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Abstract: Cyanobacteria are a component of public health hazards in freshwater 

environments because of their potential as toxin producers. Eutrophication has long been 

considered the main cause of cyanobacteria outbreak and proliferation, whereas many 

studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell 

growth rate or toxin production. In view of the growing concerns of global change 

consequences on public health parameters, this study attempts to enlighten climate 

influence on cyanobacteria at regional scale in Brittany (NW France). The results show that 

homogeneous cyanobacteria groups are associated with climatic domains related to 

temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences 

are only correlated to local cyanobacteria species composition. As the regional climatic 

gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a 

comparison between the present NW and SE situations was used to extrapolate the 

evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria 

composition should shift toward species associated with more frequent Microcystins  

 

OPEN ACCESS



Toxins 2014, 6  

 

 

510

occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should 

transition to species (mainly Nostocales) associated with lower MCs detection frequencies. 

Keywords: cyanobacteria; microcystin; toxins; climate change 

 

1. Introduction 

Since their appearance in the public health debate, cyanobacteria and their toxins have gradually 

become a major concern for public health authorities [1,2].  

While relations between cyanobacterial blooms and eutrophication are widely acknowledged [3], 

the influence of meteorological parameters is of growing concern in a changing climate context. Some 

recent review articles outline that in hotter environments, cyanobacteria could be advantaged compared 

to other planktonic taxa, and health issues associated with cyanobacterial toxin occurrences could thus 

become more pregnant [4–9]. 

However, if a changing climate can lead to predictable consequences on larger time and/or 

geographical scales, extrapolating these changes to the short term and on local scale is still complex [10]. 

It can be noted, for example, that local, long term studies related to single lakes can lead to different or 

diverging conclusions [11–13], whereas all studies acknowledge that climate change should lead to 

major modifications in phytoplankton populations [14–16], although counter-examples exist [17]. 

Common abiotic parameters such as light and temperature have long been shown to influence 

selection and growth rates of potentially toxic species [18–23] and toxin biosynthesis [24–28]. These 

results emphasize the possible consequences of a large scale environment warming up on health 

hazards related to cyanobacteria [6,7,16,23,29–31]. 

In this context, this paper aims at studying climate influence on cyanobacteria on a regional scale in 

Brittany (north-western France). Preliminary studies have already shown that the local oceanic-type 

climate of Brittany has been warming up for the last 30 years [32], and that cyanobacteria are widely 

encountered in most recreational lakes [33]. In the same time, available interannual monitoring data tend 

to show that cyanobacteria are increasingly present, with expansion parameters related to climate and 

lake morphology [34]. The present study is based on the observation that climate evolution at regional 

scale is of the same magnitude of latitudinal meteorological gradients, leading to the hypothesis that a 

comparison between eastern and western Brittany can give insights of the potential future situation 

regarding cyanobacteria (species composition, toxin occurrences) in a 30-year timespan. 

2. Results and Discussion 

2.1. Regional Climate Characteristics 

Brittany is characterized by an oceanic climate and mild conditions all year round, summarized in 

Table 1. These parameters follow a longitudinal gradient along a WNW-ESE axis, with a colder/wetter 

NW quadrant and drier/hotter SE quadrant (Figure 1). In the following study, only May–October 

conditions were considered for the evaluation of cyanobacteria distribution as no recreational water 

monitoring is conducted during the other months. 
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Table 1. Meteorological parameters expressed as monthly means from 2004 to 2011 in Brittany. 

Parameter 
December–March May–October 

Minimun Mean Maximun Minimun Mean Maximun

Mean Temperature (°C) 3.7 6.6 9.2 12.2 15.9 20.1 
Mean Pluviometry (mm) 49 84 119 25.5 61.1 137.3 

Mean Global Radiation (kW/m²) 8.65 17.53 34.30 22.55 49.54 67.51 

Figure 1. Meteorological parameters for the May–October period from 2004 to 2011.  

(a) Mean temperature (°C); (b) Cumulated pluviometry (mm); (c) Cumulated global 

radiation (kW/m²). 

 

2.2. Regional Climate Projected Evolution 

Interannual climate evolution was characterized for the 30-year timespan 1982–2011. Mean 

monthly data from the 34 meteorological stations nearest to the lakes (21 stations for global radiation) 

were approximated through linear regression curves. At regional scale, evolution rates for the  

May–October period show mean temperature and cumulated global radiation increases (+2.8 °C and 

+8 kW/m² for 100 year extrapolations); but no significant cumulated pluviometry evolution. These 

evolution rates are close to regional NW-SE climatic gradients (2 °C; 4 kW/m²; and 210 mm) and to 

interannual mean amplitudes (2.6 °C; 31 kW/m² and 154 mm) for the period 2004–2011. These results 

support the hypothesis that comparison between eastern and western Brittany can be a tool for 

evaluating the effect of climate change at regional scale in the short term. 

This regional evolution is associated with strong local variations: for a 30-year extrapolation, for 

example, site-specific evolution ranges from −0.6 to +2.3 °C, cumulated rainfall from −180 to +122 mm 

and cumulated global radiation from −4.7 to +11.5 kW/m². Faster evolution rates are concentrated in 

spring and early summer (Figure 2), with April to June showing the highest positive rates for 

temperature and global radiation, whereas in autumn months, only temperatures tend to increase. On 

the other hand, July and August, commonly the hottest months in oceanic climates, tend to show 

increasing rainfall and decreasing global radiation. 
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Figure 2. Climate parameters evolution rate extrapolated from 1982 to 2011 data (mean ± sd). 

(a) mean monthly temperature; (b) mean monthly cumulated rainfall; (c) mean monthly 

cumulated global radiation. 

 
(a)       (b) 

 
(c) 

2.3. Cyanobacteria Distribution 

In the 2004–2011 data, 27 common genera accounted for 0.1%–16% of total cyanobacteria 

biovolume (Figure 3). The highest contribution could be credited to Planktothrix and Woronichinia 

(15.5%–16%), whereas Microcystis, Aphanocapsa, Aphanothece and Aphanizomenon ranged from 9% 

to 11%. The genus Anabaena only accounted for 6.3% of cyanobacteria biomass, but was included in 

this analysis because of its potential toxicity. These seven generic groups accounted for 76% of all 

cyanobacteria biovolumes. In all subsequent analyses, Aphanocapsa and Aphanothece data were 

pooled together as identification confusions were considered possible. 

Geographical distribution of these taxa was mapped with ESRI ArcView as local genus-specific 

mean % biomass for the period 2004–2011 (Figure 4). This illustrates regional tendencies, with higher 

% biomass for Woronichinia and Aphanocapsa in the north-western quadrant, for Microcystis and 

Anabaena from centre to east, whereas Planktothrix and Aphanizomenon are higher contributors in the 

south-east quadrant. 

2.4. Microcystin Occurrences 

Microcystins (MCs) detection frequencies, once mapped, appeared concentrated in the centre-north 

part of Brittany, i.e., outside of the SE quadrant concentrating the highest % biomass of most 

known MC-producing taxa. At the same time, MC detection frequencies could not be related to 
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common public-health parameters such as WHO alert level 3 observation frequencies (i.e., cell  

density > 100,000 cell/mL: r² = −0.45), total cyanobacteria cell densities (r² = −0.01), known MC 

producers cell densities (r² = −0.04), etc. (Figure 5). 

Figure 3. Dominant taxa expressed as % total cyanobacteria biovolume (taxa with  

% biovolume <1% omitted for clarity). 

 

2.5. Cyanobacteria-Climate Relations 

Contribution to biomass for each generic group was examined in relation to meteorological 

parameters in order to determine dependencies toward regional climate gradients. All relations are 

summarized in Figure 6 as second order polynomial curves obtained with SPSS SigmaPlot 12.  

Three dominant areas could be distinguished: a colder, wetter, less sunny area dominated by 

Aphanothece/Aphanocapsa and Woronichinia, a hotter, drier, sunny area dominated by Microcystis 

and Anabaena, and an intermediate, transitional area associated with Aphanizomenon and 

Planktothrix. This distribution is in accordance with cyanobacterial growth rate and thermal optima 

as exposed in [35,36]. 

Climatic optima, summarized in Table 2, were extrapolated for each genus and defined as the 

parametric value leading to the highest % biovolume. Some of these optima can be deducted to be out 

of our data range when no inflexion could be observed on the distribution curve. 

2.6. Microcystin-Climate Relations 

Microcystins (MCs) detection frequencies could not be directly related to climatic parameters  

(vs. temperature: r² = −0.28; vs. rainfall r² = 0.43; vs. global radiation: r² = −0.01), but a relation may 

be highlighted between MCs and generic groups, leading to an indirect relation with climatic areas 

(Figure 7). This can be explained by the ability of each generic group to host potential toxin producers 

in its own distribution area. 
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Figure 4. Geographical distribution of generic groups as % total cyanobacteria biovolume. 

(a) Woronichinia; (b) Aphanocapsa & Aphanothece; (c) Microcystis; (d) Anabaena;  

(e) Planktothrix; (d) Aphanizomenon.  

 

Figure 5. (a) WHO level 3 occurrence frequencies (% samples > 100,000 cell/mL);  

(b) Microcystin (MC) detection frequencies (% samples with MCs > MQL). 

 
(a)        (b) 

MC detections were negatively related to % biovolume for Anabaena, Aphanizomenon and 

Planktothrix, and positively correlated with Woronichinia and Microcystis. Accordingly, positive 

detection frequencies reached 50% of analysed samples on one hand if Microcystis and/or 

Woronichinia accounted for at least 20% of total cyanobacteria biovolume, and on the other hand if 
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Anabaena accounted for less than 10% biovolume, and Aphanizomenon or Planktothrix accounted for 

less than 17%–20% biovolume. 

Figure 6. Generic % biovolume distribution vs. (a) Mean temperature; (b) Cumulated 

Global Radiation; (c) Cumulated pluviometry (data points omitted for clarity). 

 

Table 2. Taxa distribution criteria extrapolated from May–October climatic data. 

Genus 
MT CGR CP 

°C kW/m² mm 

Aphanothece/capsa <14 <48 >455 
Woronichinia 14.4 <48 >455 

Aphanizomenon 15.8 49.2 335 
Planktothrix 16.1 >51.2 320 
Microcystis 16.1 >51.2 <240 
Anabaena >16.5 50.5 <240 

Notes: MT: mean temperature; CGR: cumulated global radiation; CP: cumulated pluviometry. 

(a) 

(b) 

(c) 
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Figure 7. MC detection frequencies according to generic composition (as % total biomass). 

 

These results were obtained from regional-scale, interannual data, and should not be interpreted as 

an affirmation that MCs are only produced by Microcystis and Woronichinia in Brittany. Moreover, no 

analysis was used to verify which taxa were observed in samples showing positive MC detection. 

These results are indicative of higher MCs occurrences in two nearly opposite climatic domains, i.e., 

the colder/wetter Woronichinia area vs. the drier/hotter Microcystis area. 

2.7. Cyanobacteria and Microcystin Domain Projections  

Projected data from this 30-year extrapolation were inserted in a simple multiple linear regression 

model for all 26 lakes. This model was intended to evaluate the evolution of Microcystis and 

Woronichinia domains, in order to estimate the possible modifications of positive MC detection 

frequencies. The results show a main dependency of Woronichinia (r² = 0.74, p = 0.02) to pluviometry 

(p = 0.02), whereas Microcystis (r² = 0.42, p = 0.05) are mainly explained by global radiation (p = 0.04). 

Higher Microcystis contribution to biovolume tend however to be underestimated. 

Despite this limitation, extrapolated biovolumes for a 30-year projection show that Microcystis 

domain could expand from eight to 20 out of 26 lakes, whereas Woronichinia domain should decrease 

from seven to three lakes. Intermediate (Aphanizomenon/Planktothrix) domains would then decrease 

from eleven to three lakes: nine intermediate domain lakes are projected to join Microcystis/Anabaena 

domains, whereas four Woronichinia/Aphanothece/Aphanocapsa lakes are projected to transfer to 

Aphanizomenon/Planktothrix conditions. This could lead to an extension of frequent MC detections 

(>50% samples) from 15 to 23 lakes, i.e., nearly a 50% increase. The studied lakes are mostly situated 

along a WNW-ESE axis. When our multiple linear regression model is used at full regional scale  

(i.e., integrating climatic parameters from the NE and SW quadrants), the same 30-year extrapolation 

shows that the intermediate domain associated with Aphanizomenon/Planktothrix is projected to 

expand in replacement of the current Woronichinia domain, whereas most current intermediate or 

Microcystis/Anabaena lakes should remain in the same category. This result however could not be 

verified, as insufficient continuous monitoring data were available for these two quadrants. 

These results tend to show that climate change at the current observed rate is expected to involve 

changes in cyanobacteria distribution patterns at regional scale. These modifications can appear to be 

complex at local scale, especially with the observed decrease of July and August temperature and 
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global radiation, but the extrapolated regional evolution seems in broad agreement with observations 

collected from site-specific studies around the world [6,15,16]. From another point of view, the 

projected conservation of the hottest/driest Microcystis domain in oceanic climate can explain why no 

significant evolution in cyanobacteria occurrences or species composition could be highlighted in the 

14-year study of Agueira Reservoir [17]. 

From 2004 to 2011, no nutrient monitoring was conducted in these lakes. As a consequence, no 

relevant trophic status data could be integrated to this work, and our conclusions are only based on 

climatic data. Other parameters can influence cyanobacteria distribution, such as lake morphology 

and/or nutrient form availability to phytoplankton [37,38]. Nutrient data should be included as a 

priority in any cyanobacteria monitoring program.  

3. Experimental Section 

This study is based on public health weekly survey data from recreational lakes monitored every 

year from 2004 to 2011 in Brittany, north-western France (Figure 8). These sites were selected 

according to cyanobacteria survey continuity criteria: 26 sites out of a total of 40 lakes monitored for 

cyanobacteria from 2004 to 2011 could be considered as continuously monitored from June to 

September, i.e., with at least seven years of monitoring out of eight, with a sampling frequency of at 

least every two weeks. The lakes characteristics range from 0.2 to 51 × 106 m3, with depths from 2 to 

45 m and watershed areas from 0.2 to 676 km². 

Figure 8. Localization of the 26 lakes studied in Brittany (western France). 

 

Monthly meteorological data (precipitation rates, temperature, global radiation intensity, etc.) were 

collected from Météo France database (Climathèque) from 1982 to 2011. Meteorological data were 

gridded and mapped with Golden Software Surfer 8 and ESRI ArcGis Desktop 9, whereas regional 

climate evolution rates were estimated with SPSS Sigma Plot 12. 

Only four out of 26 lakes were subject to nutrient monitoring prior to this study. As a consequence, 

no relevant trophic status data could be integrated to this work. 

0 50 100Km.
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Cyanobacteria data, i.e., cell densities, species composition and microcystin concentrations, were 

collected from the regional public health authorities (French Agence Régionale de Santé (ARS) of 

Brittany). All samples were analyzed by four different local laboratories for cyanobacteria composition 

and microcystin concentration. 

Cyanobacteria were identified according to [39–41] and counted with light microscope according  

to [42]. All cell densities data were first converted to biovolume with the use of mean cell dimensions 

and relevant geometric formulas [43], to account for differences in contribution from larger species 

associated with lower cell densities (e.g., Microcystis, Woronichinia, etc.) and smaller species 

associated with larger cell densities (e.g., Aphanocapsa, Aphanothece, etc.). 

As biomass is a consequence of nutrient availability [3], all biovolumes were converted to 

percentage (cyanobacteria) biovolume in order to reduce any inter-site bias related to different trophic 

status. Generic biovolume contributions were mapped with ESRI ArcGis Desktop. 

Microcystins (MCs) were analyzed either with LC/MS, HPLC or ELISA immunoassays depending 

of the laboratory. All toxin analyses involved a preliminary cyanobacteria cell lysis step with  

methanol [44] to account for total (dissolved and intra-cell) toxin concentrations. These methods 

quantification limits range from 0.05 to 0.2 µg/L. As no interlaboratory calibration data was available, 

all quantitative results were sorted as lower than (MCs < 0.2 µg/L) or higher than (MCs > 0.2 µg/L) 

method quantification limit, and then analyzed as detection frequencies for every lake. 

4. Conclusions  

Data analysis from eight years of monitoring 26 lakes shows that, at a regional scale, 

cyanobacteria tend to be associated with homogeneous geographical and climatic areas. In an 

oceanic climate context, such as Brittany, three main domains characterized by their dominant genera 

could be distinguished: a colder/wetter domain dominated by Woronichinia/Aphanocapsa/Aphanothece, 

a hotter/drier domain associated with Microcystis/Anabaena, and an intermediate domain combining 

Aphanizomenon/Planktothrix species. 

These three domains appear to be separated by differences of 1 °C (mean temperature), 15 kW/m² 

(global radiation) and 105 mm (cumulated pluviometry). The similarity between the three 

cyanobacteria domains separation and regional or interannual meteorological amplitude can explain 

why lakes in seemingly geographical proximity can show discrepancies in their reaction to overall 

similar regional summer conditions, and why lakes in some parts of Brittany tend to host similar 

cyanobacteria populations every year. These lakes tend to share the extremes of regional gradient, and 

in this case are situated in Woronichinia or Microcystis domains. 

Our results show that microcystin positive detections are associated with area dominated (as % 

biovolume) by larger Chroococcales (Woronichinia and Microcystis) whereas areas dominated by 

other potentially toxic genera (Anabaena, Aphanizomenon and Planktothrix) are negatively correlated 

with detection frequencies. A 30-year timespan extrapolation tends to show that Woronichinia domains 

should decrease whereas Microcystis domains should expand, leading to higher MCs detection 

frequencies in most of the 26 lakes of this study.  

At regional scale, MC detections are projected to increase in the lakes following an 

eastward/southward axis, whereas lakes situated along a SW/NE axis could transition to an 
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intermediate domain associated with lower MC detection frequencies. However, lower MC 

observations should not be extrapolated to other toxin families. The most common species encountered 

in this intermediate domain are Aphanizomenon flos-aquae, known as a potential producer of PSP, 

Anatoxin-A and Cylindrospermopsin [45–49]; Aphanizomenon issatschenkoï, a PSP and Anatoxin-A 

producer [50–52], and Aphanizomenon gracile, a PSP producer [52–54].  

Only MCs are mandatorily monitored in recreational lakes in France, so no data for other toxins 

could be integrated in this study. Their synthesis however has already been reported to be affected by 

abiotic parameters such as light and temperature [24–28], and as a consequence it seems important to 

extend toxin monitoring to PSP, Anatoxin-A and Cylindrospermopsins in order to build relevant health 

risk management policies in a changing climate context. 
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