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Abstract 

We report the preparation of a 6,6-bis[(4-N,N-dimethylanilino)ethynyl]pentafulvene 

from a 6,6-dibromopentafulvene and 4-ethynyl-N,N-dimethylaniline under 

Sonogashira cross-coupling conditions. A push-pull [3]cumulene was formed 

unexpectedly during this reaction in moderate yield. The 6,6-bis[(4-N,N-

dimethylanilino)ethynyl]pentafulvene was reacted with tetracyanoethylene, and an 

unprecedented 1,2-dihydropentalene was obtained in high yield as the exclusive 

product. The structures of the new compounds are supported by X-ray analysis, and 

a reasonable mechanism for their formation is proposed.  We also report their 

interesting opto-electronic properties, as studied by UV/Vis spectroscopy and cyclic 

voltammetry (CV). 
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1. Introduction 

 The [2+2] cycloaddition-retroelectrocyclization (CA–RE) between electron-rich 

alkynes and electron-poor olefins has met increasing interest in the scientific 

community. This reaction, which efficiently generates 1,1,4,4-tetracyanobutadienes 

(TCBD) when using tetracyanoethylene (TCNE), is the source of several materials 

with outstanding opto-electronic properties (Scheme 1).1 However, in some cases, 

the reaction between TCNE and electron-rich alkynes does not lead to the expected 

TCBD but to other products that may be attributed to the reactivity of TCBDs 

themselves or to other chemical pathways, thereby expanding the chemical diversity 

of push-pull chromophores and opening new horizons in opto-electronics.2

Scheme 1. CA–RE reaction of 4-ethynyl-N,N-dimethylaniline with TCNE. 

  We have recently investigated 6,6-dicyanopentafulvenes (DCFs) for their 

unique electron-accepting properties.3 We discovered a diverse array of new 

reactivities of DCFs, many of which led to the formation of chromophores with 

interesting opto-electronic properties.4 Moreover, DCFs also showed novel reactivity 

with p-anilino-substituted alkynes in the CA–RE reaction, displaying a strong 

dependence of ancillary substitution on regioselectivity,5 and, in one case, led to the 

formation of even more complex products.6  
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 The exciting chemistry of acceptor-substituted pentafulvenes7 led us to explore 

the electronic properties and reactivity of pentafulvenes substituted by donors at the 

exocyclic double bond. We report herein the preparation of a 6,6-bis[(4-N,N-

dimethylanilino)ethynyl]pentafulvene 1 and an unanticipated [3]cumulene 2 as a side 

product. We also describe the formation of an unexpected 1,2-dihydropentalene (±)-3

upon reaction of the aforementioned pentafulvene 1 with TCNE in very good yield. 

2. Results and discussion 

2.1. Synthesis of pentafulvene 1 and [3]cumulene 2 

The synthesis of pentafulvene 1 and [3]cumulene 2 started with the reaction of 

tetraphenylcyclopentadienone and tetrabromomethane in the presence of triisopropyl 

phosphite to give 6,6-dibromofulvene 4 in 18% yield (Scheme 2). Recently, Tykwinski 

et al. reported the preparation of 4 with CBr4/PPh3 in better yield, but we found that 

using P(OiPr)3 led to easier purification.8 Compound 4 was then submitted to a 

double cross-coupling with 4-ethynyl-N,N-dimethylaniline under Sonogashira 

conditions using [PdCl2(PPh3)2] and CuI as co-catalysts and triethylamine as solvent 

and base. The expected product 1 was obtained as the major product in 22% yield. 

However, a second product, sapphire blue in color, was also obtained in 18% yield. 

Its molecular formula as determined by HR-MS corresponded to an isomer of 1. The 

structure was unambiguously elucidated as [3]cumulene 2 by single-crystal X-ray 

diffraction (Fig. 1). To the best of our knowledge, there are just two reports describing 

structures with a pentafulvene scaffold where the exocyclic double bond is part of a 

[3]cumulene.9  
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Scheme 2. Synthesis of compound 4 and one-pot synthesis of compounds 1 and 2. 

Both compounds 1 and 2 were characterized by X-ray diffraction (Fig. 1). In 

the two structures, the dimethylanilino rings are approximately in the same plane as 

the pentafulvene core, which suggests that there is �-conjugation between the 

dimethylanilino rings and the cyclopentadiene ring. The four phenyl rings on the 

cyclopentadiene ring are significantly twisted out of the plane defined by the 

pentafulvene core, due to steric congestion. The phenyl rings A and D in 1 (torsion 

angles of 70° and 84°, respectively) are more out o f plane than those in 2 (torsion 

angles of 44° and 48°, respectively). This can be e xplained by the proximity between 

the dimethylanilino (DMA) rings F and E and the phenyl rings A and D in 1 as 

compared to 2. The quinoid character10
δr of the donor rings E and F in 1 and 2 was 

determined from the X-ray bond lengths (see the Supporting Information). The δr 

values obtained for the anilino rings of 1 are 0.028 Å for F and 0.022 Å for E, which 

corresponds to a moderate bond length alternation. For 2, the quinoid character is 

0.025 Å for F and 0.038 Å for E. The higher quinoid character of ring E is evidence of 

stronger �-conjugation between DMA ring E and the cyclopentadiene ring, compared 

to the ethynylaniline moiety F. This observation is corroborated by the torsion angles 

of the anilines with respect to the plane of the pentafulvene: 2° for E and 24° for F. 

The terminal C=C bonds of the butatriene are both 1.36 Å long, and the central C=C 
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bond is 1.23 Å, which is short and not so different in length from the C�C triple bond 

in alkynes. This acetylenic character is less pronounced than in push-pull butatrienes, 

where the central bond is about 1.21 Å,11 but slightly more pronounced than in 

tetraarylbutatrienes, where the central bond is about 1.25 Å.2e,12

Figure 1. X-ray structures of compounds 1 (left) and 2 (right). Solvent molecules 

were omitted for clarity. Thermal ellipsoids of non-H atoms at 50% probability. T = 

100 K.

Even though compound 1 resulted from a classical double Sonogashira 

coupling, the formation of compound 2 is not so trivial. While 2, similar to 1, arises 

from the coupling of two equivalents of 4-ethynyl-N,N-dimethylaniline to 4, the 

mechanisms leading to each product clearly diverge somewhere in the course of the 

reaction. We propose a mechanism of the formation of 2, shown in Scheme 3. The 

first step is a simple Sonogashira coupling, following the classical sequence of 

oxidative addition, transmetallation, and reductive elimination leading to intermediate 

4a. At this point, there are two possibilities: oxidative addition of Pd(0) to the bromide, 
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leading to a second Sonogashira-type coupling to form 1, or SN2’ attack by Pd(0), 

leading to elimination of bromide and formation of [3]cumulene intermediate 2a.13

Subsequently, a transmetallation of the copper acetylide occurs, followed by a 

reductive elimination step to give compound 2. If the mechanism we propose is 

correct, the competition between the formation of compound 1 and 2 is related to the 

difference in the reaction rate between the second oxidative addition of Pd(0) and the 

SN2' reaction. Since the yield of the isolated products is approximately the same 

(22% versus 18%), we may deduce that in this case, the reaction rates of these two 

steps are comparable. The fact that an unusual SN2' reaction is competitive with the 

usual oxidative addition might be linked to the electron-withdrawing character of the 

fulvene that strongly polarizes the C�C triple bond, additionally to the presence of the 

adjacent aniline. To our knowledge, regardless of the mechanism, such a preparation 

of a [3]cumulene has not been reported to date.   

 We reacted 2 with TCNE in CH2Cl2 at room temperature, but the attempted 

cycloaddition led to multiple products that could not be characterized.  

Scheme 3. Proposed mechanism leading to the [3]cumulene 2.

2.2. Reactivity of pentafulvene 1 with TCNE  

The reactivity of pentafulvene 1 with TCNE was then evaluated. One equiv of 

1 was mixed with one or two equiv TCNE in dichloromethane. In both cases, the 

same product (±)-3 was isolated in the same yield (81%) after column 
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chromatography. Contrary to what was anticipated, the usual tetracyanobutadiene 

adduct 5 was not obtained; instead, 1,2-dihydropentalene (±)-3 was formed and its 

structure unambiguously determined by single-crystal X-ray diffraction (Fig. 2). We 

believe that tetracyanobutadiene 5 was formed initially but immediately underwent an 

electrocyclization involving four C=C double bonds (Scheme 4). Such an 

electrocyclization of pentafulvenes yielding dihydropentalene has already been 

described in the literature, even if such reports are very scarce.14 However, the 

previous reported electrocyclizations occurred at high temperature (above 100 °C) 

and not at room temperature. 

The second equiv of TCNE did not react with the remaining triple bond 

probably for steric reasons. The presence of the dicyanovinyl group may also 

decrease the electronic density on the unreacted triple bond, explaining its lack of 

reactivity with the second equiv of TCNE. The reaction of 1 with 7,7,8,8-tetracyano-p-

quinodimethane (TCNQ) was complex and led to multiple products that could not be 

characterized. 
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Scheme 4. Formation of dihydropentalene (±)-3 from pentafulvene 1 and TCNE and 

its putative reaction pathway.

 Dihydropentalene (±)-3 was characterized by NMR, IR, and UV/Vis 

spectroscopy, high-resolution mass spectrometry, electrochemistry, and X-ray 

crystallography (Fig. 2). The solid-state structure of dihydropentalene (±)-3 shows a 

torsion angle between the plane of the dicyanovinyl group and the proximate DMA 

ring E of about 40°, likely due to sterics. The tor sion angle between the DMA ring F 

and the dicyanovinyl moieties is about 47°. The qui noid character for dimethylaniline 

E, directly connected to the dicyanovinyl moiety is δr = 0.028 Å, and the DMA ring F 

bearing a C�C triple bond has a quinoid character of 0.030 Å. These values show 

that electrons from the more distant aniline are more likely to be delocalized toward 

the dicyanovinyl moiety, even though the distance is less favorable. 
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Figure 2. X-ray structure of dihydropentalene (±)-3; solvent molecules were omitted 

for clarity. Thermal ellipsoids of non-H atoms at 50% probability. T = 100 K. 

2.3. UV/Vis spectra

The UV/Vis absorption spectra of compounds 1, 2, and (±)-3 were measured 

at 298 K in dichloromethane (Fig. 3). The strong absorption maximum of compound 1

is located at 491 nm (ε = 5.1 x 104 L mol-1 cm-1). The optical behavior of compound 2

is striking, with its beautiful sapphire color. [3]Cumulene 2 absorbs light throughout 

the entire visible range, with large extinction coefficients between 500 and 700 nm. In 

this region, there are two maxima at λmax = 540 nm (ε = 4.4 x 104 L mol-1 cm-1) and 

631 nm (ε = 4.4 x 104 L mol-1 cm-1). Such panchromatic systems are very promising 

for technologies that need to harvest sunlight in the visible region, such as 

photovoltaic cells. The significant difference in spectra observed between 1 and 2

can be explained by the fact that the conjugated π-system of compound 2 is more 

extended than that of compound 1, even though they are constitutional isomers. The 

absorption spectrum of compound (±)-3 is more common, with an absorption region 
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more extended than compound 1 but less intense, with an absorption maximum at 

489 nm (ε = 1.8 x 104 L mol-1 cm-1). Such an absorption spectrum is similar to those 

of DMA-dicyanovinyl chromophores obtained in CA–RE reactions, both in terms of 

absorption region and molar extinction coefficients.15

Figure. 3. Absorption spectra of compounds 1 (red line), 2 (blue line), and (±)-3

(green line) between 220 and 1000 nm, recorded in CH2Cl2 at 298 K. 

  

2.4. Electrochemistry  

Cyclic voltammograms (CV) were recorded at a scan rate of 0.1 V s-1 in 

CH2Cl2 + 0.2 M n-Bu4NPF6 using ferrocene as external standard, to characterize the 

redox properties of compounds 1, 2, and (±)-3. All the potential values are given 

versus the potential of the Fc+/Fc couple (+0.46 V vs SCE). Pentafulvene 1 shows an 

irreversible oxidation peak at 0.45 V and a quasi-reversible reduction peak at -1.63 V. 

Interestingly, [3]cumulene 2 exhibits similar behavior but with shifted potentials, with 

an irreversible oxidation peak at +0.1 V and a quasi-reversible reduction peak at -

1.31 V. As expected and in accordance with the optical data, [3]cumulene 2 shows a 
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smaller electrochemical energy gap of around 1.41 eV, compared to its isomer 1 

exhibiting an electrochemical energy gap of 2.08 eV. Dihydropentalene (±)-3 exhibits 

an irreversible oxidation at a potential close to that of pentafulvene 1 at +0.56 V and 

a more facilitated two-electron reduction at -1.08 V, associated with two successive 

one-electron transfer oxidation steps. Dihydropentalene (±)-3 shows an 

electrochemical energy gap around 1.64 eV. Whereas the energy gap difference 

between pentafulvene 1 and its isomer, [3]cumulene 2, is affected by shifts of both 

HOMO and LUMO energies, the decrease in energy gap between pentafulvene 1

and dihydropentalene (±)-3 is dominated by the change in the LUMO energy, while 

its HOMO energy remains close to the one of pentafulvene 1. The calculated optical 

gap and electrochemical gaps are in good accordance, which may indicate that the 

lowest-energy absorption is associated with the HOMO-LUMO transition for the three 

different compounds. 

Table 1

Overview of the first reduction and oxidation potentials from cyclic voltammetry (CV) 

and summary of electrochemical and optical energy gaps.

Compound Eox (V)a Ered (V)a
∆Eredox (eV)d

�onset (nm) ∆Eopt (eV)e HOMOf (eV) LUMOf (eV) 

1 0.45b -1.63c 2.08 620 2.00 -5.3 -3.2 

2 0.10b -1.31c 1.41 850 1.46 -4.9 -3.5 

(±)-3 0.56b -1.08c 1.64 728 1.70 -5.4 -3.7 

a Electrochemical data obtained at a scan rate of 0.1 V s-1 in CH2Cl2 + 0.2 M n-
Bu4NPF6 on a glassy carbon working electrode. All potentials are given versus the 
Fc+/Fc couple used as external standard. Complete set of electrochemical data, 
including second oxidation and reduction potentials (when detected) can be found in 
the Supporting Information. b Irreversible peak potential. c Redox potential for 
reversible electron transfer. d The electrochemical gap, �Eredox, is defined as the 
potential difference between the first oxidative onset potential and the first reductive 
onset potentials. e The optical gap, �Eopt, is defined as the energy corresponding to 
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the lowest-energy absorption (λonset). 
f HOMO and LUMO energy levels are 

determined from electrochemical measurements. See Supporting Information for 
details. 

3. Conclusions 

 The Pd-catalyzed Sonogashira cross-coupling between 6,6-dibromo-1,2,3,4-

tetraphenylpentafulvene with DMA-acetylene afforded not only the expected doubly 

coupled product 1 but also [3]cumulene 2 in nearly identical, modest yield. The 

structures were characterized by X-ray diffraction, and a mechanism for the formation 

of 2 was proposed based on an SN2' attack of Pd(0) after the first Sonogashira 

coupling. The CA–RE reactivity of the 6,6-bis(DMA-acetylene)-substituted 

pentafulvene 1 with TCNE was investigated, and the transformation afforded an 

unanticipated dihydropentalene (±)-3 as sole product in very high yield. The formation 

of this unexpected compound, which was also characterized by X-ray diffraction, 

presumably involves an initial CA–RE reaction, which is then followed by a formal 8-

� electrocyclization reaction at room temperature. The opto-electronic properties of 

1-(±)-3 were investigated by UV/Vis spectroscopy and electrochemistry.  Sapphire-

colored 2 features high-intensity absorptions spanning across the entire visible region 

and shows a low HOMO-LUMO gap of 1.41 eV (CV), whereas the gaps for (±)-3

(1.64 eV) and 1 (2.08 eV) are larger. The low electrochemical gap of 2 originates 

from both a high HOMO and a low LUMO energy whereas compound (±)-3 features 

the most anodically shifted first reduction potential (Ered = –1.08 V) and the lowest 

LUMO energy. The new chromophores are now being investigated for opto-electronic 

applications and the scope of the transformations, which lead to their formation, is 

explored in more detail. 
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4. Experimental section 

4.1. General considerations    

4.1.1. Physical characterization. 1H and 13C NMR spectra were taken on a Varian 

AV 400 or a Bruker DRX 600 spectrometer. Spectra were referenced to residual 

solvent peaks. Chemical shifts are expressed in parts per million (δ). Coupling 

constants (J) are expressed in Hertz. Coupling patterns are designated as s, singlet; 

d, doublet; t, triplet; m, multiplet. UV/Vis spectra were recorded on a Varian Cary-500 

spectrophotometer; path lengths of 1 mm were used. Wavelengths are reported in 

nanometers and molar extinction coefficients ε in L mol-1 cm-1. IR spectra were 

recorded on a Perkin Elmer BX FT-IR spectrophotometer; peaks are reported in 

wavenumbers (cm-1). Mass spectrometry was performed by the MS-service at ETH 

Zürich. High resolution matrix-assisted laser-desorption-ionization (HR-MALDI) mass 

spectra were measured on a Varion Ionspec Ultima MALDI-FTICR mass 

spectrometer using trans-2-[3-(4-tertbutylphenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB) as matrix. Electrospray ionization mass 

spectrometry (ESI–MS) was performed on a Bruker Daltonics maXis (UHR–TOF). 

4.1.2. Electrochemical measurements.  All electrochemical measurements were 

performed with an Autolab PGSTAT 12 (Metrohm) and a conventional three-

electrode system, comprising a glassy carbon (GC) substrate as working electrode, a 

platinum wire as the auxiliary electrode, and SCE electrode (Metrohm) as reference. 

The GC electrodes were purchased from CH Instrument, Inc. (Tx, USA) as 2-mm-

diameter rods. The electrodes were polished successively with 1.0, 0.3, and 0.05 µm 

alumina slurry made from dry alumina powder and Milli-Q water on microcloth pads 
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(CH Instruments, Inc. Tx, USA). They were thoroughly rinsed with Milli-Q water, 

acetone and ethanol, and dried with an argon gas stream, before measurements.  

4.1.3. Single-crystal X-ray crystallography. Detailed information on the X-ray crystal 

analysis is included in the Supporting Information.

Crystallographic data have been deposited with the Cambridge Crystallographic Data 

Centre as supplementary publication nos. CCDC 1044103 (1), CCDC 1044102 (2), 

CCDC 1044105 ((±)-3) and CCDC 1044104 (4). Copies of the data can be obtained, 

free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK 

(fax: +44 (0)1223336033 or e-mail: deposit@ccdc.cam.ac.uk). 

4.2. Compound 4 

A two-neck flask under a nitrogen atmosphere was charged with 

tetraphenylcyclopentadienone (2.50 g, 6.50 mmol) and carbon tetrabromide (3.23 g, 

9.75 mmol). Dry dichloromethane (56 ml) was added, and the solution was cooled to 

0 °C. Triisopropyl phosphite (4.8 mL, 19.5 mmol) wa s added dropwise, and the 

solution was stirred for 4.5 h at 0 °C. Then the so lution was warmed and stirred at rt 

for 24 h. The reaction was quenched with 120 mL of a saturated aqueous NaHCO3

solution. The aqueous layer was extracted once with CH2Cl2, and the combined 

organic layers were washed with brine twice. The organic layer was dried over 

MgSO4, and the solvent was evaporated. The residue was purified by column 

chromatography (SiO2, pentane/dichloromethane from 10:0 to 3:7). Compound 4 was 

obtained as red powder in 18% yield (636 mg, 1.18 mmol). Rf = 0.74 (SiO2, 

CH2Cl2/hexane 1:1); mp = 184-185 °C; 1H NMR (400 MHz, CDCl3) � = 7.29-7.20 (m, 
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10H), 7.03-6.95 (m, 6H), 6.84-6.82 (m, 4H); 13C NMR (100 MHz, CDCl3) � = 146.4, 

146.3, 136.7, 134.8, 134.6, 131.7, 130.0, 128.1, 127.2, 127.1, 126.8, 104.2; UV/Vis 

(CH2Cl2) λmax (�) 261 (1.9 x 104), 324 (1.5 x 104); IR (ATR): � = 3054 (w), 2920 (w), 

2151 (w), 1608 (w), 1519 (w), 1485 (w), 1440 (w), 1345 (w),1239 (w), 1114 (w), 1073 

(w), 1027 (w), 912 (w), 865 (w), 840 (w), 790 (w), 776 (w),754 (w), 737 (w), 725 (w), 

693 (m); HR-MS (MALDI/ESI) Calculated for C30H21
79Br2 [M+H]+ 539.0005, found 

539.0006.

4.3. Compounds 1 and 2 

A two-neck flask was charged with compound 4 (540 mg, 1.00 mmol), 4-

ethynyl-N,N-dimethylaniline (305 mg, 2.10 mmol), and triethylamine (34 mL). After 

the solution was degassed, [PdCl2(PPh3)2] (14 mg, 0.02 mmol) and CuI (9 mg, 0.045 

mmol) were added and the solution was stirred under a nitrogen atmosphere for 21 h. 

The solvent was evaporated, and the residue was purified by column 

chromatography (SiO2, pentane/CH2Cl2 from 10:0 to 6:4). Compound 1 was obtained 

as a red solid in 22% yield (150 mg, 0.22 mmol), and compound 2 was isolated as a 

deep blue thin powder in 18% yield (123 mg, 0.18 mmol). Data of compound 1: Rf = 

0.44 (SiO2, CH2Cl2/hexane 1:1); mp = 248-249 °C (dec.); 1H NMR (400 MHz, CDCl3) 

δ = 7.41-7.38 (m, 4H), 7.25-7.17 (m, 6H), 7.00-6.94 (m, 6H), 6.79-6.75 (m, 8H), 6.47 

(d, 4H, J = 8.1 Hz), 2.96 (s, 12H); 13C NMR (100 MHz, CDCl3) � = 150.6, 147.0, 

143.5, 137.5, 135.8, 134.0, 133.0, 132.0, 130.6, 127.6, 127.0, 126.4, 126.1, 115.3, 

111.2, 109.3, 106.5, 90.7, 40.2; UV/Vis (CH2Cl2) λmax (�) 285 (4.0 x 104), 491 (5.1 x 

104); IR (ATR): � = 3054 (w), 2893 (w), 2851 (w), 2179 (m), 2146 (s), 1882 (w), 1601 

(s), 1542 (m), 1521 (s), 1505 (s), 1492 (s), 1480 (s), 1439 (s), 1357 (s), 1333 (m), 

1290 (m), 1230 (s), 1188 (s), 1152 (s), 1116 (s), 1085 (s), 1070 (m), 1027 (m), 1004 

(w), 942 (s), 853 (w), 808 (s), 791 (m), 772 (m), 762 (m), 752 (m), 733 (s), 703 (s), 
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691 (s), 658 (m), 644 (m), 632 (m), 619 (m), 611 (m); HR-MS (MALDI/ESI) 

Calculated for C50H40N2Na [M+Na]+ 691.3084, found 691.3080; calculated for 

C50H40KN2 [M+K]+ 707.2823, found 707.2819. 

Data of compound 2: Rf = 0.38 (SiO2, CH2Cl2/hexane 1:1); mp = 243-244 °C 

(dec.); 1H NMR (400 MHz, CDCl3) δ = 7.53 (d, 2H, J = 8.5 Hz), 7.42-7.37 (m, 6H), 

7.32-7.23 (m, 6H), 7.13-7.11 (m, 6H), 7.01-6.97 (m, 4H), 6.69 (d, 2H, J = 8.5 Hz), 

6.54 (d, 2H, J = 8.5 Hz), 3.07 (s, 6H), 3.06 (s, 6H); 13C NMR (100 MHz, CDCl3) δ = 

151.7, 150.9, 148.8, 142.1, 140.9, 140.7, 136.5, 136.5, 136.3, 135.9, 134.0, 133.1, 

132.9, 131.3, 130.8, 130.8, 130.8, 130.4, 127.8, 127.7, 127.6, 127.5, 126.3, 126.2, 

126.1 125.8 125.7, 122.5, 116.9, 111.8, 111.5, 109.2, 103.9, 88.6, 40.3, 40.3; UV/Vis 

(CH2Cl2) λmax (�) 291 (4.4 x 104), 540 (3.9 x 104), 631 (4.4 x 104); IR (ATR): � = 3642 

(w), 3057 (w), 2917 (m), 2849 (m), 2164 (s), 2039 (s), 1594 (s), 1519 (s),  1494 (s), 

1468 (s), 1438 (s), 1367 (s), 1345 (s), 1313 (s), 1267 (s), 1225 (s), 1187 (s), 1153 (s), 

1088 (s), 1067 (s), 1025 (s), 1001 (s), 962 (s), 946 (s), 911 (s), 847 (m), 810 (s), 

790 (s), 775 (s), 760 (s), 740 (s), 716 (s), 691 (s), 664 (s), 627 (s), 615 (s); HR-MS 

(MALDI/ESI) Calculated for C50H40N2Na [M+Na]+ 691.3084, found 691.3080.

4.4. Compound (±)-3 

Compound 1 (30 mg, 0.04 mmol) was dissolved in CH2Cl2 (8 mL), and 

tetracyanoethylene (5 mg, 0.04 mmol) was added. After 5 h, the solvent was 

evaporated and the residue purified by column chromatography (SiO2, 

pentane/CH2Cl2 from 1:0 to 0:1). Compound (±)-3 was obtained as a dark purple 

solid in 81% yield (26 mg, 0.03 mmol). Rf = 0.59 (SiO2, CH2Cl2); mp = 268-270 °C 

(dec.); 1H NMR (400 MHz, CDCl3) δ = 7.55 (d, 2H, J = 8.5 Hz), 7.43 (d, 2H, J = 6.5 
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Hz), 7.36-3.34 (m, 3H), 7.31-7.25 (m, 6H), 7.22-7.20 (m, 4H), 7.15 (d, 2H, J = 7.5 

Hz), 7.11 (d, 1H, J = 7.5 Hz), 7.06 (t, 2H, J = 7.3 Hz), 6.90 (d, 2H, J = 7.5Hz), 6.76 (d, 

2H, J = 7.8 Hz), 6.62 (d, 2H, J = 8.5 Hz), 3.10 (s, 6H), 3.04 (s, 6H); 13C NMR (100 

MHz, CDCl3) δ = 161.8, 153.6, 151.7, 150.4, 148.8, 148.2, 135.6, 135.2, 134.3, 

133.9, 133.5, 133.3, 132.2, 130.7, 130.5, 130.5, 129.8, 129.6, 129.0, 128.5, 128.5, 

128.0, 127.8, 119.5, 115.6, 114.8, 114.6, 113.9, 112.3, 111.7, 111.6, 107.2, 84.6, 

81.0, 79.1, 48.2, 40.2, 40.1; UV/Vis (CH2Cl2) λmax (�) 337 (2.4 x 104), 489 (1.8 x 104); 

IR (ATR) � = 2920 (w), 2855 (w), 2216 (w), 2162 (m), 1598 (s), 1531 (m), 1492 (m), 

1479 (m), 1443 (m), 1368 (s), 1324 (w), 1283 (w), 1232 (w), 1201 (w), 1180 (s), 1165 

(s), 1125 (s), 1065 (m), 1029 (w), 1000 (w), 945 (w), 871 (w), 827 (w), 827 (w), 

812 (m), 780 (w), 765 (w), 755 (w), 737 (m), 730 (m), 697 (s), 671 (m); HR-MS 

(MALDI/ESI) Calculated for C56H41N6 [M+H]+ 797.3387, found 797.3395; calculated 

for C56H40N6Na [M+Na]+ 819.3207, found 819.3210; calculated for C56H40KN6 [M+K]+

835.2944, found 835.2944. 
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A 6,6-bis[(4-N,N-dimethylanilino)ethynyl]pentafulvene has been prepared using a 6,6-

dibromopentafulvene and 4-ethynyl-N,N-dimethylaniline under Sonogashira cross-

coupling conditions. A push-pull [3]cumulene was formed unexpectedly during this 

reaction in moderate yield. The 6,6-bis[(4-N,N-dimethylanilino)ethynyl]pentafulvene 

was reacted with tetracyanoethylene, and an unprecedented 1,2-dihydropentalene 

was obtained in high yield as the exclusive product.
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1. Electrochemistry 

All electrochemical measurements were performed with an Autolab PGSTAT 

12 (Metrohm) and a conventional three-electrode system, comprising a glassy carbon 

(GC) substrate as working electrode, a platinum wire as the auxiliary electrode, and 

SCE electrode (Metrohm) as reference. The GC electrodes were purchased from CH 

Instrument, Inc. (Tx, USA) as 2-mm-diameter rods. The electrodes were polished 

successively with 1.0, 0.3, and 0.05 m alumina slurry made from dry alumina 

powder and Milli-Q water on microcloth pads (CH Instruments, Inc. Tx, USA). They 

were thoroughly rinsed with Milli-Q water, acetone, and ethanol. The electrodes were 

dried with an argon gas stream, before measurements.  

 

1.1. Cathodic cyclic voltammograms 

 

Figure 1SI. Cathodic cyclic voltammograms obtained at a scan rate of 0.1 V s-1 in 

CH2Cl2 + 0.2 M Bu4NPF6 on a glassy carbon working electrode of compounds 1 (a, 

blue line), 2 (b, red line), and (±)-3 (c, green line). Scan rate = 100 mV s-1. All 

potentials are given versus the Fc+/Fc couple used as external standard. 
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1.2. Anodic cyclic voltammograms 

 

Figure 2SI. Anodic cyclic voltammograms obtained at a scan rate of 0.1 V s-1 in 

CH2Cl2 + 0.2 M Bu4NPF6 on a glassy carbon working electrode of compounds 1 (a, 

blue line), 2 (b, red line), and (±)-3 (c, green line). Scan rate = 100 mV s-1. All 

potentials are given versus the Fc+/Fc couple used as external standard. 

 

1.3. Electrochemical analysis 

As recently pointed out in the literature,1 many different methods can be used 

to determine HOMO and LUMO energy levels from electrochemical measurements. 

For clarity and comparison with other molecules in the literature, we will describe 

here the methodology and calculations performed to access these energy levels. 

 

Initially, Bredas et al.[2] proposed some empirical relations between ionization 

potential (IP), electron affinity (EA), and the onset redox potential measured by 

electrochemistry. These relations were obtained by fitting Valence Effective 

Hamiltonian (VEH) calculations to the corresponding experimental data. These 

empirical relations are often used without correction.  

)(4.4 eVEIP
Ox

Onset
+=    (1) 

)(4.4 eVEEA
Red

Onset
+=    (2) 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Here, onset potentials will be not taken into account, as it is more appropriate 

for the study of polymers, or more generally molecules deposited onto surfaces. We 

prefer to use here half-wave potential E1/2 (which is a good estimation of the formal 

potential, E0’) as we are interested on freely diffusing molecules in solution. Trying to 

rationalize these equations, to estimate the IP and EA from the measured redox 

potentials, it is necessary to correlate the electrochemical potentials to the vacuum 

level. It is convenient to use the standard hydrogen electrode (SHE) as reference for 

the potential values (E), and then correct these potentials using the vacuum level 

reference. The conversion from SHE to the vacuum reference has been discussed 

originally by Trasatti,[3] who has determined the energy corresponding to the standard 

hydrogen electrode (SHE) as 4.6 ± 0.1 eV on the zero vacuum-level scale.[4] 

)(1.06.4/ eVE
vacuumSHE

±=   (3) 

It is thus possible to calculate the IP and EA from the redox onset potential, 

relative to the vacuum level: 

EAg /AgCl = ESHE 0.197(eV )  (4) 

)(403.4/ eVEE VACAgClAg +=   (5) 

Assuming Evac = 0, then EA = e
2/1

E , where e is the electron charge, this 

allows one to determine the IP and EA energies from the electrochemical 

experiments. One can notice that the empirical relations determined by Bredas et al. 

are valid for potentials measured versus Ag/AgCl reference electrode. We need here 

to add a correction since the potentials are measured versus SCE reference 

electrode and then expressed versus Fc+/Fc redox couple as an external reference.[5] 

)(241.0 eVEE
SHESCE

=   (6) 

)(359.4 eVEE
VACSCE

+=   (7) 
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)(460.0
/

eVEE
SCEFcFc

+=+   (8) 

From relation (1), (2) and (8) we obtain in our case: 

HOMOeVEIP
Ox

=+= )(819.42/1  (9) 

LUMOeVEEA
Red

=+= )(819.42/1 (10) 

Table 1SI. Ionization potentials and electron affinities values for pentafulvalene 1, 

[3]cumulene 2, and dihydropentalene (±)-3. 

Compound IP (eV) EA (eV) 

1 5.23 3.19 

2 4.92 3.51 

(±)-3 5.38 3.74 

 

The electrochemical energy gap, Eredox, is calculated as the potential 

difference between the half-wave potential E1/2 of the first oxidation and of the first 

reduction of the studied compound. As oxidation processes are not reversible for 

these compounds, peak potentials were chosen instead of E1/2 for the calculation of 

Eredox, which can introduce an error of approximately ±0.05 eV.  

The optical energy gap, Eopt, is defined as the energy corresponding to the 

onset wavelength ( onset) of the lowest-energy absorption. For clarity and comparison, 

we chose to take as onset, the wavelength corresponding to 2.5% of the intensity of 

the maximum wavelength ( max) of the lowest energy absorption. 
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Table 2SI. onset value and corresponding optical energy gap, Eopt, for 

pentafulvalene 1, [3]cumulene 2, and dihydropentalene (±)-3.  

 

 

 

 

 

 

2. X-Ray data 

2.1. Instrumentation and refinement 

Crystals of compounds were measured on a Bruker/Nonius APEX-II or a Bruker 

Kappa APEX-II Duo CCD diffractometer equipped with sealed tube Mo-K  radiation 

(  = 0.71073 Å, graphite monochromator) at 100 K.  The structures were solved by 

direct methods with SHELXS and refined by full-matrix least-squares analysis using 

SHELXL with the program package Olex2.[14-16] Hydrogen atoms were restrained to 

idealized positions in terms of a riding model.   

 

2.2. X-Ray crystal structure of compound 4 (CCDC 1044104) 

 Crystallogenesis: vapor diffusion of n-pentane into a CH2Cl2 solution at 4 °C, 

C30H20Br2, M = 540.28 g mol-1, monoclinic, Space group: Pc, a = 6.4541(3) Å, b = 

11.8259(6) Å, c = 14.8702(8) Å,  = 91.197(2)°, V = 1134.73(10) Å3, Z = 2, Dc = 

1.581 g cm-3, (Mo-K) = 3.588 mm-1, F(000) = 540, T = 100 K, Reflections collected: 

18632, Independent reflections: 4688 (Rint = 0.0278), Data/restraints/parameters: 

Compound onset (nm) Eopt (eV) 

1 620 2.00 

2 850 1.46 

(±)-3 728 1.70 
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4688/2/289, Final R indices (I>2 ) R1 = 0.0247, R indices (all data): wR2 = 0.0593, 

Goodness-of-fit on F2 of 0.974. 

 

Figure 3SI. Crystal structure of compound 4. Thermal ellipsoids of non-H atoms at 

50% probability. Selected bond lengths (Å) and torsion angles (°): C5-C8 1.340(4), 

C8-C20 1.482(3), C8-C17 1.485(3), C9-C17 1.358(4), C9-C1B 1.480(3), C9-C15 

1.486(3), C11-C27 1.396(4), C11-C26 1.397(4), C11-C15 1.477(4), C14-C3 1.382(4), 

C14-C36 1.385(4), C15-C20 1.355(3), C17-C21 1.487(3), C18-C21 1.381(4), C18-

C41 1.383(4), C20-C22 1.487(3), C21-C1 1.379(4), C22-C38 1.388(4), C22-C1C 

1.393(4), C26-C3 1.385(4), C27-C36 1.380(4), C29-C30 1.379(4), C29-C35 1.384(4), 

C30-C16 1.386(4), C35-C1E 1.381(4), C38-C2 1.393(4), C41-C4 1.368(4), C1-C1D 

1.379(4), C2-C10 1.366(4), C4-C1D 1.381(5), C10-C1A 1.369(5), C16-C1B 1.409(3), 

C1A-C1C 1.384(4), C1B-C1E 1.391(4), C8-C20-C22-C1C 84.1(4), C27-C11-C15-C9 

41.7(4), C17-C9-C1B-C16 41.7(4), C8-C17-C21-C1 92.8(3), Br2-C5-C8-C17 -6.6(4). 
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2.3. X-Ray crystal structure of compound 1 (CCDC 1044103) 

Crystallogenesis: vapor diffusion of n-pentane into a CH2Cl2 solution at 4 °C, 

C50H40N2, M = 668.84 g mol-1, T = 100 K, monoclinic, Space group: P21, a = 

6.3795(8) Å, b = 14.9657(19) Å, c = 18.793(3) Å,  = 93.088(3)°, V = 1791.6(4) Å3, Z 

= 2, Dc = 1.240 g cm-3,  (Mo-K) = 0.071 mm-1, F(000) = 708.0, Reflections collected: 

16308, Independent reflections: 4269 (Rint = 0.0582), Data/restraints/parameters: 

4269/1/473, Final R indices (I>2 ), R1 = 0.0405, Final R indices (all data): wR2 = 

0.0813, Goodness-of-fit on F2 of 1.011. 

 

Figure 4SI. Crystal structure of compound 1. Thermal ellipsoids of non-H atoms at 

50% probability. Selected bond lengths (Å), torsion angles (°) and quinoid character 

r (Å): C13-C19 1.394(3), C13-C28 1.377(3), C14-C17 1.381(3), C14-C28 1.380(3), 

C15-C33 1.388(3), C16-C25 1.382(3), C3-C4 1.482(3), C18-C37 1.207(3), C3-C7 

1.376(3), C18-C39 1.424(3), C3-C11 1.479(3), C20-C35 1.404(3), C4-C8 1.479(3), 
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C20-C37 1.421(4), C4-C23 1.369(3), C20-C41 1.399(4), C5-C26 1.430(3), C21-C29 

1.392(4), C5-C38 1.396(4), C21-C33 1.380(4), C5-C42 1.401(4), C22-C27 1.411(3), 

C6-C7 1.490(3), C22-C41 1.379(4), C6-C16 1.394(3), C24-C50 1.380(4), C6-C30 

1.394(3), C25-C36 1.385(3), C7-C12 1.462(3), C27-C43 1.405(3), C8-C15 1.399(3), 

C29-C34 1.386(3), C8-C34 1.398(3), C30-C31 1.387(3), C9-C23 1.488(3), C31-C36 

1.383(3), C9-C24 1.400(3), C32-C44 1.406(4), C9-C40 1.388(3), C32-C45 1.411(4), 

C10-C26 1.201(3), C35-C43 1.374(3), C10-C39 1.430(3), C38-C45 1.378(3), C11-

C17 1.405(3), C40-C49 1.390(4), C11-C19 1.398(3), C42-C44 1.384(3), C12-C23 

1.473(3), C48-C49 1.385(4), C12-C39 1.381(3), C48-C50 1.380(4), C12-C23-C9-C24 

69.5(9), C3-C4-C8-C34 -54.0(5), C3-C4-C11-C19 -35.5(6), C12-C7-C6-C30 83.6(8), 

C12-C39-C20-C41 13.0(7), C12-C39-C5-C38 -14.7(5), r (phenyl ring F) 0.028, r 

(phenyl ring E) 0.022. 

 

2.4. X-Ray crystal structure of compound 2 2Cl2 (CCDC 1044102) 

Crystallogenesis: vapor diffusion of n-pentane into a CH2Cl2 solution at 4 °C, 

C51H42Cl2N2, M = 753.76 g mol-1, T = 100 K, triclinic, Space group: P-1, a = 

10.5547(15) Å, b = 11.9452(16) Å, c = 17.833(2) Å,  = 75.091(4)°,  = 76.590(5)°,  

= 65.991(4)°, V = 1964.0(5) Å3, Z = 2, Dc = 1.275 g cm-3, (Mo-K) = 0.204 mm-1, 

F(000) = 792, Reflections collected: 33899, Independent reflections: 9130 (Rint = 

0.0279), Data/restraints/parameters: 9130/30/519, Final R indices (I>2 ): R1 = 

0.0432, R indices (all data): wR2 = 0.1514, Goodness-of-fit on F2 of 1.104. 
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Figure 5SI. Crystal structure of compound 2 (solvent molecules are omitted for 

clarity). Thermal ellipsoids of non-H atoms at 50% probability. Selected bond lengths 

(Å), torsion angles (°) and quinoid character r (Å): C1-C5 1.4589(18), C1-C16 

1.4702(19), C1-C24 1.371(2), C3-C17 1.230(2), C3-C30 1.3641(19), C4-C6 

1.4112(18), C4-C15 1.370(2), C5-C17 1.3570(19), C5-C35 1.4578(19), C6-C21 

1.395(2), C6-C30 1.444(2), C7-C12 1.4171(19), C7-C21 1.369(2), C9-C19 1.394(2), 

C9-C32 1.3863(19), C10-C29 1.401(2), C10-C40 1.3826(19), C11-C23 1.4237(18), 

C11-C27 1.2020(19), C12-C15 1.407(2), C13-C23 1.398(2), C13-C26 1.3729(19), 

C14-C46 1.383(2), C14-C49 1.377(2), C16-C41 1.395(2), C16-C43 1.397(2), C18-

C42 1.380(2), C18-C43 1.383(2), C19-C22 1.398(2), C19-C24 1.4773(18), C20-C26 

1.403(2), C20-C34 1.406(2), C22-C33 1.392(2), C23-C44 1.397(2), C24-C31 

1.4668(18), C25-C38 1.389(2), C25-C53 1.387(2), C27-C30 1.4240(18), C28-C41 
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1.383(2), C28-C42 1.385(2), C29-C35 1.4691(18), C29-C39 1.398(2), C31-C35 

1.3725(19), C31-C38 1.473(2), C32-C51 1.390(2), C33-C51 1.377(2), C34-C44 

1.3775(19), C38-C46 1.395(2), C39-C45 1.3916(19), C40-C48 1.387(2), C45-C48 

1.389(2), C49-C53 1.378(2), C10-C29-C35-C5 -43.8(2), C24-C31-C38-C46 -

62.03(19), C22-C19-C24-C1 -49.6(2), C5-C1-C16-C43 -48.0(2), C4-C6-C30-C3 

10.3(2), C13-C23-C30-C3 22.5(2), C27-C30-C5-C35 4.0(0), r (phenyl ring F) 0.025, 

r (phenyl ring E) 0.038. 

 

2.5. X-Ray crystal structure of compound (±)-3 2Cl2 (CCDC 1044105) 

Crystallogenesis: vapor diffusion of n-pentane into a CH2Cl2 solution at 4 °C, 

C57N6Cl2H42, M = 881.86 g mol-1, T = 100 K, monoclinic, Space group: C2/c, a = 

24.8188(15) Å, b = 10.1321(6) Å, c = 40.666(2) Å,  = 105.334(2) °, V = 9862.1(10) 

Å3, Z = 8, Dc
 = 1.188 g cm-3, (Mo-K)  = 0.175 mm-1, F(000) = 3680.0, Reflections 

collected: 8422, Independent reflections: 8422 (Rint = 0.0000), 

Data/restraints/parameters: 8422/8/597, Final R indices (I 2 ): R1 = 0.0600, Final R 

indices (all data): wR2 = 0.1536, Goodness-of-fit on F2 of 1.035. 
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a)  

b)  

Figure 6SI. Crystal structure of compound (±)-3 (solvent molecules are omitted for 

clarity). Thermal ellipsoids of non-H atoms at 50% probability. Representation b) 

allows a better visualization of the phenyl ring pointing toward the back of the 
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molecule in representation a). Selected bond lengths (Å), torsion angles (°) and 

quinoid character r (Å): C20-C32 1.516(3), C21-C22 1.494(3), C21-C24 1.476(3), 

C26-C27 1.393(3), C3-C4 1.393(3), C26-C31 1.400(3), C3-C46 1.468(3), C27-C28 

1.376(4), C3-C50 1.392(3), C28-C29 1.387(3), C4-C47 1.388(3), C29-C30 1.370(4), 

C30-C31 1.390(4), C32-C33 1.484(3), C2-C1A 1.406(3), C32-C39 1.357(3), C2-C18 

1.414(3), C33-C34 1.388(4), C1A-C1B 1.375(3), C33-C38 1.393(3), C1B-C5 

1.400(3), C34-C35 1.382(3), C5-C6 1.469(3), C35-C36 1.384(3), C5-C17 1.397(3), 

C36-C37 1.372(4), C6-C7 1.444(3), C37-C38 1.387(3), C6-C54 1.379(3), C39-C40 

1.482(3), C7-C8 1.379(3), C39-C46 1.481(3), C7-C21 1.543(3), C40-C41 1.392(3), 

C8-C9 1.413(3), C40-C45 1.393(3), C8-C19 1.446(3), C41-C42 1.380(3), C9-C10 

1.208(3), C42-C43 1.377(3), C10-C11 1.417(3), C43-C44 1.379(3), C11-C12 

1.390(3), C44-C45 1.382(3), C11-C51 1.406(3), C47-C48 1.372(4), C12-C13 

1.378(3), C48-C49 1.385(3), C13-C14 1.411(3), C49-C50 1.387(3), C14-C52 

1.406(4), C51-C52 1.372(3), C17-C18 1.374(3), C54-C55 1.430(4), C19-C20 

1.512(3), C54-C56 1.435(4), C19-C46 1.354(3), C20-C21 1.598(3), C20-C26 

1.532(3), C4-C3-C46-C19 55.4(3), C32-C39-C40-C41 54.0(3), C20-C32-C33-C38 

61.4(3), C32-C20-C26-C27 63.3(3), C17-C5-C6-C7 42.3(3), C54-C6-C7-C8 42.2(3), 

C5-C6-C54-C55 12.1(4), C12-C11-C8-C19 15.3(2), r (phenyl ring F) 0.028, r 

(phenyl ring E) 0.030. 
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3. 1 -3 

 

Figure 7SI. 1H NMR (CDCl3, 400 MHz) of 1. 

 

 

Figure 8SI. 13C NMR (CDCl3, 100 MHz) of 1. 
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Figure 9SI. 1H NMR (CDCl3, 400 MHz) of 2. 

 

 

Figure 10SI. 13C NMR (CDCl3, 100 MHz) of 2. 
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Figure 11SI. 1H NMR (CDCl3, 400 MHz) of (±)-3. 

 

 

Figure 12SI. 13C NMR (CDCl3, 100 MHz) of (±)-3. 
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