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ABSTRACT (234/250words): 

 

Steroids are fundamental hormones that control a wide variety of physiological processes 

such as metabolism, immune functions, and sexual characteristics. Historically, steroid 

synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 

years, a significant number of studies have demonstrated that steroids could also be 

synthesized or metabolized by other organs. According to these studies, the intestine appears 

to be a major source of de novo produced glucocorticoids as well as a tissue capable of 

producing and metabolizing sex steroids. This finding is based on the detection of 

steroidogenic enzyme expression as well as the presence of bioactive steroids in both the 

rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one 

of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal 

epithelial cells is unique in that it does not involve the classical positive regulator 

steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor 

homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes 

to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel 

diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably 

estrogen; this mechanism may impact colorectal cancer development. In this review, we 

contextualize and discuss what is known about intestinal steroidogenesis and regulation as 

well as the key role these functions play both in physiological and pathological conditions. 
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1. Introduction 

In vertebrates, the mucosal surfaces provide a barrier against invading pathogenic 

microorganisms but represent also an essential interface exchange between the host and its 

environment [1]. With a surface of broadly 300m2 in adults, the intestinal mucosa is the 

biggest mucosal surface in humans. The gastrointestinal tract is constantly colonized by a 

huge number of microorganisms (approximately 100 trillion), mostly bacteria, but also viruses 

and fungi, which are collectively referred to as the microbiota [2]. This colonization leads to a 

complex mutualistic relationship between the host and the microbiota in which each partner 

contributes positively to various physiological processes of the other one. For example, the 

microbiota digests and ferments carbohydrates that provide nutrients to the host cell , produces 

essential vitamins, contributes to the development of the gut immune system, and protects the 

host from potential pathogens. In turn, the host regulates microbial ecology by providing 

nutrients and ecological niches.  It also controls microbial density trough the synthesis of 

antimicrobial peptides and immunoglobulins. This dialog is required to maintain what is 

commonly called intestinal homeostasis. The disruption of this homeostasis may lead to the 

development of pathologies such as inflammatory bowel diseases [3, 4]. 

A fundamental actor in the maintenance of the gut immune homeostasis are the intestinal 

epithelial cells (IECs) [5, 6]. IECs, located in the intestinal mucosa, provide a physical and 

biochemical barrier that separates microbiota and immune cells. In addition, interactions of 

IECs with the microbiota or with pathogens result in anti-microbial and immunoregulatory 

responses trough the production of numerous molecules [5, 7-9]. One immunoregulatory 

molecule produced locally by IECs is represented by glucocorticoids (GCs; i.e. cortisol in 

humans and corticosterone in rodents).  

Historically, corticosteroid (glucocorticoids and mineralocorticoids) synthesis only occurred 

in the adrenal cortex. A significant number of studies have now challenged this view by 
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demonstrating that organs such as the thymus [10-12], the skin [13], the brain [14-16], the 

intestine [17-19], and the lung [20] are capable of producing gluco- or mineralocorticoids. 

This review aims to present evidence of local steroid synthesis, particularly that of GCs in the 

intestine, as well as the key factors involved in the regulation of this production. We discuss 

the known and potential roles of GCs in the regulation of intestinal homeostasis and then 

review the data showing that IECs, aside from their ability to produce GCs, are also involved 

in the metabolism of other steroids (notably sex steroids). 

 

2. Intestinal Glucocorticoids 

2.1. Evidence of intestinal GC production  

The steroidogenic ability of the gut was first suggested in the beginning of the 90’s after 

looking for the expression and activity of the CYP17 (P450c17) enzyme along the 

gastrointestinal tract of adult rats (see Figure 1 for a schematic representation of the cortisol 

and sex steroids synthesis pathway). When Dalla Valle et al. assessed the ex vivo metabolism 

of [4-14C]pregnenolone in various organs, they found that the duodenum and the colon were 

able to produce high amounts of dehydroepiandrosterone (DHEA), attesting the presence of 

17-hydroxylase and C 17,20-lyase activities in the intestine [21, 22]. While rodents are 

corticosterone-secreting animals, due to the lack of expression of CYP17 in the adrenal, 

CYP17 expression in peripheral tissues (notably in the intestine) could lead to the synthesis of 

local cortisol in rats or mice. However, an early study failed to identify GCs (corticosterone or 

cortisol) in the small intestine of rats by thin layer chromatography [23]. Moreover, the 

hypothesis of locally produced cortisol in rodents has never been tested and only 

corticosterone has been investigated.  

In the same period of time, the identification of the transcripts encoding both CYP11A1 

(cholesterol side-chain cleavage cytochrome P450; P450scc) and 3HSD (3 beta-
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hydroxysteroid dehydrogenase) in the primitive gut of the mouse embryo suggested the ability 

of the gut to synthesize steroids de novo [24]. The expression of 11HSD2 (11 beta-

hydroxysteroid dehydrogenase 2), which converts active GCs to inactive metabolites, was 

also detected in the intestine of rodents and humans [25, 26]. Subsequent studies 

demonstrated steroidogenic enzyme expression as well as intestinal steroid metabolism in 

various species such as frog [27], fish [28], mouse [17], and human [18, 19, 29]. Most of the 

comprehensive studies on intestinal steroidogenesis have been undertaken using mouse 

models. Cima et al. first measured (by radioimmunoassay) the de novo synthesis of 

corticosterone in murine small intestinal tissue fragments cultured ex vivo [17]. This 

production was highly stimulated in response to immune activation of T lymphocytes. 

Corticosterone synthesis was proven to be in situ, since GC release from tissue was blocked 

by metyrapone, a11ȕhydroxylase (P450c11; CYP11B1) inhibitor, and 11HSD1 [17, 30, 

31]. CYP11A1, 3HSD, CYP21, CYP11B1, and 11HSD1 enzymes were all expressed in the 

murine small and large intestinal mucosa, but some of them were only detected after immune 

stimulation [17]. The cellular source of steroidogenic enzymes and GCs was shown to be the 

IECs located in the crypt region of the small intestine [17]. Further study demonstrated that 

the expression patterns of mRNA encoding CYP11A1 and CP11B1 were linked to cell cycle. 

This restricts the main intestinal GC source to the proliferative cells of the intestinal crypts 

[32]. 

Initial work by Cima et al. suggested that GC synthesis could also occur in the human 

intestine, although results were not shown [17]. Earlier observations suggested intestinal 

steroid metabolism in humans following the detection of 11HSD and 17 beta-hydroxysteroid 

dehydrogenase (17HSD) enzymes in the colon and along the gastrointestinal tract [26, 33]. 

More recently, CYP11A1, CYP17 and CYP11B1 and a production of cortisol were observed 
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in colorectal cancer cell lines (Caco-2, HT-29) as well as in primary human intestinal tissue 

and colorectal tumors [18]. Caco-2 cells were also found to constitutionally express 3HSD1 

and 2 [19], as well as the cholesterol transporter StAR, CYP21 and 11HSD1 (B. Bertin, 

unpublished data). In human tissue, CYP11A1 and CYP11B1 were detected in colonic 

biopsies suggesting that in physiological state the human mucosa is able to produce GC [29]. 

We recently confirmed and detailed this finding by showing expression of steroidogenic 

enzymes (3HSD 1, 3HSD 2, 11HSD1) and cortisol production in colonic epithelial cells 

isolated from human surgical specimens [19]. 

 

2.2. Regulation of GC production: from adrenal to the intestine 

In the adrenal, the regulation of cortisol production is well characterized and is the result of a 

complex interaction between three endocrine glands (hypothalamus, pituitary, and adrenal; 

HPA), which constitute the HPA axis [34]. Hypothalamic hormones (corticotropin-releasing 

hormone and vasopressin) induce peptidic adrenocorticotropic hormone (ACTH) secretion in 

the anterior pituitary, which regulates the synthesis and release of cortisol from the adrenal 

cortex [34]. ACTH acts on the adrenal steroidogenesis through the stimulation of cholesterol 

transporter expression and that of the steroidogenic enzymes [35]. The protein SF-1 

(steroidogenic factor-1) is one of the key regulators in the expression of these steroidogenic 

factors in the adrenals. SF-1 belongs to the superfamily of nuclear receptors, which are mainly 

ligand-dependent transcription factors. SF-1 binds to the promoter and induces the expression 

of StAR, CYP 450 steroid hydroxylases, -hydroxysteroid dehydrogenases as well as 

melanocortine-2 receptor (MC2R), the receptor for ACTH (reviewed in [36]). The phenotype 

of adrenocortical (and gonadal) insufficiency in SF-1 knockout mice clearly established this 

transcription factor as pivotal in the development and physiology of steroidogenic tissues [37, 

38]. However, SF-1 is not expressed in the intestinal mucosa [39, 40]. SF-1 belongs to the 
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nuclear receptor subfamily 5, group A, along with its close homolog LRH-1 (liver receptor 

homolog-1), which is highly expressed in intestinal crypt cells [41], suggesting LRH-1’s 

potential role in the regulation of intestinal steroidogenesis. Indeed, this was first 

demonstrated in vitro by Mueller and colleagues who showed that LRH-1 induces the 

CYP11A1 and CYP11B1 expression as well as corticosterone production in the murine 

intestinal epithelial cell line [40, 42]. In human colon cancer cell lines, the down regulation of 

LRH-1 by small interfering RNA leads to the reduction of steroidogenic enzyme expression 

and cortisol synthesis [18, 19]. In normal human colonic epithelial cells, the expression level 

of the mRNA encoding LRH-1 strongly correlates with the expression levels of 3HSD and 

11HSD [19], suggesting that LRH-1 regulates intestinal GC synthesis under physiological 

state. In vivo, LRH-1 haploinsufficiency in mice confirmed the critical role of LRH-1 in 

controlling intestinal corticosterone production. Upon activation of T lymphocytes, CYP11A1 

and CYP11B1 mRNA levels and corticosterone release were reduced in the intestine of 

heterozygous LRH-1+/- mice [42, 43]. 

The differential regulation of glucocorticoid synthesis in adrenal and intestinal cells is also 

illustrated by the observation that ACTH administration was able to trigger the release of 

corticosterone from the adrenal but not from the intestine [40]. ACTH mainly mediates its 

effect through the stimulation of adenylate cyclase leading to an increase of intracellular 

cyclic adenosine monophosphate (cAMP) level and subsequent protein kinase A activation. 

Thus, it was observed that increasing intracellular cAMP level in the adrenocortical tumor cell 

line Y1 induces the expression of CYP11A1 and CYP11B1, while the opposite effect was 

obtained in the murine intestinal epithelial cell line mICc12 [40]. Conversely, it was shown that 

phorbolester-dependent protein kinase C activation was involved in the control of the 

steroidogenic enzyme expression and GC production in mICc12 cells but not in Y1 cells [40]. 

However, LRH-1 mRNA level was slightly modified by cAMP and phorbolester in mICc12. 
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Recently Lee and colleagues observed in Hela cell lines the ability of phorbolester to 

stimulate the phosphorylation of LRH-1 in an ERK1/2-dependent manner [44]. Therefore, 

rather than a modification of LRH-1 expression, different phosphorylation states of LRH-1 

may explain the antagonistic effect of cAMP and phorbolester observed in intestinal epithelial 

cells [40]. The underlying reasons of the discrepancy between adrenal and intestinal cells 

during the regulation of cortisol synthesis remain currently unknown and the control of 

intestinal steroidogenesis by one or several hormonal signals needs to be characterized. 

To date, only the induction of strong immune responses has been found to induce intestinal 

steroidogenesis. Pioneering works have demonstrated that de novo synthesis of corticosterone 

from small intestinal tissue fragments was highly stimulated in response to immune activation 

of T lymphocytes [17]. Using lipopolysaccharide (LPS) injection in mice, subsequent studies 

investigated whether activation of the innate immune system could also induce intestinal 

steroidogenesis. LPS was able to induce intestinal CYP11A and CYP11B1 expression level 

and intestinal corticosterone release in RAG2-/- mice (which lack T and B lymphocytes), 

suggesting that intestinal GC synthesis induction also occurs independently of the activation 

of the adaptive immune system [43]. The authors showed that the cells, which contribute to 

this LPS-induced intestinal steroidogenesis, were macrophages [43].  

Finally, the pro-inflammatory cytokine tumor necrosis factor (TNF) was clearly demonstrated 

to be the common mediator that regulates intestinal GC production in response to the 

activation of both the innate and adaptative immune system [43]. Following immune 

stimulation by LPS or activation of T cells, intestinal GC synthesis was compromised both in 

mice lacking TNF cytokine or TNF receptor expression. The involvement of TNF was later 

confirmed but the precise role of this cytokine needs further clarifications since opposite 

effects on gut steroidogenesis were found [45, 46]. One might argue that the differential 

involvement of LRH-1 according to the immune response may explain such discrepancies. In 
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wild type mice, both activated T cells and LPS were able to induce CYP11B1 expression and 

corticosterone production in a TNF-dependent manner, but only the T cell-dependent 

induction of intestinal steroidogenesis was compromized in LRH-1 haplodeficient animals 

(LRH-1+/-), which suggest that LPS drives intestinal GC production independently of LRH-1 

[43]. By contrast, Huang et al suggested that TNF-dependent pro-inflammatory signals 

mediated by NF-kB and JNK suppressed CYP11A1 and CYP11B1 expression by inhibiting 

LRH-1 transcriptional activity under chronic inflammatory conditions [46]. In summary, the 

understanding of the regulatory mechanisms of GC synthesis in the gut is just at the 

beginning, and additional mechanisms involved in the regulation of intestinal steroidogenesis 

remain to be discovered.  

 

2.3. Function and roles of intestinal GCs 

2.3.1. Maturation and maintenance of the intestinal epithelial barrier. 

GC-mediated effects on the maturation of the small intestine are well recognized both in 

rodents and humans [47]. For instance, adrenalectomy in rats during the weaning period 

impairs the morphological development of the small intestine [48], while injection of 

cortisone or hydrocortisone to suckling rats increases the expression and activity of many 

small intestinal maturation markers [49-51]. The development of a human intestinal xenograft 

model demonstrated the responsiveness of the human small intestine to cortisone during the 

maturation period [52, 53]. More recently, in vitro studies demonstrated the role of GCs in the 

maintenance of intestinal epithelial barrier integrity [54]. Boivin et al. used a human intestinal 

epithelial monolayer model consisting of filter-grown Caco-2 cells to investigate the role of 

GCs on intestinal barrier function. By measuring transepithelial electric resistance (TEER) 

and paracellular permeability, they showed that synthetic GCs (prednisolone and 

dexamethasone) had a protective effect against the TNF-dependent increase of intestinal 
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permeability [54]. In vitro, a positive effect of dexamethasone on epithelial barrier function 

was subsequently found independent of the presence of any immunological stimulus [55].The 

overall in vitro response of human intestinal epithelial cells to GCs was also studied using 

microarray analysis. This work showed that hydrocortisone differentially regulates the 

expression levels of protein encoding genes and enterocyte markers involved in polarization 

and tight junction formation [56]. Altogether, these studies underlined that both endogenous 

(adrenal-derived) and exogenous GCs play a role during the functional maturation of the gut 

and the maintenance of intestinal epithelial barrier function. However, during these processes 

the effective contributions of GCs produced locally by the intestine remain to be established. 

As compared to the adrenal, the amount of GCs synthesized by IECs under steady state 

conditions is rather low, and to date there is no experimental evidence of the impact of 

intestinal GCs on intestinal barrier maturation and/or maintenance. It was previously reported 

that the specific deletion of LRH-1 in mouse IECs disrupted intestinal steroidogenesis and 

rendered the conditional knockout animals more susceptible to experimental colitis ([29], see 

paragraph 4.1). Although a change of intestinal permeability due to the LRH-1-dependent 

decrease of intestinal GC could explain this phenotype, this hypothesis remains to be tested.  

Using a short hairpin RNA strategy, we recently created a stable Caco-2 cell line in which the 

expression of LRH-1 was reduced by 80% compared to a control cell line [19]. This 

downregulation of LRH-1 resulted in a reduction of cortisol synthesis and release. However, 

preliminary experiments did not observed any change of the TEER of this stable cell line up 

to 21 days when it was differentiated and grown as a monolayer on filters, suggesting that 

intestinal-derived cortisol may not participate in the development of intestinal barrier 

(author’s unpublished data). Further experiments are needed to investigate the potential role 

of intestinal GCs on gut epithelial differentiation and barrier function, e.g. the measurement of 
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intestinal permeability of LRH-1-deficient mice under steady-state and inflammatory 

conditions. 

 

2.3.2. Impact on innate and adaptative immune responses. 

Consistent with the general immunoregulatory properties of GC [57, 58], as well as the 

induction of intestinal steroidogenesis following immune activation, it is likely that local GC 

release is involved in the regulation of intestinal immune responses. In order to specifically 

appreciate the role of GCs released by extra-adrenal sources (such as the intestine), Cima and 

colleagues removed adrenal glands, and challenged these mice with various T cell-dependent 

immunological stresses [17]. Adrenalectomized animals were notably infected with 

lymphocytic choriomeningitis virus (LCMV) (which triggers a robust cytotoxic T lymphocyte 

response) in the presence or absence of the GC synthesis inhibitor metyrapone. Then, the 

virus-specific T cell activation in the intestine was assessed by monitoring membrane markers 

expression and cytokine production. LCMV-infected and metyrapone-treated 

adrenalectomized mice displayed a higher T cell activation compared to LCMV-infected 

animals only, indicating that de novo synthesized extra-adrenal corticosterone inhibited the T 

cell response. Although this work did not formally demonstrate the intestine as the only 

source of GCs, results obtained by Cima et al. strongly suggested its impact. [42]. Regarding 

specifically the gut, heterozygous LRH-1+/- mice, which present a decreased expression of 

steroidogenic enzymes and corticosterone release were more susceptible to experimental 

colitis induced by either 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate 

(DSS) [29]. However LRH-1 expression was reduced in all cell types of rodents, making it 

difficult to exclude the contribution of GCs produced by other cells, such as immune cells 

[59]. But the immunoregulatory role of GCs synthesized by the IECs was further supported by 

more specific experiments in the same study when enterocyte-specific LRH-1-deficient mice 



12 

 

produced less colonic corticosterone after TNBS treatment and displayed more severe 

inflammatory lesions in the large intestine [29] Beside the immunoregulatory properties of 

GCs, other mechanisms such as the maintenance of the intestinal barrier and/or the recovery 

of the epithelial layer by promoting progenitor cell proliferation through LRH-1 might also 

regulate colitis. However, chemically-induced models of colitis imperfectly reproduced the 

cellular and molecular aspects of the physiopathology of inflammatory bowel diseases (IBD), 

these results led also to the assessment of the expression of LRH-1 and intestinal GCs 

synthesis in patients suffering from IBD (see paragraph 4.1). 

Apart from the characterization of T lymphocytes as targets of intestinal GCs, no other 

cellular target has been described yet. It has recently been demonstrated that a fundamental 

dialog between IEC and dendritic cells (DCs) takes place within the intestinal mucosa to 

maintain gut homeostasis. DCs are professional antigen presenting cells (APC) viewed as one 

of the gate keepers of the immune system forming a bridge between the innate and adaptive 

immune responses. Recent studies demonstrated that IECs educate intestinal DCs to suppress 

inflammation and promote tolerance and gut immune homeostasis [7, 9, 60]. Several 

immunoregulatory molecules, such as TGF- (transforming growth factor-), retinoic-acid or 

TSLP (thymic stromal lymphopoietin), produced by IECs are crucially involved in this 

tolerogenic process [5]. Therefore, it is tempting to speculate that immunoregulatory GCs 

released by IECs might have a similar role in promoting the development of DCs (or others 

APC) with tolerogenic properties.  All the same, this hypothesis remains to be tested. 

 

2.3.3. Other properties of intestinal GCs 

Next to GR-mediated effects regulation of GC-sensitive genes, there is also accumulating 

evidence for non-genomic effects of GCs. For example, GCs have been reported to mediate 
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certain biological effects via interaction with cellular membranes, via cytosolic GR and via 

membrane-bound GC receptors [61]. 

Some gut-specific properties have been allocated to this intestinal steroidogenesis. Cortisol 

released by IECs has been recently demonstrated to be involved in the control of the intestinal 

expression of PPARȖ (peroxisome proliferator activated receptor gamma), a key factor in the 

regulation of gut homeostasis. The colon is a major PPAR-expressing tissue with the colonic 

epithelial cells as the main source of expression [62, 63]. PPAR belongs to the nuclear 

receptor superfamily and has been shown to be a critical regulator of inflammatory responses 

[63-67]. This property involves typical positive gene regulation by binding of the PPARȖ-

RXR (RXR, retinoid X receptor) heterodimer to the PPAR-response element (PPRE) located 

in the promoter of target genes. In addition a direct interference with transcription factors 

involved in the inflammatory response, such as NF-B (nuclear factor kappa-light-chain-

enhancer of activated B cells), AP-1 (activating protein-1) and RORȖt (retinoic acid receptor-

related orphan receptor gamma t), has been demonstrated in a mechanism often referred to as 

“transrepression” [67]. In a stable Caco2-cell line with effective LRH-1 knockdown cortisol 

production and release, as well as PPARȖ mRNA and protein expression were drastically 

reduced [19]. This inhibition of PPARȖ expression was reversed to the normal levels 

following the treatment of the cell line by exogenous GCs. As a control, knockdown of 

PPARȖ by the same strategy did not result in a decrease of cortisol release or LRH-1 

expression [19]. These experiments pointed out a key role of intestinal cortisol synthesis in 

the regulation of intestinal PPARȖ and PPARȖ-mediated gut homeostasis. 

Environmental stresses induce adaptive response of IECs with high secretory activity. The 

endoplasmic reticulum (ER) folds and matures most secreted and transmembrane proteins. 

The imbalance between protein load observed in stress situation and folding ability of the ER 
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is defined as ER stress, and the coordinated response triggered is known as UPR (Unfold 

Protein Response) to ensure homeostatic cell control [68, 69]. UPR induces several pathways 

that lead to a reduced protein load that enters the ER, to increase the ability of the ER to 

handle unfolded proteins and in some circumstances to trigger cell death [68]. In the intestine 

disregulation of normal ER responses are particularly sensitive since dysfunction of UPR 

leads to spontaneous colitis in rodents lacking the transcription factor XBP1 (X-box-binding 

protein-1), involved in protein load [70, 71]. In Winnie mice with increased intestinal ER 

stress caused by a missense mutation of the Muc2 mucin gene, GCs suppress ER stress and 

activation of the UPR in a glucocorticoid receptor-dependent manner [72]. GCs promote 

correct folding of secreted proteins and facilitate the enhanced removal of misfolded proteins 

from the ER through up-regulation of genes encoding chaperones and elements of ER-

associated degradation (ERAD) [72]. These results suggest that epithelial steroidogenesis may 

also influence gut homeostasis by modulating ER responses in response to exogenous and 

endogenous stresses. 

 

3. Metabolism and function of other steroids in the gut 

The steroidogenesis involves not only the production of GCs but also other steroids such as 

mineralocorticoids and sex steroids (androgens and estrogens). In parallel to the description of 

gut production of GCs, the ability of IECs to metabolize sex steroids was assessed. From a 

chemical point of view, few enzymatic steps are required to obtain androgens and estrogens 

from common precursors of GCs involving the 3 enzymes17α-hydroxylase/17,20-lyase 

(P450c17), and the17ȕ-hydroxysteroid dehydrogenase (17ȕHSD).  For estrogens there is an 

additional enzyme, the aromatase (P450aro) (Figure 1). Early in vitro and in vivo studies 

observed the expression of enzymes involved in estrogen metabolism in colorectal cancer cell 

lines and normal gut mucosa [33, 73-76]. Evidence of estrogen production by the IECs in 
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healthy humans was then assessed leading to the observation of higher mucosal production of 

estrone as compared to estradiol [77]. 

An important aspect of estrogens is their synthesis in diverse tissues. This may lead to 

variable exposition of IECs by estrogens, depending on sex or diet, in addition to their own 

production in the intestinal mucosa. The 17ȕ-hydroxysteroid dehydrogenase (17-HSD) 

family acts in key steps of the synthesis of sex steroid hormones, mainly of active estrogens 

and androgens [78]. Several isoforms of the 17-HSD enzyme with diverse enzymatic 

activities have been characterized in humans and were thoroughly investigated in human 

colonic mucosa, which mainly express isoform 2 and 4 [75]. These isoforms catalyze the 

oxidative transformation of estradiol and testosterone to estrone and androstenedione, 

respectively, which is thus considered to play an important role in the peripheral inactivation 

of estrogen and androgen [33, 74, 78, 79]. 

Similarly to GCs, estrogens metabolism (mainly estradiol) seems to occur predominantly in 

the intestinal crypts of the colon and may thereby exert a significant effect on colonic 

epithelial cell growth [33, 80]. Of interest in this regard is the observation that ovariectomy 

appears to induce colonic crypt atrophy [81]. Estrogen receptor-ȕ (ER-) is highly expressed 

in gut epithelial cells [82, 83] and ER- signaling is involved in cellular homeostasis and 

maintenance of the colonic epithelial barrier function [84, 85]. Disruption of ER- expression 

in ER- KO mice was notably associated with an increase in epithelial cell proliferation, and 

a decrease of apoptosis and the expression of cellular adhesion molecules [84]. 

 

4. Involvement of intestinal steroidogenesis in pathological disorders 

4.1. Inflammatory Bowel Diseases  
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Inflammatory Bowel Diseases (IBDs), namely ulcerative colitis (UC) and Crohn’s disease 

(CD) are chronic, complex, relapsing immune-mediated disorders of the gastrointestinal tract 

of unknown etiology. Emerging evidence suggests that disease development involves a 

deregulated immune response to the gut microbiome in genetically susceptible individuals, 

triggered by environmental factors [86-89]. The expression of CYP11A1, CYP11B1 and 

LRH-1 were first shown to be decreased in inflamed colon biopsies of CD and UC patients 

compared to non-inflamed biopsies of IBD patients and control subjects [29]. These 

observations strongly suggest that impaired production of intestinal GCs might participate in 

the pathogenesis of IBD. This notion was recently newly strengthened by our recent report 

[19]. While UC and CD share some clinical manifestations, they are distinct 

pathophysiological diseases. For instance, in contrast to the characteristic transmural lesions 

that can affect all the intestinal layers in CD patients, inflammation during UC is restricted to 

colonic mucosa and sub-mucosa. Moreover, recent studies suggest that IEC dysfunction may 

critically contribute to the pathogenesis of UC [90, 91]. Our recent work demonstrated that 

colonic epithelial cells (CEC) isolated from surgical specimens of UC patients have a 

decreased expression of LRH-1 and some steroidogenic enzymes that ultimately result in a 

cortisol production deficiency. This impairment of epithelial steroidogenesis was correlated 

with a decrease of the anti-inflammatory factor PPARȖ [19]. This study demonstrates 

complete steroidogenesis and cortisol production in normal human CECs, highlighting a new 

component of intestinal epithelial barrier regulation. In addition, these results enlarge the GC 

mechanism of action by suggesting a new anti-inflammatory role of corticosteroids via the 

induction of PPAR expression in IECs. These findings also support the notion that intestinal 

production of GCs is a key element in the control of intestinal homeostasis and that the 

defective synthesis of cortisol by CECs may actively contribute to the pathogenesis of UC. 
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During IBD two other circumstances may involve intestinal steroidogenesis. We discussed 

above the possible impact of GCs on ER stress. Induction of ER stress in intestinal epithelium 

through tissue (and cell type)-specific disruption of XBP1 was shown to result in spontaneous 

enteritis due to inability of XBP1-deficient IECs to properly generate antimicrobial activity 

and respond appropriately to inflammatory signals in the local milieu [70]. This concept was 

translated to patients with IBD, who are more likely to develop both CD and UC when 

bearing single nucleotide polymorphisms within the XBP1 gene locus [70]. The 

steroidogenesis state in patients with CD is not yet known. Since GCs are able to relieve the 

ER stress [72], UPR are more likely to be impaired in UC patients with defective IEC 

synthesis of cortisol. 

Another side of steroidogenesis implies sex hormones, particularly estrogens. In two large 

prospective cohorts of women a significant association between oral contraceptive use and 

risk of CD were also associated with a modest, but non-significant increase in risk of UC [92]. 

Conversely postmenopausal hormone use was associated with an increased risk of UC but not 

CD. As discussed previously, estrogen signaling is involved in the colonic barrier function 

[84, 85]. Decreased estrogen receptor ȕ mRNA levels were observed in colonic biopsies from 

IBD patients as well as in IL-10 deficient mice (a model of IBD), which correlated with an 

increase in epithelial permeability [85]. These findings indicate a potential impact of sex 

hormones, in particular estrogens, on IBD development. However, to our knowledge no study 

has thus far assessed estrogen synthesis in the intestinal mucosa of IBD patients 

 

4.2. Colorectal cancer (CRC) 

Epidemiological and observational studies pointed out a correlation of exogenous and 

endogenous estrogens in the development of colorectal cancer (CRC) with a possible 

increased risk in women with higher circulating endogenous estrogen concentrations [93]. 
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Estrogens may induce colorectal cancer cell apoptosis by binding to estrogen receptor ȕ, [73, 

94]. A2-2.4-fold increased of estrogen (mainly estrone rather than estradiol) were observed in 

colon carcinoma tissues [77]. This may be related to overexpression of enzymes involved in 

steroid synthesis pathway, such as sulfatase and mainly 17HSD isoform 2 [77, 79]. The 

17HSD2 catalyzes the oxidative transformation of estradiol to estrone [74]. Both the level of 

estradiol and 17HSD have been associated with CRC and disease progression irrespective of 

sex. Since IECs are a source of estrogen, the control of epithelial steroidogenesis could be 

useful to control CRC onset and progression.  

Another hypothetical involvement of IEC steroidogenesis may be via PPARȖ. Beside the anti-

inflammatory properties of PPARȖ this nuclear receptor regulates cell proliferation, 

differentiation and is able to induce apoptosis [95]. Activation of PPARȖ by a synthetic ligand 

(mesalasine) has been shown to inhibit cancer growth by decreasing cell proliferation and 

increase cell apoptosis [96]. Since a decrease of PPARȖ expression has been observed in some 

patients bearing CRC [97], a decrease in local GCs production in these patients may be 

involved, but no data are presently available. On the other hand, it has been demonstrated that 

CRC cell lines and primary tumor samples produce and release cortisol that can potentially 

modulate T cell-dependent anti-tumoral immune response, thereby contributing to tumor 

immune escape [18]. 

 

5. Conclusion 

Steroid metabolism has been demonstrated and confirmed in the intestine. IECs are able to de 

novo synthesize and release GCs that regulate the gut immune response. The defective 

synthesis of cortisol identified in the colonic epithelial cells of UC patients strengthens the 

idea that intestinal GCs contribute to intestinal homeostasis. In addition, perturbations of 
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estrogen metabolism are also evident in CRC cells, strongly suggesting that steroid 

metabolism is an important process during IEC homeostasis. 

Whereas in classical steroidogenic organs (adrenals and gonads), the regulation of steroid 

production is well characterized, a lot of work remains to be done in order to identify the 

mechanisms controlling intestinal steroidogenesis. For instance, the recent identification of 

microbiota as a potential regulator of corticosterone production by the small intestine in mice 

[98] may pave the way to design new studies that aim to more thoroughly characterize the 

production of GCs in the gut. Given the involvement of steroids produced by the gut in 

pathological conditions such as CRC and IBD, therapeutic strategies targeting intestinal 

steroidogenesis might represent interesting new approaches for the treatment of these chronic 

diseases. 
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FIGURE LEGEND 

 

Figure 1: A simplified overview of the cortisol and sex steroids synthesis pathway. 

Glucocorticoids and sex steroids result from the conversion of cholesterol by cytochrome 

P450 enzymes as well as dehydrogenase enzymes (hydroxysteroid dehydrogenases; HSD). 

StAR protein is a transporter involved in the cholesterol transport to the mitochondria where 

the first, rate-limiting step catalyzed by P450scc occurs. In humans, cortisol can also result 

from the conversion of the metabolically inactive pro-hormone cortisone. In rodents, the first 

half of the synthesis pathway is conserved, except that rodents do not express the cyp17a1 

gene in adrenals. Progesterone is transformed into 11-deoxycorticosterone (instead of 11-

deoxycortisol) and 11-deoxycorticosterone is transformed into corticosterone (instead of 

cortisol). Corticosterone can also results from the conversion of 11-dehydrocorticosterone 

(not represented). For each step, both the name of the protein and the corresponding gene are 

indicated, with the name of the gene in parenthesis. 
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