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Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of lymphoma, accounting for 30-
40% of newly diagnosed Non-Hodgkin Lymphomas (NHL). The molecular heterogeneity of DLBCLs has
been deciphered by gene expression profiling, and DLBCLs have been divided into three main
molecular subtypes: the Germinal Center B-cell like (GCB) subtype, the Activated B-Cell like (ABC)
subtype, and the Primary Mediastinal B-cell Lymphoma (PMBL) subtype with distinct clinical
outcomes and responses to immunochemotherapy. Next Generation Sequencing (NGS) technologies,
which allow for massively parallel, high-throughput DNA sequencing, have emerged over the past
decade and have provided new insights into the genomic characterization of DLBCL. Recurrent Single
Nucleotide Variants (SNVs) are now well defined and provide new therapeutic opportunities for the
three molecular subtypes. These SNVs target genes that play a crucial role in several pathways
including BCR signaling (CD79A/CD79B), NFx-B (CARD11), Toll-like receptor signaling (MYD&8),
immunity (CD58, TNFSRF14, B2M), cell cycle/apoptosis (TP53, BCL2) or epigenetic regulation
(EZH2,CREBBP, MLL2)(1, 2) .

Recently, whole exome sequencing in breast cancer has shown that mutations observed in the tumor
could also be detected in circulating cell-free DNA (cfDNA) and could be used to detect genetic
changes during treatments and relapse, defining the concept of “liquid biopsy”(3). In DLBCL, whereas
tumoral circulating cells or leukemic phase are not usually detectable, clonotypic sequences have
been constantly detected in cfDNA extracted from serum/plasma or PBMC((4-8).

In this study we sought to determine by routinely applicable NGS technology whether the pattern of
acquired SNVs observed in tumor DNA could also be detected in cfDNA in DLBCL patients at the time
of diagnosis. For this purpose, we analyzed twelve DLBCL cases with available matched tumor DNA
and plasma collected at the time of diagnosis. Patients harboring typical GCB/ABC-related mutations
targeting CD79A/B, EZH2, CARD11 or MYD88 genes previously identified by Sanger Method were
selected(9). This study was approved by the regional ethical committee (numbered as CPP
N°01/006/2014).

The main clinical features of the patients are summarized in Table 1. None of the selected cases
harbored detectable circulating lymphoma cells by routine blood smear examination. Of note, no
peripheral blood cytometry was performed, in accordance with our center’s initial staging
procedures for DLBCL patients. Tumor DNA was extracted from frozen lymph node samples by
standard methods. cfDNA was extracted from archived EDTA-anticoagulated plasma aliquots (1mL)
stored at -80°C using the QlAamp® Circulating Nucleic Acid Kit (Qiagen) (with the QlAvac 24 Plus
vacuum manifold, following the manufacturer’s instructions), and concentrations were measured
using Fluorometric assay (Qubit® dsDNA HS Assay Kit, Life Technologies). The mean cfDNA
concentration in plasma was 1.65 ng/pl (range 0.46-11.2) (Table 1). The Cell of origin (COQ) signature
was determined by cDNA-mediated annealing, Selection, extension, and Ligation (DASL) technology
based on the expression of 19 genes as previously reported(10). Among the 12 cases analyzed, 5
belonged to the ABC subgroup, 6 to the GCB subgroup and one case was unclassified (Table 1).

Sequencing of tumor DNA was performed using lon Torrent Personal Genome Machine (PGM, Life
technologies). Ten ng of genomic DNA were submitted to NGS using a laboratory-developed
Lymphopanel set, designed to identify mutations in 34 genes relevant to lymphomagenesis
(Supplementary file 1A). This design covers 87 703 bases and generates 872 amplicons. Amplified
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libraries (lon AmpliSeq™ Library Kit 2.0) were submitted to emulsion PCR with the lon OneTouch™
200 Template Kit (Life Technologies) using the lon OneTouch™ System (Life Technologies) according
to the manufacturer’s instructions. The templated lon Sphere™ Particles (ISPs) were enriched with
the lon OneTouch™ Enrichment System and loaded and sequenced on an lon 316™ v2 Chip (Life
Technologies).

After alignment to a reference genome sequence (hg19) and variant calling procedure, variants were
filtered through a dedicated bioinformatic pipeline that eliminated synonymous variants and
variants with a Variant Allele Frequency greater than 1% in the 1000 genome database (considered
as polymorphisms). Only non-synonymous SNV/In/Del with a quality score > 22 and/or confirmed by
Sanger experiment were retained as acquired somatic mutations in lymphoma cases and were used
for the subsequent sequencing of the matched cfDNA (for the detailed pipeline see supplementary
file 1B). Somatic mutations identified in tumor DNA were used to build a hot-spot file enabling higher
sensibility tracking of somatic mutations in circulating DNA.

In order to increase variant detection sensitivity and specificity in cfDNA, we exclusively amplified
amplicons targeting mutations detected in the corresponding tumor DNA by the complete
Lymphopanel by performing a dedicated sequencing procedure with a pool of oligonucleotide
primers selected among the 872 pairs provided by Life Technologies. The procedure to make
librairies and sequence amplicons was the same as for tumor DNA but used a 314™ v2 Chip. When
possible, circulating DNA was extracted and sequenced from 2 different aliquots of plasma.

The SNV/In/Del detected in both tumor and circulating DNA are indicated in Table 1 with their
corresponding variant allele frequency (VAF). As expected, we identified a typical SNV pattern in the
five ABC DLBCL cases including mutations targeting MYD88, CD79A/B, PIM1, PRDM1, CARD11 or
IRF4, whereas EZH2, BCL2, GNA13, or TNFSRF14 were mutated in the unclassified and GCB DLBCL
cases. MLL2 (KMT2D), CREBBP or ITPKB were targeted by somatic mutations shared in the two COO
subtypes. The sequencing depths obtained for each sample and targets are indicated in Table 1.

The mean number of reads targeting the mutated regions for tumor DNA was 241 (range 23-741) as
compared to 5,987 (range 6-22,541) for plasma DNA, indicating a 24-fold mean depth sequencing
increase. The mean VAF in the tumor DNA was 35% (range 17-64%) as compared to a mean of 11%
for plasma DNA (range 2-89%) (Table 1).

In 11/12 DLBCL cases, we observed somatic mutations in cfDNA, similar or partially similar to those
observed in the tumor (Figure 1, supplementary figure 1 and table 1). We defined the concordance
rate as the ratio of the number of mutated cfDNA genes and the number of mutated tumor DNA
genes. This rate ranges from 33% to 100% (5 cases) in the 11/12 cases with detected mutated cfDNA.
Overall, the median concordance rate between tumor DNA and cfDNA is 85%.

In one case (#1251), SNVs observed in the tumor DNA were not detected in plasma DNA. In an
additional case (#1559), SNVs were barely detectable (VAF of 0.5% for two variants). Of note, both
cases displayed a limited disease (stage | or 1l) and normal LDH level, indicating that tumor specific
circulating cfDNA amount is at least partially related to tumor burden. Despite a low amount of
circulating DNA extracted from plasma for cases #1251 and #1559, we obtained adequate
sequencing quality and depth (overall number of reads sequenced with mutated target = 4,685 and

3



51,195 respectively, Table 1), indicating that in some rare cases, the tumor specific cfDNA is absent
or beneath the level of sensitivity of the NGS sequencing method used. Of note, in case #1631
characterized by a limited stage | disease, SNVs were detected with a mean VAF of 5.2% in plasma
DNA, as compared to a mean VAF of 34.6% in the tumor DNA (Table 1). In contrast, cases #1639 and
#1768 (both with stage IV disease and elevated LDH level) displayed a high proportion of tumor
specific circulating DNA as indicated by the high VAF observed (Table 1). Interestingly, in these two
cases, the sub-clonal distribution of certain mutations, as indicated by the VAF distribution of each
individual variant, was also observed in cfDNA, suggesting that sequencing cfDNA can reflect the SNV
pattern observed in tumor cells in some instances (Figure 1 and supplementary figure 1). In case #
1524, despite a sufficient number of relevant reads (> 4,000) we failed to detect the B2M SNV
present in the lymph node biopsy. This result was confirmed by manual Integrative Genomics Viewer
(IGV) checking, suggesting that the B2M SNV is present only in a subclone caught in the biopsy
sample but not highlighted by the cfDNA that reflects the entire tumor burden.

By contrast, in some cases, the number of target reads is clearly insufficient for adequate SNV
detection (# case 964, CARD11; case 1003, MYD88 see table 1), most likely reflecting the low amount
of cfDNA available rather than a true clonal divergence between tumor DNA and cfDNA. This was not
observed in cases with higher cfDNA amount.

Failure to detect SNVs in ¢cfDNA appears related more to the proportion of tumor specific DNA
quantity than to the total amount or quality of total cfDNA. Of note, we failed to find any tumor-
related SNV in DNA extracted from 11/12 PBMC using this approach (data not shown), indicating that
serum or plasma is preferable to detect mutated circulating DNA. In a large cohort of Hodgkin
lymphoma, mantle cell lymphoma and DLBCL, increased levels of plasma DNA (determined using
quantitative PCR for the B-globin gene) were associated with advanced stage disease, presence of B-
symptoms, elevated lactate dehydrogenase levels, and age > 60 years also indicating that the amount
of circulating DNA is partially related to tumor burden(8). Furthermore, it has been shown in a cohort
of EBV-positive lymphoma that serum and plasma were equivalent to detect Lymphoma-specific DNA
but that only the lymphoma specific DNA could be used to monitor disease response in
lymphoma(7).

To our knowledge this is the first report of the detection of non-immunoglobulin somatic mutations
in DLBCL from circulating DNA by routine NGS sequencing, enabling the identification of lymphoma-
specific cfDNA. Other quantitative approaches, including digital PCR, are also suitable and could be
used in this setting for detecting recurrent translocations or mutations(11). More recently the
LymphoSIGHT®, a high-throughput DNA sequencing method, was developed to detect and quantify
circulating tumor DNA as minimal residual disease (MRD) and was able to predict both early
treatment failure and relapse in newly diagnosed DLBCL patients, chronic lymphocytic leukemia or
acute lymphoblastic leukemia(12-15). This approach is based on tumor DNA amplification using
locus-specific primer sets for the immunoglobulin heavy/light-chain which failed in a substantial
number of DLBCL cases. Importantly the Lymphopanel used in this study is able to detect at least one
acquired SNV in 95% of DLBCL cases at initial diagnosis (manuscript in preparation) and may
therefore constitute a simple routinely applicable test to provide the COO subtype or to detect
targetable mutations at the time of diagnosis or relapse. However, its capacity to detect MRD with a
high level of sensitivity remains to be determined and we can hypothesize that at least 5 to 10% of
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DLBCL cases will not display any SNVs detectable by our Lymphopanel. Furthermore, cfDNA
sequencing was successfully performed using the entire Lymphopanel (including the 34 targeted
genes) in one case (data not shown), indicating that this approach is feasible without the knowledge
of the tumor variant calling. However this requires an increase in the sequencing depth capacity and
entails a substantial cost increase.

To conclude, our results indicate that cfDNA can also be used in DLBCL to detect somatic variants,
validating the concept of “liquid biopsy” in this type of tumor(3). These preliminary results have
prompted us to start a prospective study in the aim of serial sequencing cfDNA during DLBCL
treatment and follow-up (registered on clinicaltrials.gov as NCT02339805). If these preliminary
results are confirmed by a prospective study, new strategies should be proposed for both diagnosis
and treatment tailoring based on the simple detection and quantification of SNV in plasma.
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LDH Bone
UPN Sex  Age Stage IP1 marrow Phenotype
(XUNL) .
involvement

Gene

Tumor DNA

Circulating DNA

VAF
(%)

read mean
number VAF
(%)

read mean

number VAF (%)

Allele Call

concentration
(ng/ul)

1003 F 75 1} 3 2.5 0 ABC

1437 M 76 1} 4 5.85 0 ABC

ITPKB
MYD88
CITA
CD79B

CD79A (1)
CD79A (2)

35.3
26.5
51.9
46.3

17.0
17.0

36/102
67/253 40
14/27
93/201

53/318 17
53/318

1.4
0.0
16.7
2.1

89.1
89.1

22/1540
0/21 5
1/6
369/17260

344/386 89
344/386

Heterozygous
Absent
Heterozygous

Heterozygous

Heterozygous

Heterozygous

1.94

11.2

1528 F # 1 4 1.39 0 GCB

ITPKB (1)
ITPKB (2)
ITPKB (3)
ITPKB (4)
MYD83
TNFAIP3
EZH2
KMT2D
B2M

CITA (1)
CITA (2)
CIITA (3)
GNA13(1)
GNA13(2)
BCL2(1)
BCL2(2)
MEF2B

9.3
15.2
15.2
15.5
37.8
45.7

36.1
50.0
39.0

7.7

7.6
71.0
71.0
34.1
32.9
333

14/151
19/125
19/125
19/123
74/196
32/70
44/741
122/338
63/126 31
30/77
14/183
14/184
105/148
105/148
47/138
45/137
137/411

0.0
0.0
0.0
0.0
8.5
5.6
2.1
5.7
3.2
0.0
0.0
0.0
0.0
3.1
4.3
4.2
5.9

0/1713
0/3582
0/3577
0/3570
161/1888
177/3152
152/7401
207/3620
78/2465 3
0/2130
0/9150
0/9162
0/2695
82/2672
214/4929
209/5013
654/11153

Absent
Absent
Absent
Absent
Heterozygous
Heterozygous
Heterozygous
Heterozygous
Heterozygous
Absent
Absent
Absent
Absent
Heterozygous
Heterozygous
Heterozygous

Heterozygous

1.94

TNFRSF14 13.8 44/318 2.1 6/284 Heterozygous
EZH2 13.8 41/298 0.0 0/6575 Absent
1586 F # 1]} 2 0.85 0 NA STAT6 18.9 83/439 20 0.0 2/5517 <1 Absent 1.31
CREBBP 336 49/146 1.3 65/4894 Absent
GNA13 17.7 11/62 0.0 0/4391 Absent
TNFRSF14 34.8  146/419 19.3 694/3587 Heterozygous
EZH2 9.9 57/575 1.8 62/3480 Heterozygous
STAT6 15.4 79/514 5.1 200/3889 Heterozygous
1623 M 53 I\ 2 1.03 0 GCB CREBBP (1) 232 166/717 18 11.6 489/4222 11 Heterozygous 0.95
CREBBP (2) 14.0 54/387 10.1 328/3239 Heterozygous
CD79B 17.1 83/486 18.0 839/4651 Heterozygous
MEF2B 11.8 74/626 9.9 1283/12969 Heterozygous

Table 1 (to be continued)



Tumor DNA Circulating DNA
UPN  Sex Age  Stage IPI (XIIJDI\'I—lL) ) mBaur?Zw Phenotype  Gene \(/lyAn;: nL:rEna:er "\‘ITF" :{’/:f m:?na:er Vr::?;:) Allele Call ccn((::;/lj)lion
involvement (%)
MYD88 49.8 220/442 11.7 655/5586 Heterozygous
PiM1 20.6 14/68 2.7 130/4797 Heterozygous
CARD11(1) 471 99/210 5.1 154/3028 Heterozygous
1631 M # | 2 1.54 0 ABC CARD11 (2) 47.9 68/142 35 5.5 344/6300 5 Heterozygous 1.1
STAT6 18.1 96/532 4.3 570/13250 Heterozygous
TP53 32.4 72/222 3.9 522/13317 Heterozygous
CD79B 26.7 52/195 3.3 386/11853 Heterozygous
TNFRSF14 75.8 47/62 82.3 2400/2915 Heterozygous
MYD88 275 133/483 7.1 1616/22541 Heterozygous
EZH2 24.0 126/526 32.8 3259/9939 Heterozygous
KMT2D (1) 338 187/554 35.0 5878/16784 Heterozygous
1639 M # v 2 2.4 0 GCB KMT2D (2) 28.3 13/46 39 22.9 671/2929 34 Heterozygous 10.2
CREBBP 37.0 17/46 30.6 2918/9530 Heterozygous
BCL2(1) 45.8 11/24 31.5 223/709 Heterozygous
BCL2(2) 53.0 98/185 28.2 2267/8032 Heterozygous
EP300 29.6 34/115 38.3 4597/11990 Heterozygous
MYD88 62.1 216/348 45.0 5936/13194 Heterozygous
IRF4 28.5 75/263 21.2 929/4374 Heterozygous
PIM1 (1) 61.7 145/235 38.2 1541/4030 Heterozygous
1768 M # v 3 4.2 0 ABC PIM1 (2) 29.8 34/114 52 25.9 987/3812 34 Heterozygous 1.82
PRDM1(1) 81.9 149/182 34.2 1273/3724 Heterozygous
PRDM1(2) 80.7  221/274 43.4 5076/11689 Heterozygous
myc 36.4 102/280 26.8 262/979 Heterozygous
CD798 36.5 57/156 33.6 3041/9060 Heterozygous

Table 1. Clinical characteristics and list of somatic variants (insertion/deletion/ single nucleotide

variant) detected by sequencing in tumor DNA and cell-free plasma circulating DNA. Details of the

locations of the mutations are indicated in the Supplementary table 1.

ABC: activated B-cell like; GCB: germinal center B-cell like; In/del: insertion/deletion; LDH: Lactate
dehydrogenase; IPI: international prognosis index; SNV: single nucleotide variant; UPN: unique

personal number; ULN: upper limit value; VAF: variant allele frequency




Figure legends

Figure 1. Representative examples of Variant allele frequency observed in tumor DNA and matched
circulating cell-free DNA at the time of diagnosis.
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Supplementary file 1. Lymphopanel and PGM data analysis

A. Lymphopanel set used for NGS experiments

Gene Transcript Reference Hotspot / Exons partially sequenced Chromosomal Size
location sequenced
(bp)
B2M NM_004048 Hotspots exons 1 & 2, exon 3 15921.1 360
BCL2 NM_000633 Hotspot exon 2 18g21.33 585
BRAF NM_004333 Exon 15 7934 119
CARD11 NM_032415 Coiled-coil domain exons 4-9 7p22.2 1121
CD58 NM_001779 Exons 1-6 1p13.1 753
CD79A NM_001783 ITAM domain exons 4 & 5 19g13.2 183
CD79B NM_000626 ITAM domain exons 5 & 6 17q923.3 141
CDKN2A NM_000077+NM_058195+ Exons 1, 2A, 2B, 3,4 &5 9p21.3 1,737
NM_058197+NM_001195132
CDKN2B NM_004936 + NM_0078487  Exons 1A, 1B & 2 9p21.3 1289
ClITA NM_000246 Exons 1-19 16p13.13 3393
CREBBP NM_004380 Exons 1-31 16p13.3 7323
EP300 NM_001429 Exons 1-31 22g13.2 7245
EZH2 NM_004456 SET domain, hotspots exon 16 & 18 7q36.1 177
FOX01 NM_002015 Hotspots exon 1 & FH domain exon 2 13g14.11 780
GNA13 NM_006572 Exons 1-4 17924.1 1134
ID3 NM_002167 Exons 1 & 2 1p36.12 360
IRF4/MUM1 NM_002460 Exons 2-9 6p25.3 1356
ITPKB NM_002221 Exons 2-8 1g42.12 2830
KMT2D/MLL2 NM_003482 Exons 1-54 12g13.12 16614
MEF2B NM_001145785 Exons 2-9 19p13.11 1107
MFHAS1 NM_004225 Exons 1-3 8p23.1 3159
mMYC NM_002467 Exons 1-3 8g24.21 1365
MYD88 NM_001172567 Exons 2-5 3p22.2 587
NOTCH1 NM_017617 PEST domain exon 34 9g34.3 1488
NOTCH2 NM_024408 Exons 26-28 & 34 (HD/PEST domains) 1p12-p11.2 2091
PIM1 NM_002648 Exons 1-6 6p21.2 942
PRDM1/BLIMP1 NM_001198 Exons 1-7 6921 2478
S0cs1 NM_003745 Exon 2 16p13.13 636
STAT6 NM_001178078 Exons 9-14 (DNA binding domain hotspot) 12g13.3 795
TCF3 NM_001136139 B-HLH domain of E47 isoform exons 17 & 18  19p13.3 370
TNFAIP3 NM_006290 Exons 2-9 6023.3 2373
TNFRSF14 NM_003820 Exons 1-8 1p36.32 852
TP53 NM_000546 Mutation hotspots exons 4-10 17p13.1 1004
XPO1 NM_003400 Exons 15-18 2p15 640



B. PGM Data analysis

Torrent Suite™ version 4.0 (Life Technologies) software was used to perform primary analysis, including
signal processing, base calling, sequence alignment to the reference genome (hgl9) and generation of
Binary Alignment/Map (BAM) files. BAM files were used by Torrent Suite™’s Variant Caller to detect
point mutations as well as short insertions and deletions using the “Somatic” and “Low Stringency”

default parameters. VCF files generated by Variant Caller were annotated by ANNOVAR(1).

Data generated from tumor DNA samples were considered of sufficient quality when more than 90% of
targeted bases were read at least 20 times with sequencing and mapping precisions of at least Q20. Only
frameshift deletions and insertions, nonframeshift deletions and substitutions, splicing,
nonsynonymous, stopgain or stoploss Single Nucleotide Variations (SNVs) were kept. Variants with a
minimal Variant Allele Frequency (MAF) greater than 1% in the 1000 genome database were considered
as polymorphisms and were discarded(2). A normal probability plot defined thresholds separating true
positives [confirmed by Sanger sequencing, TVC (Torrent variant calling) quality score > 22] from true
negatives (discredited by Sanger sequencing, TVC score < 9.5) and highlighted a gray zone (9.5 < TVC

score < 22) in which variants must be confirmed by Sanger sequencing or pyrosequencing..

Further verification by Sanger sequencing was performed using a BigDye® Terminator v3.1 Cycle
Sequencing Kit (Life Technologies) and an ABI PRISM 3130 analyzer (Life Technologies). Further
verification by pyrosequencing was performed using the PyroMark PCR kit (Qiagen, France) with internal

and sequencing primers designed using PyroMark software (Qiagen).

For circulating DNA variant calling, the parameter file was modified as follows:
hotspot_min_variant_score: 3; hotspot_strand_bias: 1; downsample_to_coverage: 30 000. In addition,
a dedicated hotspot VCF file generated from variants found in tumor DNA was used. This file instructs
the Variant Caller to include these positions in its output files, including evidence for a variant and the

filtering thresholds that disqualify a variant candidate.

References
1. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
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