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The time domain coupled-mode theory (CMT) is applied to the analysis of the dynamic of third order optical
nonlinear effects in high-finesse whispering-gallery-mode (WGM) resonators. We show that this model is
well adapted to the analysis of cavity-ring-down spectroscopy signal under modal-coupling due to Rayleigh
backscattering both in the linear and nonlinear regimes. The experiments are carried out in silica WGM
microspheres. Considering thermal and Kerr effects, CMT simulations are in good agreement with experimental
results for input power up to about 1 mW. For well known optical materials such as silica, this experimental
data analysis method can be used to measure the quality factor, the coupling regime, and the mode volume of
high-finesse WGM. Furthermore, this technique could be developed to infer both linear and nonlinear properties
of high-finesse coated WGM microspheres.

OCIS codes: (140.3945) Microcavities; (300.0300) Spectroscopy; (190.3270) Kerr effect; (190.1450)
Bistability; (230.4555) Coupled resonators.
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1. Introduction

High Quality (Q) factor whispering gallery mode
(WGM) resonators have drawn lots of interest in the last
decades in the aim of optical and photonics applications
[1–5]. In the linear regime, their high spectral selectivity
has been exploited to obtain high sensitivity biological or
chemical sensors [6–8]. Their ultra-high-Q factor associ-
ated with a small size lead to a very high finesse F (up to
F = 107 [9, 10]) for relatively small mode volumes (Vm).
This unique property induces very high intracavity opti-
cal intensity and makes WGM resonators very suitable
for nonlinear photonics applications. In this framework,
several miniaturized nonlinear optical devices whose op-
eration relies on second or third order nonlinearities have
been proposed and demonstrated: Raman and Brillouin
lasers [11, 12], hyperparametric generators [13, 14], fre-
quency combs [15–18], frequency converters [19–24], op-
tical parametric oscillators [25, 26], quantum light gen-
erators [27] or optical switches and memories [28–30].
Moreover, in some cases, WGM resonators can be fabri-
cated without complex technological steps using melting
and surface coating techniques [31–33] and may there-
fore be used as a simple benchmark for novel nonlinear
materials. In this purpose, all the optical properties of
the WGM resonator must be thoroughly measured to de-
duce accurately its nonlinear properties. To detail this
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statement, we consider the WGM resonator sketched in
Fig. 1 with its single mode access line consisting of a
tapered fiber [34]. The input and output signals are re-
spectively sin(t) and sout(t); u(t) is the resonator mode

amplitude which is normalized in such a way that |u(t)|2
is the energy stored in the cavity. The mode amplitude
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Fig. 1. Sketch of a WGM optical resonator coupled to a
single access line. The input and output fields are sin(t)
and sout(t), u(t) is the resonator mode amplitude. τ0 is the
intrinsic photon lifetime and τe the coupling photon lifetime.

lifetime τ is related to the intrinsic (or optical loss lim-
ited) lifetime τ0 and to the external (or coupling) lifetime
τe by: τ

−1 = τ−1
0 +τ−1

e . Note that with this definition, τ
is related to the overall Q-factor Q by Q = ω0τ/2 where
ω0 is the resonance angular frequency of the cavity. We
consider a purely Kerr material with a refractive index
given by:

N = N0 +N2I (1)
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where N0 is the linear refractive index, I the optical
intensity and N2 the nonlinear refractive index given in
m2/W. This resonator can have a bistable behavior for
a threshold input power Pth given by (see Appendix A):

Pth =
N2

0ω0Vm

3
√
3cQ2N2

· τe
τ
, (2)

we have assumed here for simplicity that Vm ≈ VKerr

where VKerr represents the effective mode volume char-
acterizing the Kerr effect. As already stated, Eq. (2)
shows that low mode volumes and high Q-factors en-
hance the nonlinear effects and reduce the threshold
power. Moreover, as it is the case for the linear dis-
persive properties of the resonator, its coupling regime
is also very important. If we deduce the nonlinear re-
fractive value from the measurement of the bistability
threshold power, the value of the coupling strength be-
tween the resonator and the access line (through the
parameter τe) play a crucial role as shown in Eq. (2). Fi-
nally, all the linear properties of a resonator: Q, τe and
Vm are important to describe accurately its nonlinear op-
eration. The Q-factor is usually deduced by measuring
the full-width at half-maximum (FWHM) of the inten-
sity transmission of the resonator or by cavity-ring-down
techniques. The coupling properties or the relative value
of τ0 and τe can be obtained by interferometric measure-
ments [35, 36]. Dispersive and coupling properties can
also be inferred by analyzing the ring-down signal [37]
thanks to a simple linear coupled-mode model of the res-
onator when the probe frequency is rapidly swept across
the resonance [38]. Recently, it has been shown that this
model can be developed to take into account the ther-
mal effects [39]. The mode volume can be deduced from
the angular and radial structure of the WGM. This can
be measured by mapping the light intensity using near
field techniques [40–42] or the directional emission of
asymmetric resonant WGM microspheres [43, 44]. Note
that in active WGM microspheres, the structure of the
electric field can be inferred from the analysis of the flu-
orescence spectrum [45, 46].
Furthermore, it has been already extensively reported

that Rayleigh backscattering is enhanced in high finesse
(and low mode volume) WGM resonators [47–50]. This
phenomenon leads to a resonant coupling of the two
co- and counter-propagating modes (often referred as
modal-coupling) within the cavity which can be detected
by measuring a reflected signal form the WGM resonator
and a frequency splitting in the transmission spectrum
[51, 52]. Cavity ring-down has been extended to take
into account the beating between the two resonances.
In this case a thorough analyze of the ringing profile al-
lows not only the Q-factor and the coupling regime but
also the modal-coupling strength to be measured [53].
In this paper, we theoretically and experimentally

show that by taking into account third order nonlin-
earities, the actual input power and the mode volume
can also be inferred from the analysis of the transient
response of the resonator when excited by a linearly

chirped probe. Consequently we show that the cavity-
ring-down spectroscopy method gives a full character-
ization of high-finesse WGM resonators under modal-
coupling without the use of near field techniques or laser
frequency locking to the cavity resonance [13]. The pa-
per is organized as follows. In section 2 we describe
the studied microresonator configuration and the cou-
pled mode theory (CMT) used to model its linear and
nonlinear properties. The experimental setup is depicted
in section 3. In a first step (section 4.A), the resonator
is studied in the linear regime, which gives its disper-
sive properties and modal-coupling strength. The sec-
ond step (section 4.B) consists in increasing the input
power to reach the nonlinear regime of the resonator.
Using the linear parameters deduced in the first step
and comparing the calculations to the experimental re-
sults we show that it is possible to infer the actual input
power Pin = |sin|2 and the effective mode volume VKerr.
Section 5 is devoted to a discussion regarding the con-
sistency of the experimental results.

2. Structural description - Theory

2.A. CMT in the third order nonlinear regime

Figure 2 is a sketch of the experimental configuration.
The evanescent tail of the mode of a tapered fiber is
side coupled to an high finesse microcavity WGM whose
amplitude is u2(t). Due to the intracavity Rayleigh
backscattering, the mode u2(t) is coupled to the counter-
propagating mode u1(t) with a rate γ/2 [48, 50]. We
assume that the two modes share the same cavity with
the same resonance frequency (ω0 = 2πc/λ0 where λ0

is the resonance wavelength) and same photon lifetimes
(τe, τ0). For an input signal sin(t), the system have now
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Fig. 2. Sketch of a WGM optical resonator under modal-
coupling. The input signal sin(t) excites the mode u2(t)
which is coupled to the counter-propagating mode u1(t)
thanks to Rayleigh backscattering. The two modes have the
same intrinsic and coupling photon lifetimes. The mode u1(t)
generates a reflected signal rout(t) from the WGM resonator.

two output ports giving a transmitted signal sout(t) and
a reflected signal rout(t) with [53, 54]:















sout(t) = −sin(t) +

√

2

τe
u2(t)

rout(t) =

√

2

τe
u1(t).

(3)

In this model, we assume a good fidelity of the coupler
which is the case for our experimental conditions (diam-
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eter of the tapered fiber ≈ 2 µm and Q-factor > 108, see
section 3) [55]. The output amplitudes can be obtained
from the following differential system [53, 56]:



















du1

dt
=

(

j [ω0 +∆ω1(t)]−
1

τ

)

u1 +
jγ

2
u2

du2

dt
=

(

j [ω0 +∆ω2(t)]−
1

τ

)

u2 +
jγ

2
u1 +

√

2

τe
sin(t)

(4)
where ∆ω1 and ∆ω2 are the resonance frequency shifts
due to nonlinear effects. These frequency shifts have two
contributions: ∆ωtherm due to thermal effects within the
microcavity and ∆ωKerr,i (for i ∈ {1, 2}) due to the Kerr
effect:

∆ωi = ∆ωtherm +∆ωKerr,i. (5)

Denoting by L the perimeter of the resonator, we have
Nω0L/c = 2pπ where p ∈ N is the interference order.
For a small change ∆L of the size L and ∆N of the
refractive index N of the resonator the frequency shift
∆ω obeys:

−∆ω

ω0
=

∆N

N
+

∆L

L
. (6)

Considering an increase ∆Θ of the temperature Θ of the
resonator in the vicinity of the WGM, we can write the
shift of the resonance frequency as [57]:

−∆ωtherm

ω0
=

(

1

N0

∂N0

∂Θ
+

1

L

∂L

∂Θ

)

∆Θ = β∆Θ. (7)

Assuming that the intrinsic photon lifetime (τ0) of the
resonator is limited by a residual absorption α, the time
variation of the temperature increase of the effective
mode volume Veff is such that [58]:

ρVeffCp

(

d∆Θ

dt

)

source

=
αc

N0

(

|u1(t)|2 + |u2(t)|2
)

,

(8)
where, ρ and Cp are respectively the density and the
heat capacity of the material of the resonator. Since
τ0 = 2N0

cα , introducing the effective thermal relaxation
time 1/γtherm obtained from the thermal diffusion equa-
tion [59] and using the source term given in Eq. (8), we
deduce the differential equation governing the time evo-
lution of the temperature in the vicinity of the WGM
[57]:

d∆Θ

dt
= −γtherm∆Θ+

2
(

|u1(t)|2 + |u2(t)|2
)

τ0ρCpVKerr
. (9)

where we have assumed that Veff ≈ VKerr [60]. The
thermal relaxation rate γtherm can be expressed using
the thermal diffusivity D and the half thickness b of the
mode in the largest field gradient by γtherm = D/b2

[47]. This effective thickness can be estimated using the

analytical results available for a well confined WGM for
which b ≈ λ0ℓ

1/3/(πN0) [47] where ℓ ≈ N0L/λ0 is the
angular momentum number of the mode. For a single
mode resonator, the Kerr effect induces a change of the
refractive index ∆N = N2I. The optical intensity I is
related to the electromagnetic energy density w = dU

dV
by:

I =
c

N0

dU

dV
=

c

N0

|u|2
VKerr

. (10)

Taking into account the cross Kerr effect between modes
u1 and u2, the resonance frequency shift due to the Kerr
effect can be written as [14, 61]:

−∆ωKerr,i

ω0
=

N2c

N2
0VKerr

(

|ui|2 + 2 |u3−i|2
)

. (11)

For a given input signal sin(t), integration of Eq. (4) and
(9) using Eq. (11) and (7) provides the instantaneous val-
ues of the mode u1(t) and u2(t). The output signals are
then deduced from Eq. (3). The amplitude transmission
and reflection coefficients defined by x = sout/sin and
y = rout/sin are related to the intensity transmission

and reflection coefficients by T = |x|2 and R = |y|2.

2.B. Linear approximation

Assuming that the input power |sin(t)|2 is sufficiently
weak, the response of the resonator can be assumed to be
linear and thus ∆ω1 = ∆ω2 = 0. Denoting u± = u2±u1,
the differential system (4) reads:

du±

dt
= Λ±u± +

√

2

τe
sin(t) (12)

where Λ± = j
(

ω0 ± γ
2

)

− 1
τ . Integrating Eq. (12) we

deduce the amplitude of the two modes u1(t) and u2(t)
by the relations u1 = (u++u−)/2 and u2 = (u+−u−)/2.

2.C. Stationary linear regime

In the stationary regime, the input signal can be written
as sin(t) = s0e

jωt. Solving Eq. (12) for this source term,
we obtain the stationary modes:

u±(t) =

√

2
τe
s0e

jωt

j
(

δ ∓ γ
2

)

+ 1
τ

, (13)

where we have introduced the quantity δ = ω−ω0. The
amplitude transmission coefficient is then

x(δ) =

(

jδ + 1
τ

)

(

1
τe

− 1
τ0

− jδ
)

− γ2

4
[

j
(

δ + γ
2

)

+ 1
τ

] [

j
(

δ − γ
2

)

+ 1
τ

] (14)

whereas the amplitude reflected coefficient is:

y(δ) =
j γ
τe

[

j
(

δ + γ
2

)

+ 1
τ

] [

j
(

δ − γ
2

)

+ 1
τ

] . (15)
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2.D. Frequency chirped input signal in the linear ap-
proximation

We consider now an input signal with a carrier frequency
linearly swept in time such that sin(t) = s0e

jϕ(t) with:

ϕ(t) = ωit+ πVSt
2, (16)

where ωi is the angular frequency at t = 0 and VS is the
frequency scanning speed. These quantities are related
to the instantaneous frequency by:

ν(t) =
1

2π

dϕ

dt
=

ωi

2π
+ VSt. (17)

Integration of Eq. (12) requires to evaluate the indefinite
integral

∫ t

0

e[j(ωi−ω0∓
γ
2
+2πVSt′)+ 1

τ ]t
′

dt′ = g±(t)− g±(0). (18)

The function g± can be analytically expressed using the
complex error function erf [53]:

g±(t) = −
√

j

4VS
exp

[

−j

4πVS

(

ω0 − ωi ±
γ

2
+

j

τ

)2
]

×erf

(

ω0 − ωi ± γ
2 − 2πVSt+

j
τ√

4πjVS

)

(19)

We obtain

u±(t) = s0

√

2

τe

(

1

j
(

ωi − ω0 ∓ γ
2

)

+ 1
τ

+ g±(t)− g±(0)

)

× exp

[(

jω0 ± j
γ

2
− 1

τ

)

t

]

. (20)

Using Eq. (3), (19) and (20) we are in position to com-
pute the dynamic responses of the cavity sout(t) and
rout(t) for any frequency sweeping speed VS .

3. Experimental setup - Method

3.A. Experimental setup

We have used ultra-pure silica WGM microspheres as
model systems to test the impact of the third order non-
linearities on the transient time domain response of high-
Q microresonators. These microspheres are obtained by
melting the tip of a first tapered fiber (Fig. 3.a) using
a fiber fusion splicer (ERICSSON FSU 925). Using this
process it is possible to obtain silica microspheres with
diameters between 40 µm and 200 µm (Fig. 3.b). The
experimental setup is sketched in Fig. 4.a). A second ta-
pered fiber is used to inject the optical signal in the mi-
crosphere. This fiber taper has a diameter smaller than
2 µm over a length much longer than the microsphere
diameter. Once the position of the microsphere is set,
the fiber taper is mounted on 3-axis micro-positioning
stages in order to control their relative distance (typi-
cally less than the wavelength). The probe laser is an
external cavity laser diode in the C-band (wavelength
λ ≈ 1550 nm) with a long-term linewidth of 150 kHz.

1
2
5
µ
m

a)

b)

Fig. 3. Microsphere fabrication process. a) A 125 µm silica
wire is drawn to obtain a tapered fiber. b) The tip of the
fiber is melted using a fiber fusion splicer.
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Fig. 4. a) Experimental setup. ISO: optical isolator, VA:
variable attenuator, PC: polarization controller, C: optical
circulator, PD1 and PD2: amplified photodiodes. P0: in-
jected optical power at the input of the tapered fiber, Pin:
optical power at the input of the WGM resonator, T (t) and
R(t): respectively the transmitted and reflected signals. b)
Sketch of a typical transmission signal and the corresponding
instantaneous frequency variations of the probe laser.

The laser frequency is linearly swept (with a frequency
scanning speed VS) over 6 GHz using a 100 Hz triangle
18 V peak to peak signal. The signal power at the in-
put of the tapered fiber is denoted P0 (Fig. 4.b). Both
transmitted and reflected signal are measured thanks to
two amplified photodiodes (PD1 and PD2) and an op-
tical circulator (C). The bandwidth of PD1 is 80 MHz
and that one of PD2 is 14 MHz.

3.B. Method

For very low sweeping speed: VS ≪ V0 where V0 =
2/(πτ)2 corresponds to a frequency range 1/(πτ) equal
to the FWHM of the resonance scanned during a cavity
lifetime τ/2, the response of the resonator is stationary
and the recording of the transmission in time gives the
spectral profile of the resonance as shown in Fig. 4.b).
In the linear regime, the Q-factor is deduced from i) the
measurement of the FWHM of the experimental curve
and ii) a calibration of the frequency sweeping speed.
However for sweeping speeds such as VS ' V0, the dy-
namic response of the resonator can not be neglected.
We have already demonstrated that in this case, using
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the model described in section 2.D it is possible to infer
the Q-factor and the dispersive properties of a resonator
without any frequency speed calibration [38]. The exper-
imental transmission signal Texp(t) is normalized using
the off-resonance value. In the linear regime, the experi-
mental signal is then compared to the theoretical model
Ttheo(t) depending on τ0, τe, γ and VS calculated from
Eq. (3), (20) and (19). A nonlinear optimization proce-
dure on τ0, τe, γ and VS is used to minimize the value
of σ2 defined as

σ2(τ0, τe, γ, VS) =

N
∑

k=1

[Texp(tk)− Ttheo(tk, τ0, τe, γ, VS)]
2

(21)
where N is the number of experimental sampling points.
In the general case we have checked that the error on the
measurements of τ0, τe and γ was less than ±15 %. Note
that the method also enables us to deduce the values of
VS from the experiments. This value can be compared to
its nominal value (depending on the peak to peak voltage
and the frequency of the electrical command signal) in
order to check the consistency of our approach.
A first validation of the method is now presented

using a same resonance of a 145 µm diameter micro-
sphere for several sweeping speeds. Figures 5.a) to 5.d)
show the transmission and reflection signals measured
for two nominal sweeping speeds: VS = 5 MHz/µs and
VS = 1 MHz/µs. The linear properties of the resonance
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Fig. 5. Transmission and reflection signals measured for a
145 µm diameter silica microsphere for several nominal fre-
quency sweeping speeds: a) and b) VS = 5 MHz/µs; c) and
d) VS = 1 MHz/µs; e) and f) VS = 0.3 MHz/µs. The calcu-
lation given in b) has been carried out using the parameters
deduced from the fit of a). The theoretical curves shown
in d)-f) have been calculated using the parameters deduced
from the fit of c).

τ0, τe and γ are inferred using the procedure previ-
ously described from the transmission profiles. From
Fig. 5.a) we deduce the following parameters values:

τ0 = 360 ns, τe = 3.2 µs, γ/(2π) = 3.2 MHz and
VS = 4.7 MHz/µs whereas from Fig. 5.c) we deduce:
τ0 = 480 ns, τe = 4.3 µs, γ/(2π) = 3.3 MHz and
VS = 1.2 MHz/µs. First, we can observe that the values
of the sweeping speed deduced from the fits are very close
from the nominal values. These two measurements give
a mean value of the cavity lifetime τ = (380 ± 50) ns
leading to V0 = 4.4 MHz/µs and a Q-factor around
2 × 108. Using these parameters we can simulate the
reflected signals which are in good agreement with the
measured signals as shown in Fig. 5.b) and 5.d). Fi-
nally, the transmission and reflection signals have been
measured for a low sweeping speed VS = 0.3 MHz/µs
verifying VS ≪ V0. In this case we obtain the stationary
profile of the resonator response, moreover the abscissa
axis can be converted in frequency using the value of
VS as shown in Fig 5.e) and 5.f). We can notice a good
agreement between the experiments and the calculations
carried out from Eq. (14) and (15) using the linear pa-
rameters inferred from Fig. 5.c).

4. Full Characterization of a high-Q WGM resonator
in the nonlinear regime

In this section we show that the nonlinear behavior of
the resonator can be used to deduce other important
parameters such as the resonator input power (Pin) and
the mode volume. For this experimental demonstration
we have used a silica microsphere with a diameter φ =
135 µm. For the same microsphere, we first deduce its
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Fig. 6. Transmission and reflection signals in the linear
regime measured for a 135 µm diameter silica microsphere
for a nominal frequency sweeping speeds |VS | = 5 MHz/µs:
a) and c) for VS < 0; b) and d) VS > 0. The theoreti-
cal reflection signals have been deduced from the fits of the
transmission signals.

linear properties using the method previously described.
Then we increase the input power to characterize its
nonlinear behavior.
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4.A. WGM resonator linear property measurements

The first step of the method consists in measuring the
linear parameters of the microsphere according to the
method described in section 3.B. This is made using
a backward frequency sweeping (VS < 0) and a for-
ward frequency sweeping (VS > 0). In the nonlinear
regime, the response signals obtained for VS < 0 and
VS > 0 are different due to the nonlinear effects [62, 63]:
i) for a VS < 0 the nonlinear frequency shift pushes
the resonance away from the probe laser which leads
to a broadening of the resonance; ii) for VS > 0, the
nonlinear shift pulls the resonance towards the probe
laser when the intracavity energy increases giving a res-
onance width smaller than in the linear case. In the
linear regime, the frequency sweeping does not affect
the response of the resonator whereas in the nonlinear
regime this parameter strongly influences the shape of
the transmission and reflection signals as it will be shown
in the next section. Figure 6 shows the transmission and
reflection signals for the 135 µm diameter microsphere
and a power P0 = 26.5 µW at the input of the taper.
The two signal profiles are comparable for VS > 0 and

Table 1. Linear parameters deduced from the fits of the
transmission signals given in Fig. 6.a) and Fig. 6.b).

Sweeping τ0 τe γ/(2π) |VS | Figure

VS < 0 405 ns 1.01 µs 2.5 MHz 4.2 MHz/µs 6.a)

VS > 0 370 ns 1.04 µs 2.7 MHz 4.8 MHz/µs 6.b)

VS < 0 which indicates that the input power is such
that the linear regime is reached. The measurements
deduced from the two fits in Fig. 6.a) and 6.b) are given
in Tab. 1. The two sets of data are quite similar and
the sweeping speeds are consistent with the nominal val-
ues (≈ 5 MHz/µs). The linear parameters deduced from
Fig. 6.a) will be used in the nonlinear result analysis of
section 4.B.

4.B. Experiments in the nonlinear regime

In a second step, we increase the input power to reach
the nonlinear regime. In Fig. 7 we show the reflected
and transmitted signals for two high nominal input pow-
ers P0 = 210 µW and P0 = 420 µW using both back-
ward and forward frequency sweepings. The transmis-
sion and reflection signals can be simulated using the
model described in section 2.A. An explicit embedded
Runge-Kutta method of orders 4 and 5 (namely the
Dormand-Prince pair) is used to numerically integrate
Eqs. (4). All the parameters used for the calculations
are given in Tab. 2. The only free parameters are the
mode volume VKerr (depending of the spatial structure
of the excited WGM) and the actual input power Pin at
the waist of the tapered fiber. Simulation results given
in Fig. 7 have been carried out by manually changing
the values of VKerr and Pin in order to obtain a good

Table 2. Physical parameters used in the calculations given
in Fig. 7 and Fig. 8.

Parameter Value References

N0 1.46 [57]

β 8.83× 10−6 K−1 [64]

N2 2.5× 10−16 cm2 ·W−1 [57]

ρ 2.2 g · cm−3 [57, 59]

Cp 670 J · kg−1 ·K [59]

D 9.5× 10−3 cm2 · s−1 [59, 64]

agreement with the experimental results. We deduced
from this procedure that VKerr = (2.5± 0.2)× 104 µm3

and that Pin = (90 ± 8) µW for Fig. 7.a) and Pin =
(180 ± 15) µW for Fig. 7.b). Taking into account the
taper losses (3.2 dB), the power at the input of the
tapered fiber is respectively: P0,calc = (190 ± 15) µW
and P0,calc = (380 ± 30) µW depending on the values
of Pin. It is in good agreement with the experimental
data. The input power has been still increased to higher
values (P0 = 1.2 mW) as shown in Fig. 8. For VS < 0,
the transmission signal is strongly broadened and the
stiff part of the signal (obtained for low frequencies) is
characteristic of a bistable operation. The model well
reproduces the time domain variations of the transmit-
ted and reflected signals for Pin = (480 ± 40) µW or
P0,calc = (1.03 ± 0.8) mW close to the measured value.
For VS > 0, an input power of Pin = (1.2± 0.1) mW (or
P0,calc = (2.5± 0.2) mW) is required in the simulations
to obtain calculated signals similar to experimental re-
sults. For moderate input powers, the model taking into
account Kerr and thermal effects is well suited to de-
scribe the experimental results. For higher power, the
discrepancy (observed in the reflected signal) between
the measured and the input power deduced from calcu-
lations shows that other nonlinear effects (such as ther-
mal effects within the taper, high-order nonlinearities in
the microsphere, . . . ) have to be taken into account in
the model.

5. Remarks and discussion

In Fig. 8.i) we also give calculations carried out for
N2 = 0, which are quite different from those taking into
account the Kerr effect. This shows that both Kerr and
thermal effects must be considered simultaneously as al-
ready reported for the stationary regime in Ref. [60].
We discuss now the value of the effective mode volume
(VKerr) deduced from calculations. WGM propagating
within a dielectric microsphere by total internal reflec-
tion can be understood as high angular momentum elec-
tromagnetic modes. They are labeled using a set of three
quantum numbers (n, ℓ,m): n is the number of maxima
of the field envelope in the radial direction, ℓ is the az-
imutal number (or the interference order) and m is the
projection of the angular momentum on the quantiza-
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Fig. 7. Left columns: experimental transmission and reflection signals measured for backward and forward frequency sweepings
in the nonlinear regime for two different optical powers P0 at the input of the tapered fiber. Right columns: theoretical
calculations obtained for a) Pin = (90 ± 8) µW and b) Pin = (180 ± 15) µW with an effective mode volume VKerr =
(2.5± 0.2)× 104 µm3.

tion axis. For an ideal sphere, the resonance positions
(λ0) depend only on n and ℓ whereas ℓ−|m|+1 gives the
number of maxima of the field envelope in the quanti-
zation direction. Thus the effective mode volume VKerr

defined by [1, 60]

VKerr =

(

∫∫∫

R3 |E(r)|2 d3r
)2

∫∫∫

V
|E(r)|4 d3r

(22)

(where E is the electric field and V is the physical vol-
ume of the microsphere) strongly depends on the val-
ues of these three numbers. The electric field E can
be expressed in terms of Bessel and spherical harmonic
functions [65]. For an ideal sphere with φ = 135 µm
and N0 = 1.46, comparing the numerical values of the
effective volume calculated using Eq. (22) to the value
VKerr = (2.5 ± 0.2) × 104 µm3 inferred from the mea-
surements we estimate that in the experiments reported
in section 4.B the value of the three quantum numbers
were: n = 2, ℓ = 377 and m = 371 for a resonant wave-
length λ0 ≈ 1550 nm. We identificated other sets of
values for (n, ℓ,m) but they correspond to n > 2 and
are experimentally less feasible using a tapered fiber as
coupling system [41]. With these values, we estimate the

mode volume by the following integral [31]:

Vm =

∫∫∫

R3 w(r)d
3
r

max [w(r)]
(23)

where w is the electromagnetic energy density and find
for the above mentioned set of quantum parameters
Vm = 9.6 × 103 µm3. Note that all the numerical re-
sults are given for the TE polarization, for TM polariza-
tion the difference in the mode volume is smaller than
the uncertainty on the value inferred from the measure-
ment. The frequency splitting can be estimated from
the mode volume value by [48]:

γ

2π
=

c

λ0

√

ρscα
2

Vm
, (24)

where ρsc is the scatterer number density and α their
average linear polarisability. For silica we have ρscα

2 =
2 × 10−12 µm3 [48] and thus the frequency splitting is
γ/(2π) = 2.8 MHz in very good agreement with the
data inferred from the fitting curves carried out in the
linear regime (see Tab. 1). Another expression of the
frequency splitting can be found in Ref. [49]. It is ob-
tained by replacing Vm by VKerr in Eq. (24). In this
case, with our data we find γ/(2π) = 1.7 MHz which
is slightly different from our measurement. Nevertheless
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Fig. 8. Left column: experimental transmission and reflec-
tion signals measured for backward and forward frequency
sweepings for an optical power P0 = 1.2 mW at the input of
the tapered fiber. Right column: theoretical calculations ob-
tained for i) Pin = (480±40) µW and ii) Pin = (1.2±0.1) mW
with an effective mode volume VKerr = (2.5±0.2)×104 µm3.
Note that in i) we have also added the simulations obtained
for N2 = 0 in dash line.

we have shown that the method is self consistent giv-
ing a mode volume estimation compatible with both the
modal coupling rate and the nonlinear third order effect
power threshold.

6. Conclusion

We have proposed a simple model using the CMT to
take into account third order optical nonlinear effects
in high-finesse WGM resonators. This method allows
cavity-ring-down under modal-coupling analysis since it
is directly formulated in the time domain. In the lin-
ear regime we are able to deduce from cavity-ring-down
spectroscopy signals the coupling regime, the Q-factor
and the mode-coupling strength. We have shown that
the method can be extended to the nonlinear regime
and that enables the input power and the mode vol-
ume to be estimated for silica microspheres. The mode
volume deduced from nonlinear experiments is consis-
tent with estimations made from the frequency split-
ting due to the mode coupling resulting from enhanced
Rayleigh backscattering. Consequently, this shows that
for a given material the combination of measurement
of backscattering strength and nonlinear effects power
threshold can be used to deduce the nonlinear index
of this material at the cost of the knowledge of several

physical parameters (thermal and thermo-optic proper-
ties; scatterers density and polarisability). This could
be applied to determine the nonlinear properties of novel
optical materials [33].
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Appendix A: Bistability power threshold

For a single mode resonator without modal coupling the
mode amplitude dynamic can be deduced using Eqs. (4)
and (11)

du

dt
=

(

jω0

[

1− N2c |u|2
N2

0VKerr

]

− 1

τ

)

u+

√

2

τe
sin(t). (25)

In the stationary regime at angular frequency ω, Eq.
(25) can be analytically solved and we have with the
notations introduced in section 2.C

Pin =
τe |u|2

2





[

δ +
ω0N2c |u|2
N2

0VKerr

]2

+
1

τ2



 . (26)

At the bistabilty threshold, dPin/d |u|2 has a double

root. This is possible only if δ = −
√
3/τ . Assuming

that this condition is fulfilled, we have dPin/d |u|2 = 0

for a threshold intracavity energy |uth|2 given by

|uth|2 =
2N2

0VKerr√
3ω0τN2c

. (27)

Finally, by injecting the expression of |uth|2 in Eq. (26)
we find the threshold input power given by Eq. (2).
This expression is exactly that of the hyperparametric
threshold [14] which shows that the knowledge of the
coupling properties is useful for the thorough analysis of
several third order nonlinear processes.
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