor and/or acceptor[19-20].  

The same electronic feature can be observed for L1.  The fact that the frontier 

orbitals are not localized on either the donor (amino) or acceptor (bipyridine) moieties 

is consistent with the idea that the conjugated azo bridge allows for effective 

conjugation within this ligand. On the other hand, L1, with the azobenzene group 

directly bonded to the 4 position, shows stronger absorption band, at low energy, 

than that observed for 4-phenylazopyridine [310 nm ( = 23360 L.mol −1·cm−1
), 450 nm 

( = 265 L.mol −1·cm−1)],[21] in agreement with the expected greater push-pull 

character of L1. 
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In the case of L3, the HOMO (π-type) and LUMO (π*-type) are mainly 

localized on the photochromic part of the ligand with a very weak participation of the 

adjacent pyridine; such a disruption in the conjugation path should be presumably 

due to the presence of the triazole acting as a site-separating moiety.[22] Interestingly, 

comparable qCT and dCT are maintained in L3 (Table S1).  

Complexation with Ru2+ clearly enhances the electron withdrawing ability of 

the acceptor group (Figure S3).[23] A stabilization of the * state due to a strong 

enhancement of its CT character is observed (Table 2). In turn, the longest 

wavelength absorption band observed for the free ligands shifts to the red region and 

increases in intensity upon complexation (Figure 2). Interestingly, bathochromic shift 

and hyperchromic effect both depend on the nature of the linker and on the 

positioning of the 2, 2’-bipyridine unit (i.e. position 4 vs. 5).  A direct link of the 

bipyridine to the aminoazobenzene subunit (i.e. ligand L1) leads to the larger effects 

with a band red-shift by ca 4300 cm-1 and a 1.7-fold increase in intensity. Such 

important spectral changes contrast to those observed for RuL3 where the band 

hardly shifts by ca 90 cm-1 with a 1.2-fold intensity increase.  Finally, the absorption 

band of RuL2 displays an intermediate behavior with a bathochromic shift of ca 650 

cm-1 and a 1.4-fold intensity increase. TD-DFT calculations reproduce with a good 

agreement such metal-induced spectral shifts (E < 0.2 eV), even if the calculated S1 

energy of RuL1 seems significantly overestimated (Table S2).  In fact, a good 

correlation (R2˃0.979) is obtained when plotting the theoretical bathochromic shifts of 

the complexes compared to their related ligands vs. those determined experimentally.  

The lowest-energy transition of RuL1 is dominated by a HOMO-LUMO ligand-centred 

transition (Figure S3) with a strong intramolecular CT character (Table S1) from the 

4-dialkylaminoazobenzene to the ‘fused’ bipyridine chelating group. Interestingly, 
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similar electronic effects are observed for the S0 → S1 transition of RuL2 which leads 

to a larger charge delocalization within the entire L2-subunit (Figure 4), leading to a 

dramatic increase of the charge transfer distance dCT from 2.5 to 4.3 Å (Table S1). 

However, in the case of RuL3, the S0 → S1 transition which displays a mixed ππ* 

and nπ* character is only localized on the 4-dialkylaminoazobenzene subunit (Figure 

4).  As for L3, this confirms that the triazole linker between the azobenzene and 

bipyridine units leads to a strong disruption of the electronic conjugation[22]. Moreover, 

our calculations exclude any metallic character within the lowest energy transition of 

RuL3 whereas a weak weighted contribution of the metal cation (< 5%) is noted 

within the LUMOs of RuL1 and RuL2.  These findings suggest that the ruthenium 

tris(bipyridine) subunit is electronically decoupled with respect to its photochromic 

fragment. Such an assumption is also consistent with the unchanged redox 

properties of the metal complex site (vide supra).  Moreover, similar electronic 

decoupling is suggested when comparing the absorption spectra of RuL1-3 with that 

of the Ru(bpy)3
2+ model system (Figure 2). For RuL1-3, the high energy side of the 

spectrum (i.e.  < 300 nm) displays the same spectral feature than that observed for 

Ru(bpy)3
2+: i) a structured band at 240 nm corresponding to a first set of Metal-to-

Ligand Charge Transfer (MLCT) transitions[24] ii) a second intense band located at 

290 nm which should be assigned to the ligand-centred (LC) transitions[24] 

(bipyridine-centred transitions).  The substitution effect on one of the three bipyridine 

ligands induces a slight decrease of the LC band with a larger effect for RuL3 (i.e. ~ 

20 % decrease).  The lowest-energy band of Ru(bpy)3
2+ located at 455 nm 

corresponds to a second set of S0 → 1MLCT transitions.  This characteristic band is 

clearly observed at the blue edge of the charge transfer band of RuL1. However, on 
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going from RuL2 to RuL3, the MLCT band is progressively masked due to a gradual 

overlap with the lowest-energy band which shifts to the blue region.  

Figure 5 shows the phosphorescence and the excitation spectra of the 

complexes in glassy matrix of ethanol. According to the excitation spectra recorded at 

the maximum luminescence wavelength, the MLCT band is dominating the excitation 

spectrum and coincides to that of Ru(bpy)3
2+. Therefore, the energy of the S0 → 

1MLCT transitions remains invariant whatever the structural changes on complexes. 

It is worth noting that the lowest-energy band is not observed within the excitation 

spectrum of RuL1 and is hardly visible for the other complexes. This suggests that 

the efficiency of the intersystem crossing (ISC) toward the 3MLCT state is much 

higher upon excitation to the high-energy 1MLCT state as compared to an excitation 

to the 1* one. This will have strong consequences on the photoisomerization 

properties of the complexes (vide infra). The phosphorescence spectra of all 

complexes are located in the same spectral range which yields to triplet energies of 

2.15, 2.02 and 2.10 eV for RuL1, RuL2 and RuL3, respectively. Moreover, their 

luminescence lifetimes are 11, 10 and 8 µs, respectively, in agreement with that of 

Ru(bpy)3
2+ (~ 5 µs[18b, 24]). The lowest triplet state is the 3MLCT which would thus 

exclude any triplet-triplet energy transfer process from the excited ruthenium 

tris(bipyridine) subunit to the azo photochromic moiety.  

Hence, coordination to Ru2+ clearly impacts the charge transfer character of 

the lowest-energy transitions which are mainly localized on the conjugated 

photochromic subunit (Figure 4, Table S1). Even though the metal coordination 

sphere globally maintains its electronic integrity, important changes will be observed 

in the efficiency of the photochromic switches. 
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Photoisomerization Reaction and Mechanism. Table 3 reports the values of the 

trans → cis photoisomerization quantum yields for all the chromophores in various 

solvents as well as the rate constants of the thermal cis → trans isomerization 

reactions. Figure 6 illustrates the changes of the absorption spectra of L2 and its 

complex during the isomerization reactions. Considering the simulated UV-visible 

spectra of both trans and cis isomers (Figure S4) and corresponding data (Table S3), 

we can first tentatively assign experimental changes of absorption spectra occurring 

after the irradiation inducing partial conversion of trans to cis conformation. As 

expected, calculations indicate that the trans-cis isomerisation induces a slight red-

shift (ca 0.1 eV) and a significant increase of oscillator strength for the n* transitions 

mainly located on the azobenzene moiety (Figure S5). Indeed, the cis L1-3 ligands 

exhibit their first bright low-energy transition at 445 nm, 479 nm and 467 nm, 

respectively. For instance, changes in the UV-vis absorption spectrum of L2, which 

exhibits experimentally the best conversion ratio (Table 3), are qualitatively well 

explained by TD-DFT calculations. As can be seen from the observed spectrum of L2 

under irradiation (Figure 6), the decrease of the intensity of the low-energy band 

indicates the partial conversion of the trans to the cis form. Simultaneously, the 

intensity of the absorption bands in the UV range increases upon irradiation. These 

experimental observations are consistent with our theoretical results, namely the 

decrease of the intensity of the calculated low-energy absorption band when going 

from trans to cis isomers (Figure S4). A weak increase is observed in the trans-cis 

energy differences for the simulated complexes RuL1-3 as compared to the ligands. 

The highest calculated trans-cis energy difference is found for RuL1. By contrast, the 

calculated trans-cis energy difference of RuL3 is almost comparable to the value 

obtained for the ligand (L3), indicating that the complexation with ruthenium should 
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only slightly affect the thermodynamics of the trans-cis isomerism. This is a direct 

consequence of the site isolation character of the triazole moiety (vide infra).  

Figure 6 shows that upon continuous irradiation at 436 nm, the longest wavelength 

absorption band of the L2 strongly decreases concomitantly with the growth of new 

bands in the 270375 nm range and above 490 nm. Three isosbestic points are 

observed at 256 nm, 385 nm and 512 nm. At the photostationary state, the intensity 

of the main absorption band collapsed by a factor ~ 4 while the low energy band of 

RuL2 only decreased by a factor 0.75. For this complex, a slight increase of the 

absorption bands is also observed in the 270-380 nm range with the presence of an 

isosbestic point at 401 nm. The trans-to-cis photoconversion yield is relatively high 

for L2 with a total conversion of ca 83 % in methylcyclohexane (MCH) which only 

decreases by a factor 1.2 in dichloromethane (DCM). For the other ligands, the 

nature of the solvent strongly influences the photoconversion efficiency, especially for 

L1 whose conversion yield drops from 69 to 0 % on going from MCH to DCM. In 

DCM the relative proportion of L2 cis isomers is divided by a factor ~ 8 with respect 

to that in MCH or THF. Such important changes globally parallel those observed for 

the rates of thermal cis-to-trans isomerization (Table 3). For instance, the rates of L1 

and L3 vary over more than two orders of magnitude between MCH and DCM.  

For the ruthenium complexes, the trans-to-cis photoisomerization quantum 

yields (when measurable) are globally divided by a factor 2.5 with respect to those of 

the ligands. As previously indicated, the metal-induced stabilization of the 1*(CT) 

promotes a *  n* state inversion (Table 2). The photoisomerization dynamics will 

be thereby strongly modified. For instance, the dramatic decrease of the S1 state 

energy observed for RuL1 (Ru directly involved in the conjugation pathway) probably 

favours the internal conversion processes according to the energy gap law. 
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Photoinduced intramolecular electron transfers (PeT) should be considered as minor 

deactivation channels for all the complexes. The free energy (GeT) for such a PeT 

can be estimated from the Rehm–Weller equation[25]:  GeT = Eox Ered – E00 

neglecting the Coulomb part of the stabilization energy. According to the redox 

properties of the complexes (Table 1) and estimating the singlet state energy (E00) 

from the onset of the absorption CT band in DCM, GeT is estimated to be close to 0 

eV for RuL1 and RuL2 and becomes hardly negative for RuL3 ( 0.13 eV). 

Noteworthy, the irradiation of the complexes at 436 nm corresponds to a direct 

excitation into their 1MLCT states. This should open a new deactivation channel to 

the 3MLCT state as confirmed by the phosphorescence fingerprints of the complexes 

(Figure 5). Indeed, the intersystem crossing to the triplet MLCT state occurs rapidly in 

less ~ 300 fs[26] for Ru(bpy)3
2+ and with a ISC close to unity.[24]  Interestingly, the 

phosphorescence properties of the complexes in deoxygenated THF are hardly 

affected by the trans-to-cis photoisomerization (see Figure S6).[9c, 27]  This 

observation is in line with the fact that the lowest triplet state is the 3MLCT which 

excludes any triplet-triplet energy transfer to the azo photochromic moiety. This 

suggests that the significant decrease of t→c observed for RuL1-3 presumably 

stems from this competing deactivation channel to the 3MLCT state as depicted in 

Scheme 4. By contrast to other azobenzene-conjugated Ru2+ complexes where the 

photoisomerization properties are completely switched off,[28] the photochromic part 

of RuL2 and RuL3 remains relatively photoactivable despite the competition of 

intersystem crossing. This indicates that both competing processes should exhibit 

comparable rate constants.  

 

Conclusion. 
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The present results demonstrate the importance of the position and nature of the 

linker in azobenzene containing polypyridine systems and their effects on the 

electronic coupling between donor and acceptor, in both ligands and complexes. This 

in turn leads to strong modulations of the photoisomerization properties of these 

species. An efficient electronic communication along the whole molecular backbone 

with extended conjugation, which involves the Ru cation, disfavours the 

photoisomerization reaction. In addition, the very low activation barrier along the 

thermal cis → trans isomerization path prevents any photostationary cis / trans 

equilibrium at room temperature. By contrast, an extension of molecular backbone 

from the bipyridine to the azobenzene with an ethynyl or a triazolyl linker results in 

photoswitchable complexes where the electronic communication along the azo 

containing ligand is weakly influenced upon coordination. Thus, our approach allows 

to suggest a route to provide polypyridine Ru(II) complexes where the specific 

properties of the metal centre and the optical response of the organic group can be 

gathered.  

Experimental Section 

 

 

General synthetic procedure for Ru(bpy)2(L1-3)(PF6)2 complexes. Cis-dichloro, 

bis-(2,2’-bipyridine)-Ruthenium(II) (0.1 mmol) and corresponding substituted 

bipyridine L (0.1 mmol) were dissolved in 10 mL of a deoxygenated mixture of 

ethanol/water (8:2) and heated at reflux for 3 h. After this time the mixture was cooled 

down to room temperature, 30 mL of water and 10 mL of a KPF6 satured aqueous 
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solution were added. The precipitate was filtered, washed with water and diethyl 

ether and the red solid was dried under vacuum. 

 

Ru(bpy)2(L1)(PF6)2 (RuL1). The pure product was obtained after column 

chromatography [SiO2, CH3CN/H2O/ sat. KNO3 (95:5:0.5)], as a red solid (97 mg, 

89%). 1H NMR (CD2Cl2, 400 MHz): δ = 8.70 (s, 1H), 8.55-8.45 (m, 5H), 8.15-8.05 (m, 

5H), 7.96 (d, J = 9.2 Hz, 2H), 7.84 (d, J = 5.4 Hz, 1H), 7.80-7.65 (m, 6H), 7.55-7.45 

(m, 5H), 6.79 (d, J = 9.2 Hz, 2H), 3.47 (m, 4H), 1.69 (m, 4H), 1.44 (m, 4H), 1.02 ppm 

(t, J = 7.3 Hz, 6H). 13C {1H} NMR (CD2Cl2, 100 MHz): δ = 158.3, 156.8, 156.3, 156.1, 

156.0, 155.9, 152.5, 151.0, 150.6, 150.5, 150.5, 150.3, 142.6, 137.3, 127.4, 127.3, 

127.2, 123.6, 123.6, 123.5, 123.3, 119.4, 115.1, 111.0, 50.5, 28.7, 19.4, 12.9 ppm. 

MS (Zabspec-TOF): m/z: 400.6425 [M++], 946.2477 [M++ + PF6
-]; elemental analysis 

calcd (%) for C44H45F12N9P2Ru, H2O: C, 47.66; H, 4.27; N, 11.37; found: C, 47.92; H, 

4.23; N, 11.43. 

 

Ru(bpy)2(L2)(PF6)2 (RuL2). The pure product was obtained after column 

chromatography [SiO2, CH3CN/H2O/ sat. KNO3 (95:5:0.5)], as a red solid (86 mg, 

72%). 1H NMR (CD2Cl2, 500 MHz): δ = 8.55-8.45 (m, 6H), 8.19 (dd, J = 8.5, 2 Hz, 

1H), 8.15-8.05 (m, 5H), 7.85 (d, J = 9.3 Hz, 2H), 7.82 (d, J = 8.6 Hz, 2H), 7.80-7.70 

(m, 6H), 7.60 (d, J = 8.6 Hz, 2H), 7.55-7.45 (m, 6H), 6.74 (d, J = 9.3 Hz, 2H), 3.41 (m, 

4H), 1.66 (m, 4H), 1.42 (m, 4H), 1.01 ppm (t, J = 7.4 Hz, 6H). 13C {1H} NMR (CD2Cl2, 

125 MHz): δ = 156.8, 156.6, 156.2, 155.4, 152.7, 152.4, 151.4, 151.3, 151.3, 143.0, 

140.1, 138.3, 138.3, 132.7, 128.6, 128.2, 128.2, 128.1, 125.6, 124.8, 124.7, 124.4, 

124.3, 123.9, 122.2, 121.0, 111.2, 98.1, 84.8, 50.9, 29.4, 20.2, 13.7 ppm. MS 

(Zabspec-TOF): m/z: 450.6578 [M++],1046.2829 [M+++ PF6
-]; elemental analysis calcd 
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(%) for C52H49N9F12P2Ru, H2O: C, 51.66; H, 4.25; N, 10.43; found: C, 51.58; H, 3.99; 

N, 10.12. 

 

Ru(bpy)2(L3)(PF6)2 (RuL3). The pure product was obtained after column 

chromatography [SiO2, CH3CN/H2O/ sat. KNO3 (95:5:0.5)] as a red solid (89 mg, 

72%). 1H NMR (CD2Cl2, 400 MHz): δ = 8.71 (s, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.56 (d, 

J = 8.2 Hz, 1H), 8.52 (m, 4H), 8.44 (d, J = 8.3 Hz, 1H), 8.32 (s, 1H), 8.14 (t, J = 8.2 

Hz, 1H), 8.08 (m, 4H), 7.98 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 7.90 (m, 1H), 

7.84 (m, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.75 (m, 3H), 7.49 (m, 1H), 7.42 (m, 4H), 6.81 

(d, J = 9.0 Hz, 2H), 3.47-3.38 (m, 4H), 1.63 (m, 4H), 1.40 (m, 4H), 0.98 ppm (t, J = 

7.3 Hz, 6H). 13C {1H} NMR (CD3CN, 400 MHz): δ = 156.8, 156.7, 156. 7, 156.6, 156.4, 

155.8, 152.9, 151.7, 151.6, 151.5, 151.4, 151.1, 147.4, 142.4, 142.3, 137.7, 137.6, 

137.5, 137.5, 136.1, 133.5, 130.0, 127.3, 127.3, 127.3, 125.1, 124.3, 124.1, 124.0, 

124.0, 124.0, 122.8, 121.1, 120.9, 111.0, 50.2, 28.8, 19.6, 12.9 ppm. MS (Zabspec-

TOF): m/z: 466.6282 [M+], 1078.2177 [M++ + PF6
-]; elemental analysis calcd (%) for 

C52H50F12N12P2Ru, H2O: C, 49.88; H, 4.19; N, 13.42; found: C, 49.61; H, 4.13; N, 

13.58. 

More experimental and computational details are available in the Supporting 

Information.  
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FIGURES AND TABLES CAPTIONS 
 
 
 
Scheme 1 Molecular structures of the metal complexes and corresponding ligands. 
 
Scheme 2 Reaction scheme for the synthesis of L1. 
 
Scheme 3 Reaction scheme for the synthesis of L2 and L3. 
 

Scheme 4 Simplified photophysical schemes relative to D--A ligands and their 

metal complexes when excited into their S2(*) and 1MLCT states, 
respectively.   

 
Figure 1 Cyclic voltammograms of L1, RuL1 and Ru(bpy)3

2+.2PF6
- (mM range in 

acetonitrile + NBu4PF6 at 0.1M). v = 200 mV s-1. 
 
Figure 2 Absorption spectra of the free ligands and their respective Ru2+ 

complexes in dichloromethane (Dotted lines: absorption spectrum of 
RuL complexes; full lines: L ligands; dash-dotted lines: Ru(bpy)2+, 

2PF6
). 

 
Figure 3 Frontier molecular orbitals (MO) diagrams of L1-3 ligands with main 

transitions. 
 

Figure 4 Density differences plots ((r) =S1(r) - S0(r)) of RuL1-3 between S1 - 
S0 states (light/yellow colour = increase; dark/blue colour = decrease of 
electron density; isovalue 0.03 au). 

 
Figure 5 Phosphorescence (squares) and excitation (circles) spectra of the 

complexes in glassy matrix of ethanol (77K). (Dash-dotted lines: 
phosphorescence and excitation spectra of Ru(bpy)3

2+ in the same 
conditions). 

 
Figure 6 Evolution of the absorption spectra of L2 in MCH and RuL2 in THF 

during the isomerization reactions (i.e. h or ), dotted lines: stationary 
states. Insets: (a) Plots of the maximum absorbance at 436 nm as 
function of the irradiation time (b) Plots of the maximum absorbance at 
436 nm during the cis → trans thermal reaction (sample is kept in the 
dark). Least square fit using a simple first-order equation (i.e. 

)1()(
.tktheBAtf


  with as A, B and kth as variables). 

 
Table 1 Redox potentials of the compounds in acetonitrile. 
 
Table 2 Absorption properties of the compounds and corresponding TD-DFT 

data (solvent: dichloromethane).  
 

Table 3 Isomerization properties of compounds in various solvents (irr : 436 
nm). 
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Scheme 2 
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Scheme 3 
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Scheme 4 
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Figure 1 
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Figure 2 
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Figure 3 
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RuL1: S1 - S0 (-*) 

 

RuL2: S1 - S0 (-*) 

 

RuL3: S1 - S0 (n-*+ -*) 

 
 

 
 
 

 
 
Figure 4 
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Figure 5 
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Figure 6 
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 Eox
 / V vs. 
SCE 

Ered
 / V vs. SCE 

L1 0.95 -1.29 
RuL1 1.00, 1.34 -0.95,  -1.31, -1.49, -1.72 
L2 0.87 -1.39,  -1.64 (i) 
RuL2 0.88, 1.33 -1.19,  -1.37, -1.51, -1.73 
L3 0.87 -1.44 
RuL3 0.89, 1.29 -1.19(i), -1.29, -1.48, -1.74 
Ru(bpy)3 

2+          1.27  -1.35, -1.54, -1.79 
  (i) Irreversible wave. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 
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 Experimental data 
 

Theoretical data 

 

abs (  
/ nm (103 M-1 cm-1) 

 

 

abs ( E
th  

/ nm 
( eV ) 

 

 
f 

 
Type 

 
Main Transitions (fraction)  

L1 278 (54.2), 459 (30.3) 
 

440 
(2.81) 
421 

(2.94) 

0.0
1 

1.3
8 

n-* 

* 

H-2 → L (0.91) 
H    → L (0.93) 

RuL1 292 (72.3), 465 (21.3), 572 
(50.9) 

 

471 
(2.63) 
446 

(2.78) 

1.7
5 

0.0
0 

* 

n-* 

H   → L (0.90) 
H-4 → L (0.83) 

L2 343 (24.8), 472 (28.2) 
 

447 
(2.77) 
435 

(2.85) 

2.2
7 

0.0
2 

* 

n-* 

H   → L (0.85) 
H-2 → L (0.73) 

RuL2 290 (67.3), 358 (25.3), 493 
(42) 

 

465 
(2.66) 
439 

(2.82) 

2.3
3 

0.0
0 

*  

n-* 

H   → L (0.57), H → L+3 
(0.30)  
H-5→ L+3 (0.55), H-5→ L 
(0.30) 

L3 303 (27.3), 460 (35.1) 
 

430 
(2.88) 
425 

(2.92) 

0.0
0 

1.7
8 

n-* 

* 

H-2 → L (0.89) 
H   → L  (0.92) 

RuL3 291 (63.4), 320 (35.5), 464 
(43.5) 

 

437 
(2.84) 
424 

(2.92) 

0.8
0 

1.0
7 

n-* + -* 

n-* + 

* 

H-5→ L+3(0.42), H → 

L+3(0.34)  
H → L+3(0.43), H-5→ 

L+3(0.34) 

 

 

 

 

 

 

 

 

 

 

Table 2 
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 L1 
 

RuL1 

  Photochemical 
isomerization 

Thermal 
isomerization 

 

 Photochemical 
isomerization 

Thermal 
isomerization 

 abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

 
abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

MCH 431 0.27 69 1.80 380 
 

- d     
THF 452 -  16 96.4 7 

 
545 - a 0   

DCM 459 - a 0 - a - a 
 

571 - a 0   

 L2 
 

RuL2 

  Photochemical 
isomerization 

Thermal 
isomerization 

 

 Photochemical 
isomerization 

Thermal 
isomerization 

 abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

 
abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

MCH 439 0.50 83 1.82 385 
 

- d     
THF 462 0.46 73 0.80 870 

 
474 0.19 28 2.20 315 

DCM 470 0.43 67 4.60 150 
 

491 - a 0   

 L3 
 

RuL3 

  Photochemical 
isomerization 

Thermal 
isomerization 

 

 Photochemical 
isomerization 

Thermal 
isomerization 

 abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

 
abs 
/ nm t→c % cis 

kth
 b 

/ 10-3 s-

1 

1/2
 c 

/ s 

MCH 436 0.31 70 0.32 217
0 

 
- d     

THF 448 0.34 72 0.19 365
0 

 
456 0.14 25 0.52 139

0 
DCM 460 -  9 144.8 4.8 

 
462 -  15 29.5 23.5 

a no change of the absorption spectrum, b first-order reaction rate, c 1/2
 = ln 2/ kth, d insoluble.  

 
 

 

 

 

 

 

 

Table 3 
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Text  for the Table of contents 

 

 
Engineering of azobenzene-containing bipyridine ligands leads to strong modulations 
of the photoisomerization properties of their ruthenium heteroleptic complexes: an 
electronic communication involving the ruthenium cation disfavours the 
photoisomerization; by contrast, extending the molecular backbone from the 
bipyridine to the azobenzene with ethynyl or triazolyl linkers results in 
photoswitchable complexes. 
 
 
 
 
 
 
 
Short title if needed : 
 

Photoswitchable azobenzene-ruthenium complexes 
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