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Ultrafast myoglobin structural dynamics observed
with an X-ray free-electron laser
Matteo Levantino1,*, Giorgio Schirò2,*, Henrik Till Lemke3, Grazia Cottone1, James Michael Glownia3, Diling Zhu3,

Mathieu Chollet3, Hyotcherl Ihee4,5, Antonio Cupane1 & Marco Cammarata6

Light absorption can trigger biologically relevant protein conformational changes. The light-

induced structural rearrangement at the level of a photoexcited chromophore is known to

occur in the femtosecond timescale and is expected to propagate through the protein as a

quake-like intramolecular motion. Here we report direct experimental evidence of such

‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering

measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An

ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed

by a delayed protein expansion. As the system approaches equilibrium it undergoes damped

oscillations with a B3.6-picosecond time period. Our results unambiguously show how

initially localized chemical changes can propagate at the level of the global protein

conformation in the picosecond timescale.
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C
hemical reactions often involve the motion of both
electrons and nuclei of the participating molecules. In
the case of proteins, the molecular machines of living

organisms, the study of the dynamics of molecular motions is
particularly fascinating since localized ultrafast chemical events,
such as bond breaking, may trigger biologically relevant concerted
motions of thousands of atoms usually referred to as protein
conformational changes1. Many studies have shown that proteins
are dynamic objects with a hierarchy of various intramolecular
motions spanning a wide range of time and length scales1,2. In
this regard, photosensitive proteins, which can be excited with
ultrashort light pulses, serve as excellent model systems since they
allow studying dynamics in a wide time window extending from a
few tens of femtoseconds to seconds or more3. Many of such
studies have used myoglobin (Mb), a relatively small protein
(B18 kDa) that has been named the hydrogen atom of biology4

and has played a central role for our understanding of protein
dynamics5. Mb is a monomeric protein consisting of 153 amino
acids folded into eight a-helices connected by short loops. Small
ligands such as molecular oxygen (O2) and carbon monoxide
(CO) are able to bind reversibly to Mb and the bond between the
ligand and the haem molecule contained in the active site of the
protein can be photolyzed with high efficiency within 50 fs6.
The events following photolysis have been extensively studied
with a variety of techniques such as time-resolved optical
absorption7–10, circular dichroism11, resonance Raman12–14,
photoacoustic calorimetry15 and transient grating spectro-
scopy16,17. The results of these investigations indicate that an
initial ultrafast rearrangement of the haem molecule, which
ensues a so-called doming of the haem structure18 and an out-
of-haem-plane motion of the central iron ion19, triggers a series
of structural changes that extend from the amino acids close to
the haem through the entire polypeptide chain and solvent
hydration layer20. The initial ultrafast protein response to the
breaking of the bond between the ligand and the protein has been
described as a quake-like motion of Mb, since the propagation of
the strain released upon photoexcitation through the protein is
similar to the propagation of acoustic waves during an
earthquake21. Such ‘proteinquake’ model has been used to
describe the structural dynamics of other haem22 and non-
haem proteins23–25. The analysis of the elastic response of the
protein to the active site rearrangement is complicated by the
simultaneous dissipation of the excess energy that is deposited by
the photolysis pulse on the haem chromophore. Transient
resonance Raman experiments19,26 and molecular dynamics
simulations27 have demonstrated that most of haem cooling
occurs within a few ps mostly through direct haem-solvent
energy transfer. Dissipation of residual excess kinetic energy
occurs through the polypeptide chain at a longer timescale (few

tens of picoseconds) as demonstrated by transient grating
spectroscopy28. Moreover, analogous experiments performed on
deoxyMb16 have suggested the non-thermal origin of the quake-
like response observed after photolysis of carbonmonoxy
myoglobin (MbCO). A first experimental evidence of a
proteinquake based on the use of a direct structural probe has
been recently reported by Arnlund et al.29 in the case of
multiphoton excitation of a bacterial photoreaction centre. These
authors have used time-resolved X-ray solution scattering, an
experimental technique able to track the structural dynamics of
proteins in solution30, to show that the backbone carbon atoms of
the protein helices increase their distance from the interior of the
photoreaction centre on a picosecond timescale. However, under
the extensive protein multiphoton absorption conditions
employed, protein motions occurred in the presence of a very
large excess energy deposited in the system, and the observed
protein response may not reflect physiologically relevant protein
functioning conditions. In the case of Mb, the experimental
investigations performed so far were based either on
spectroscopic measurements or did not have sufficient time
resolution to measure the timescale of the proteinquake. Indeed,
time-resolved X-ray solution scattering recently performed on
Mb have demonstrated31-33 that, although subtle protein
structural changes have been observed in the nanoseconds-to-
microseconds timescale, the most significant global structural
rearrangements, corresponding to a relative motion of helices33

(as revealed by changes in the wide-angle X-ray scattering
(WAXS) signal) and an estimated 22 Å3 volume change31 (as
probed with small-angle X-ray scattering (SAXS)), occur within
the time resolution of 100 ps available in those experiments, and
in agreement with previous transient grating spectroscopy
results17.

Here, we use the femtosecond X-ray pulses produced by the
Linear Coherent Light Source (LCLS) X-ray free-electron laser
(X-FEL) to visualize the structural response of Mb after
photolysis. We show how the perturbation at the active site level
propagates to the global protein structure with a timescale set by
the acoustic speed of sound, thus confirming the proteinquake
hypothesis21. The time evolution of both the radius of gyration
and the volume of Mb reveals an oscillatory collective motion of
the protein atoms that is damped in few ps, thus highlighting the
relevance of underdamped low-frequency vibrations in proteins.
Our data illustrate how ultrafast studies are potentially able to
capture the intrinsic ballistic-like nature of protein motion that is
generally hidden in ensemble measurements at longer timescales.

Results
Time-resolved X-ray scattering difference patterns. To decipher
the exact timescale of the ultrafast structural dynamics in Mb,
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Figure 1 | Experimental set-up. The sample (a 2.35-mM MbCO solution) was circulated in a closed loop through a fused-silica capillary (0.3 mm

diameter) positioned at the overlap between the X-ray pulses (9 keV, 30 fs) produced by the LCLS (B1010 photons per pulse at 9 keV are transmitted

by a silicon monochromator) and the photolysis pulses (538 nm, 250 fs) produced by the optical laser system (B0.3 mJ mm� 2). By monitoring the

pattern of the X-rays scattered by the sample at different time delays between the optical and X-ray pulses, it was possible to track the structural

changes occurring in the sample after photolysis.
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we have performed femtosecond time-resolved X-ray solution
scattering experiments on Mb at the LCLS X-FEL (Fig. 1, see
Methods). Laser-induced time-resolved difference scattering
curves obtained by photoexciting a solution of horse MbCO with
250 fs pulses at 538 nm are shown in Fig. 2.

The probe X-ray pulses (B30 fs long) hit the sample at several
time delays after photolysis, spanning a time range up to 100 ps
with a time resolution of B500 fs (see Methods). Changes in the
X-ray scattering signal have been simultaneously monitored both in
the SAXS and WAXS regions. The overall shape of the difference
signals is similar to what has been observed in the past for Mb with
a much lower (100 ps) time resolution30–33, with the 100 ps
difference pattern measured in the present experiment (see Fig. 2)
being essentially identical to what has been reported in the
literature31,32. The signal changes in shape and grows in intensity
mostly within 10 ps, and a clear difference signal is observed both
in the SAXS and WAXS regions already at 0.8 ps from photolysis.

Analysis of the X-ray scattering signal time evolution. The
radius of gyration (Rg) and volume (Vp) of proteins can be
directly obtained from the SAXS signal34 (solid black lines in
Fig. 2, see Methods). The ultrafast increase of Rg at nearly
constant Vp (Fig. 3, top panel) and the subsequent increase in Vp

(Fig. 3, bottom panel), which is delayed by B1 ps, clearly shows
that a change in the mass distribution of the protein precedes its
expansion (see Supplementary Fig. 1 for a comparison of
analyses based on different data sets). Considering the overall
size of Mb (RgB17 Å), this implies that the strain released upon
photolysis roughly propagates at B20 Å ps� 1, in agreement with
the expected speed of sound in proteins35. Analogous timescales
are observed in the WAXS region, where a clear ultrafast
difference signal (negative peak at B0.75 Å� 1) appears within
1 ps from photoexcitation and it further changes in shape with a
negative peak at B0.3 Å� 1 developing in few ps. The
simultaneous evolution of both SAXS and WAXS signals
shows that the motion of secondary structure elements is

responsible for the Rg and Vp changes. In light of our data, it
is clear that the global conformational change reflected in the
WAXS difference signal, already attributed to the relative
motion of protein helices30–33 and in analogy to what has
been found with time-resolved WAXS measurements on
other photosensitive proteins21,36,37, is essentially completed in
10 ps. As already demonstrated in previous studies7–10,31,32,38,
further more subtle structural changes, which complete the
conformational relaxation towards the unbound Mb equilibrium
state, occur at longer timescales (extending from a few
nanoseconds to a few microseconds).

Discussion
The results here presented demonstrate that Mb undergoes
significant global structural changes in the ps timescale after
photolysis of the bond between the protein and the CO ligand. At
difference with the recent report by Arnlund et al.29, by
monitoring simultaneously both the SAXS and WAXS region,
we have been able to extract directly the time evolution of
relevant structural parameters. Our data clearly show that, even in
biophysically relevant photoexcitation conditions (we estimate
that, in our experimental conditions, B1.6 photons are absorbed
per chromophore within the duration of a photolysis pulse), an
ultrafast proteinquake is observed.

Such an ultrafast, ballistic-like response of the protein might
seem to contrast with the exponential-like time dependencies that
typically characterize protein relaxations at longer timescales.
Indeed, kinetic experiments on protein ensembles typically probe
conformational relaxations that are dominated by thermally
activated steps and do not reflect the actual relaxation of individual
proteins, but rather the average timescale of energy barriers
crossing. In this respect, ultrafast experiments using extremely
short photoexcitation pulses have the advantage of unveiling the
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Figure 2 | Photolysis-induced time-resolved X-ray scattering difference

patterns for MbCO in solution. A significant change in both intensity and

shape is evident in the SAXS region (a); continuous black lines are fittings

in terms of Guinier analysis (see Methods). Data in the WAXS region

(b, magnified by a factor 20) show a difference signal that develops within

1 ps and then changes in shape, while increasing in amplitude, with a

timescale of the order of a few picoseconds. Data have been vertically

offset for clarity.
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Figure 3 | Time-dependent changes of protein structural parameters. The

analysis of time-resolved SAXS data (blue symbols) reveals that Rg

increases by B1 Å within 1 ps and exhibits damped oscillations around its

equilibrium value (a; the red curve represents a damped oscillation with a

3.6 ps time period and 6 ps decay time). The increase in the protein volume

(b) is delayed with respect to the Rg increase: Vp increases by 220 Å3 within

2 ps. The observation of a delayed volume expansion implies that an initial

ultrafast redistribution of protein mass from the active site towards the

outside solvent (as measured by the Rg increase) occurs without significant

volume change within 1 ps. After few tens of ps, Vp relaxes to a value

slightly higher with respect to that before photoexcitation (DVpB20 Å3 at

100 ps). Error bars are from the fitting procedure used to obtain DRg and

DVp, and correspond to one s.d. The black vertical lines are guides to the

eye and they are spaced by 0.7 ps.
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intrinsic nature of protein elementary motions before thermally
activated processes start to play a role (Fig. 4). Similar evidence of
such elementary stepwise protein motions have been recently
obtained with ultrafast infrared spectroscopy39 and single-
molecule fluorescence resonance energy transfer experiments40.
We speculate that individual ballistic-like motions (e.g., one for
each bond formation/breaking), rather than gradual structural
transitions from one protein state to the other, could be a general
feature of protein functional motions, although more experiments
will be needed to confirm such a hypothesis.

Another important result of our study is that the Mb structure
oscillates with a period of B3.6 ps as evidenced by the time

dependence of Rg and Vp. Interestingly, a collective vibrational
mode of Mb with a comparable time period (B4 ps) has been
suggested to be strongly coupled to the conformation of haem
and of the proximal histidine and is activated by the strain release
induced by photolysis41. Figure 5 illustrates how the collective
mode involves large protein regions from the active site to the
protein surface. Such coupling with the mode at B4 ps was
already suggested on the basis of transient grating
investigations17, although oscillations of the Mb structure could
not be detected in those experiments.

The observation of oscillations in Mb structural parameters
(Rg and Vp) demonstrates that the elastic response of Mb is
not dominated, at least in the ultrafast timescale, by damping
mechanisms. Although evidences of underdamped protein
collective motions have been recently obtained with THz
spectroscopy42, this is a surprising result since theoretical
arguments would suggest that low-frequency (o50 cm� 1)
protein oscillations are overdamped in a liquid environment.
Indeed, a simple model approximating Mb as a homogeneous
elastic sphere oscillating in water predicts a damping time of
B1.5 ps for an oscillation period close to that observed in
our experiment (3.6 ps, see Methods). More sophisticated
computational analysis based on atomic resolution protein
models predict low-frequency protein collective motions to be
overdamped43. At difference, our data show that Mb can also
undergo underdamped collective vibrations at B10 cm� 1 after
the bond between the protein and the ligand is broken.

The results here presented demonstrate that the combination
of sub-picosecond time resolution available at X-FEL sources and
the direct structural sensitivity of X-ray solution scattering
techniques can be advantageously used to investigate the intrinsic
nature of protein elementary motions.

From the point of view of biology, the present study may
be of general relevance for understanding the structural basis
of biological reactions that involve ultrafast chemical
processes, as it is the case of electron transfer in photosynthesis.
It is likely that the initial primary charge separation
events, which are known to be photoinduced and occur
in the picosecond timescale, are modulated by global
protein motions analogous to those reported for Mb in the
present paper.
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Figure 4 | Effect of ensemble average on an experimental observable after an ultrafast perturbation. We postulate that elementary motions at the level

of a single protein have a quake-like ballistic nature. (a) Time evolution of an observable in an idealized single-molecule experiment (red curve).

Experiments on large protein ensembles (blue curve) are able to detect such quake-like transitions only at very short times (step I), when the initial

synchronization established by the photoexcitation pulse is still preserved. At longer times (step II), the observed time evolution is dominated by thermally

activated transitions from one protein state to the other, which result in the ‘exponential-like’ kinetics typically observed in most time-resolved experiments.

(b) Simplified free-energy diagram illustrating the difference between a downhill transition along the energy landscape (step I) and a thermally activated

process; in the latter case, different protein molecules will undergo the same structural transition but with a statistically distributed onset.
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Figure 5 | Myoglobin proteinquake. Cartoon representation of the Mb

three-dimensional structure; the segments of the polypeptide chain

contributing to the collective mode having a B4 ps period (which is

activated by ligand release) are highlighted in red (see Methods for details).

This vibrational mode involves the haem, the helix to which the haem is

covalently bound (F), and parts of the A, C, E, G and H helices. Note that

the regions involved participate to define the haem pocket and extend to

the protein surface.
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Methods
Sample preparation and data acquisition. The experiment was performed at the
X-ray Pump and probe (XPP) endstation of the LCLS X-FEL (SLAC National
Accelerator Laboratory). The sample was a solution of horse MbCO in 0.1 M
phosphate buffer at pH 7.4 with a protein concentration of 2.35 mM
(B40 mg ml� 1) and a threefold molar excess of sodium dithionite. The vial
containing the 20 ml of CO-saturated Mb solution was connected to a liquid
flowing system driven by an HPLC pump able to circulate the solution
(3 ml min� 1 flow speed) in a closed loop through a 0.3 mm fused-silica capillary
(10 mm wall thickness) positioned at the intersection of the optical and X-ray laser
beams. Photolysis of the bond between Mb and CO was achieved with circularly
polarized pulses (B250 fs full-width at half-maximum; 25 mJ per pulse; 538 nm)
focused to a 300 mm full-width at half-maximum circular spot (energy density
B0.3 mJ mm� 2 at the sample), in nearly collinear (B1�) geometry. The absor-
bance of the sample at the pump wavelength was B1.0 optical density. Given the
size, energy of the photolysis beam, the concentration and molar extinction coef-
ficient of the haem, B1.6 photons are expected to be absorbed by each haem
molecule at each photolysis pulse. A monochromatic X-ray beam at 9 keV was
produced by a Si(111) double-crystal monochromator and focused to 100 mm by
beryllium refractive lenses. Time-resolved X-ray scattering images were acquired
with a two-dimensional charge-coupled device detector (Rayonix SX165,
2,048� 2,048 pixels) at 16.8 cm from the sample. Each image is the result of the
accumulation of 360 X-ray shots. Investigated time delays ranged between � 3 and
100 ps (with negative time delays corresponding to a probe pulse arriving before
the photolysis one). In particular, we measured every 0.5 ps between � 3 and 10 ps;
every 5 ps between 10 and 50 ps; every 50 ps at longer time delays. Reference images
at a time delay of � 100 ps were also recorded every 7 other images. The scattering
pattern at each time delay is the result of an average over 50 repetitions. The
repetition rate of the experiment was 120 Hz and the estimated time resolution was
B500 fs.

Experimental time resolution. The relative timing between X-ray and visible
pulses has been monitored using the timing tool developed44 at the XPP endstation
of the LCLS X-FEL45, which exploits the ultrafast free-carrier generation induced
by X-rays in a Si3N4 membrane to encode the relative arrival time of X-ray and
visible pulses. The timing tool data show that over the B6 h of data collection the
X-ray/laser timing has been stable to about B150 fs and that the jitter was
about 200 fs. The time resolution of the experiment is also affected by the group
velocity mismatch between the X-ray and optical pulses propagating inside the
300mm thick protein solution. By taking into account both effects and the duration
of photolysis pulses (B250 fs), we estimate an overall time resolution of B500 fs.

Calculation of scattering difference patterns. Two-dimensional scattering
images recorded with a Rayonix SX165 detector were azimuthally averaged to give
one-dimensional scattering patterns. The scattering angle y was converted to
momentum transfer q using the formula q¼ 4p/lsin(y/2), where l¼ 1.377 Å is the
X-rays wavelength. Since the changes induced in the scattering patterns by optical
photoexcitation account for less than a percent of the absolute signal, data
were normalized30 at 1.4±0.1 Å� 1 before calculating difference patterns
with respect to the pattern measured at � 100 ps. For a given time delay, each
scattering difference is compared with the average difference and a simple reduced
w2 : w2

0 ¼ 1=Nq
P

i Ii �oI4i½ �2=s2
i o5 criterion is used to discard the differences

that are too far away from the average one. In the formula above, Ii refers to the
scattered intensity for a given time delay and q-bin, Ii is the scattered intensity
averaged over all repetitions, and si is the error bar on the experimentally
measured intensity. The differences that satisfy the above criterion are then used to
produce the averages difference patterns shown in the paper. This procedure
usually rejects B15–25% of the differences.

Analysis of SAXS data. The scattered intensity of a dilute protein solution in the
small-angle region can be approximated by the following expression46:

I qð Þ / Dr2 V2
p exp � q2R2

g

.
3

� �
¼ rpVp �rbVp

� �2
exp � q2R2

g

.
3

� �
ð1Þ

where Dr¼ rp—rb is the electron density difference between the protein and
surrounding buffer solution, Vp is the protein volume, q is the magnitude of the
scattering vector and Rg is the protein radius of gyration. A conformational change
of the protein may affect Vp and Rg, but not the total number of electrons it
contains (rpVp) that has thus been kept constant (B9,900 electrons) in the fits of
SAXS signals. Since the experimental data are SAXS difference patterns, they have
been fitted using the following expression:

DI ¼ I q; Vp;Rg
� �

� I q; V0
p ;R0

g

� �
ð2Þ

with R0
g ¼ 17 Å, V0

p ¼ 23; 500 Å
3

and rb¼ 0.34 electron Å� 3.

Representation of Mb activated vibrational mode. To obtain a graphical
representation of the residues most affected by the Mb collective mode having a
B4 ps period, we have followed the reasoning by Seno and Go41. Starting from

their normal mode analysis, the authors have evaluated the magnitude of the
ligand-induced conformational change by calculating, for each residue (including
the haem molecule), the mass-weighted square atomic displacement over all the
atoms belonging to the residue. In particular, we used the data reported in figure 8
of ref. 41 to calculate the involvement of each residue of the Mb sequence in the
B4 ps collective normal mode. The residues that have the highest values (410% of
the maximum) of the mass-weighted square displacements are depicted in
red in Fig. 5.

Elastic sphere model. To estimate the frequency and damping time of Mb
vibrational modes, we have used a model that approximates the protein as an
homogeneous elastic sphere oscillating in water. Under this approximation the
frequencies and damping times can be calculated following the procedure described
by Talati and Jha47. In particular, the (complex) normalized frequencies (s) have to
satisfy the following equation:

s2tan sð Þ ¼ 4
vt

vl

� �2

þ js
Z sð Þ
vldp

� �" #
tan sð Þ� sð Þ ð3Þ

where Z(s) is the acoustic impedance, j the imaginary unit, vl and vt are the
longitudinal and transverse speed of sound, respectively, in the protein and dP is
the protein mass density. The (complex) normalized frequency s¼oR/vl, where o
is the complex angular frequency and R is the spherical protein radius. The acoustic
impedance Z(s) is equal to:

Z sð Þ ¼ dmvm
kmRð Þ2 � j kmRð Þ

� �
1þ kmRð Þ2

ð4Þ

where dm and vm are the density and sound speed of the medium, respectively,
surrounding the sphere and km¼o/vm. Finally, the damping time tD and the
complex angular frequency o are related by the following expression:
tD¼ � Im(o).

The relevant physical parameters used to perform the calculations are reported
in Supplementary Table 1. The solution corresponding to the first three lowest-
frequency vibrational modes are characterized by oscillation periods of 2.7, 1.15
and 0.75 ps, while the corresponding damping times are 1.3, 1.7 and 1.8 ps.
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