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(phosphorylated histone H2AX), HDAC (histone deacetylase), LC3 (microtubule-associated protein 1 light chain 3), mTOR (mammalian target of rapamycin), NAC (N-acetyl-L-cysteine), PBS (phosphate buffered saline), PFA (paraformaldehyde), ROS (reactive oxygen species), TEM (transmission electron microscopy).

Introduction

Mycotoxins are biologically active secondary fungal metabolites. They are often found as contaminants in food and pose a major risk for human and animal health. The immune system is a known target for several mycotoxins [START_REF] Pestka | Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance[END_REF]. The mycotoxin alternariol (AOH) is produced by the Alternaria genus, often found in fruit, vegetables and grain [START_REF] Ostry | Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs[END_REF][START_REF] Uhlig | Faces of a changing climate: semi-quantitative multi-mycotoxin analysis of grain grown in exceptional climatic conditions in norway[END_REF], as well as in processed fruit products such as juices and wines [START_REF] Ackermann | Widespread occurrence of low levels of alternariol in apple and tomato products, as determined by comparative immunochemical assessment using monoclonal and polyclonal antibodies[END_REF]. AOH was present in 31% of samples of feed and agricultural commodities in Europe, with concentrations ranging from 0.02 -7.1 µM [START_REF] Efsa | Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed anf food[END_REF]. The highest levels of AOH are found in legume, nut and oilseed food [START_REF] Efsa | Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed anf food[END_REF]. Currently there are no regulations on Alternaria toxins, including AOH, in food or feed [START_REF] Efsa | Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed anf food[END_REF]. However, the estimated chronic dietary exposure of AOH at 1.9-39 ng/kg body weight per day exceeds the threshold of toxicological concern value of 2.5 ng/kg body weight per day used by the European Food Safety Authority in the risk assessment of AOH [START_REF] Efsa | Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed anf food[END_REF]. This underlines the need for additional toxicity data.

AOH is found to be both genotoxic and mutagenic in several in vitro studies [START_REF] Brugger | Mutagenicity of the mycotoxin alternariol in cultured mammalian cells[END_REF][START_REF] Fehr | Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform[END_REF][START_REF] Pfeiffer | Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro[END_REF]. AOH has been shown to induce both single as well as double stranded DNA breaks [START_REF] Brugger | Mutagenicity of the mycotoxin alternariol in cultured mammalian cells[END_REF][START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF]. AOH also reduces cell proliferation by causing a long lasting cell cycle arrest. This arrest has been suggested to be caused by the DNA damage. In comparison, cell death, mainly necrosis, is only observed at substantially higher concentrations and at later time points [START_REF] Bensassi | Cell death induced by the Alternaria mycotoxin Alternariol[END_REF][START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF].

Furthermore, AOH is reported to induce reactive oxygen species (ROS) [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF][START_REF] Tiessen | Modulation of the cellular redox status by the Alternaria toxins alternariol and alternariol monomethyl ether[END_REF] resulting in oxidative DNA damage measured by the comet assay [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]. However, addition of the antioxidant ascorbic acid did not reduce the effect of AOH on cell cycle, suggesting that DNA damage caused by the increased ROS levels was not directly linked to the cell cycle arrest [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]. Interestingly, a study done by Fehr and coworkers [START_REF] Fehr | Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform[END_REF], identified AOH as a topoisomerase II poison, stabilizing the cleavable complex of DNA, thereby forming double stranded breaks (DSBs). The topoisomerase-effect of AOH may thus explain the increased levels of phosphorylated histone H2AX (γ-H2AX), a marker of DSBs [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF], which might specifically contribute to the G2 cell cycle arrest [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF]. Furthermore, AOH is also suggested to interfere with the separation of chromosomes through an inhibition of the decatenatory activity of topoisomerase II [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF], possibly leading to the abnormal nuclear morphology that is observer after AOH exposure in RAW264.7 cells [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF]).

Mycotoxins have generally not been associated with autophagy. Recently however, both the genotoxic mycotoxin patulin [START_REF] Guo | Patulin induces prosurvival functions via autophagy inhibition and p62 accumulation[END_REF]) and the estrogenic mycotoxin zearalenone [START_REF] Wang | Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells[END_REF]) have been linked with autophagy. Autophagy can be stimulated by multiple forms of cellular stress, including ROS, DNA damage, protein aggregates and damaged organelles [START_REF] Kroemer | Autophagy and the integrated stress response[END_REF]. Several forms of autophagy have been described: macroautophagy, chaperonemediated autophagy and microautophagy. Recent reports suggest that macroautophagy in particular plays an important role in determining the cell fate following an initial insult [START_REF] Kroemer | Autophagy and the integrated stress response[END_REF][START_REF] Rodriguez-Rocha | DNA damage and autophagy[END_REF]. Macroautophagy, hereafter referred to as autophagy, is a re-cycling mechanism by which cells through lysosomal degradation re-use amino-and fatty acids. It involves sequestration of cytosolic proteins and organelles within double-membrane structures termed autophagosomes and their subsequent fusion with lysosomes, thereby generating the autolysosome. In the autolysosome, degradation occurs via various lysosomal hydrolases.

Importantly, autophagy can be integrated with other cellular stress responses through parallel stimulation, thus being central in the integrated stress response [START_REF] Kroemer | Autophagy and the integrated stress response[END_REF]. Several signaling pathways have been implicated in the control of autophagy, including the mammalian target of rapamycin (mTOR) pathway. mTOR activity is controlled by AMP-responsive protein kinase (AMPK), which functions as a sensor for cellular nutrient and energy levels. Whereas mTOR activation stimulate protein synthesis, it's down regulation is associated with autophagy [START_REF] Jung | mTOR regulation of autophagy[END_REF]. Recently, increased genotoxic stress has been suggested to increase autophagy, possibly through a p53-dependent induced expression of sestrins [START_REF] Budanov | p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[END_REF].

Sestrins have cytoprotective function based on their ability to act as an antioxidant to scavenge excessive ROS [START_REF] Budanov | Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling[END_REF]). However, independent of its redox-potensial, Sestrin2 induced activation of AMPK is found to reduce mTOR activation and thereby induce autophagy [START_REF] Hay | p53 strikes mTORC1 by employing sestrins[END_REF].

In general, autophagy is considered as a pro-survival mechanism. The relationship between autophagy and the various forms of cell death is still unclear [START_REF] Marino | Self-consumption: the interplay of autophagy and apoptosis[END_REF][START_REF] Ryter | The Impact of Autophagy on Cell Death Modalities[END_REF].

Autophagy and apoptosis have been reported to be both co-incident and antagonistic depending on experimental context, and to cross-talk between signal transduction elements. Autophagy may also be a part of or modulate the outcome of other regulated forms of cell death such as necroptosis [START_REF] Asare | 3-nitrofluoranthene (3-NF)-induced apoptosis and programmed necrosis[END_REF][START_REF] Ryter | The Impact of Autophagy on Cell Death Modalities[END_REF]. Senescence is another stress related response that has been suggested as an alternative outcome of autophagic activity [START_REF] Gewirtz | Autophagy and senescence: a partnership in search of definition[END_REF]. This is a biological state where cells have lost the ability to divide, but still remain metabolically active [START_REF] Evan | Cellular senescence: hot or what?[END_REF].

AOH induces ROS production and interferes with topoisomerase activity, which both may result in DNA damage as well as cell cycle arrest. As such events may initiate autophagy and/or senescence; we hypothesized that this mycotoxin could initiate similar events. Here we have used the RAW264.7 macrophage cell line, which is a well-known in vitro model to study various effects of mycotoxins on the immune system [START_REF] Pan | Dynamic changes in ribosomeassociated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress[END_REF][START_REF] Pestka | Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance[END_REF][START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]. We find that AOH induces autophagy possibly through the Sestrin2-AMPK-mTOR-S6K pathway.

Interestingly, AOH also induces generation of lamellar bodies, and after prolonged exposure the cells enter senescence.

Materials and Methods

Reagents and chemicals

Bovine serum albumin (BSA), gels and buffers for Western blotting (NuPAGE system) were all purchased from Invitrogen (Life Technology, Carlsbad, CA, USA). Lysis buffer and senescence β-Galactosidase staining kit were from Cell Signaling (Beverly, MA, USA). Dulbecco's Modified Eagle Medium (DMEM), Penicillin/Streptomycin, Fetal bovine serum (FBS), and Earl´s balanced saline solution (EBSS) were from Lonza (Verviers, Belgium). Bio-RAD DC protein assay was from Bio-Rad Laboratories Inc (Hercules, CA, USA). Super signal west dura chemo luminescence system was from Pierce, Thermo Scientific (IL, USA). AOH, Concanamycin A (ConA), Chloroquine (CQ), Hoechst 33342, valine, N-acetyl-L-cysteine (NAC), and Acridine Orange (AO) were from Sigma-Aldrich (St.Louis, MO, USA). [ 14 C]-valine was from Perkin Elmer, Waltham, MA, USA.

Cell culture and treatments

Mouse macrophage cell line RAW264.7 was obtained from the European Collection of Cell Cultures (ECACC). The cells were cultured and treated as described previously [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF]. AOH was dissolved in DMSO and the final concentration of solvent in cell culture was 0.1%. Appropriate controls containing the same amount of solvent were included in each experiment. The concentrations of AOH used in this study are in the same range that causing DNA damage as previously published by us [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]) and others [START_REF] Brugger | Mutagenicity of the mycotoxin alternariol in cultured mammalian cells[END_REF][START_REF] Fehr | Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform[END_REF][START_REF] Pfeiffer | Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro[END_REF]. NAC was dissolved in complete medium complemented with HEPES (25 mM) and pH adjusted to 7.4. The cells were pre-treated with NAC for 1 h before exposure to AOH.

Morphological characterization

The number of normal round shaped cells and star-shaped cells in randomly selected fields was analysed by light microscopy (Leica DMIL, Solms, Germany) and expressed as percentage of all cells counted. A minimum of 300 cells were manually counted per incubation. Pictures were taken by Moticam 1000 (Motic, Hong Kong, China).

Lysosomal labeling with acridine orange

Lysosomes were analyzed by using the lysosomotropic weak base Acridine Orange (AO, Sigma-Aldrich), a metachromatic fluorophore that accumulates in lysosomes. The cells were plated on poly-L-lysine coated coverslips (BD Biosciences), stained with AO, 1 M for 20 min at 37C, and washed twice with PBS. Pictures were taken with a fluorescence microscope (Nikon Eclipse 80i (Melville, NY, USA), equipped with a DS-Ri1 camera). For analysis with flow cytometry (Accuri C6, BD bioscience, San Jose, CA, USA), the cells were harvested, stained as above and analyzed by using 488ex:670LPem.

Measurement of LC3II by flow cytometry

Following treatments, cells were harvested, washed once in PBS, fixed in 1% paraformaldehyde (PFA) in PBS for 15 min on ice, and post-fixed/permeabilized in 90% ice-cold methanol for at least 48 h at -20 o C. For staining with antibody, 5 x 10 5 cells were washed twice with 0.5% BSA in PBS and then incubated with LC3B antibody (Cell Signaling; 1:100) in 0.5% BSA/PBS overnight at 4 o C. The cells were then rinsed twice in 0.5% BSA/PBS and incubated with secondary antibody conjugated to Alexa Fluor 647 (Molecular Probe;1:2000) for 2 h at room temperature in the dark.

The cells were then rinsed twice and analyzed by flow cytometry (Accuri C6) using 633ex:675/25em.

Western blot

RAW264.7 cells were washed twice in ice cold PBS and placed at -70C until the next day. The cells were then scraped in lysis buffer (Cell Signaling) and centrifuged (6000 x g, 10 min). Protein concentrations of the supernatants were quantified by using Bio-Rad DC protein assay kit. Western blotting were then performed as previously described [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF], using the NuPage Novex system from Invitrogen and the following antibodies: LC3B, p-mTOR (S2448), p-p70S6K (Thr389), p-AMPK (Thr172), β-Actin Rabbit mAb HRP conjugate and Anti-Rabbit IgG HRPlinked antibody (Cell Signaling), and Sestrin2 (Proteintech, Chicago, IL, USA).

Long-lived protein degradation assay

Cells were incubated for 30 h with 0.25 μCi/ml L-[ 14 C] valine-supplemented medium, before AOH (30 µM) or vehicle (DMSO) was added and the incubation continued for 19 h. The cells were washed and chased for 5 h in fresh medium containing AOH or vehicle and 10 mM non-radioactive L-valine to allow degradation of short-lived proteins.. Cells were thus incubated with AOH for a total of 24 h. Next, the cells were washed and chased for 2 h in complete medium without AOH in the absence or presence of the autolysosome inhibitor Concanamycin A (ConA). Incubation in Earl's balanced salt solution (EBSS) for 2 h served as a positive control. Cellular protein was precipitated with TCA, and percent degradation was assessed as the acid-soluble radioactivity divided by the total radioactivity. Valine was used in the LLPD-studies as its presence does not affect autophagy in itself.

Immunofluorescence

For staining of endogenous LC3, cells were grown on glass coverslips, treated with AOH (30 M) or vehicle for 24 h, fixed in 4% PFA, and incubated with an antibody against LC3 (#PM036, MBL), followed by Alexa488-labeled donkey anti-rabbit IgG (Jackson ImmunoResearch). The cells were stained with Hoechst 33342 (2 µg/ml in PBS) for visualization of nuclei. For high-throughput analysis pictures were taken using the automated Olympus ScanR system (Tokyo, Japan) with an UPLSAPO 40×/0.95 objective. 64 images were automatically taken from each coverslip with identical settings and below pixel saturation. Quantification of LC3 spots was performed by the Olympus ScanR analysis software. In the automated analysis, the nuclear Hoechst-staining was used for identification of individual cells, and discrete LC3 spots were identified in the GFP channel upon manual setting of threshold values for gating of proper spot size, shape and intensity.

The software then determined the number of spots and the total intensity of the spot pixels per cell using the same threshold values for all samples. LC3 spots were quantified from 400-2,000 cells per condition in each experiment.

Transmission electron microscopy (TEM)

Following drug exposure the cells were rinsed with 0.15 M Na cacodylate buffer and fixed by drop wise addition of glutaraldehyde (2.5%) for 1 h. After fixation, the specimens were rinsed several times with 0.15 M Na cacodylate buffer and post fixed with 1.5% osmium tetroxide for 1 h. After further rinsing with cacodylate buffer, the samples were dehydrated through a series of graded ethanol from 70 to 100%. The specimens were infiltrated in a mixture of acetone-Eponate (50/50) for 3 h, then in pure Eponate for 16 h. Finally, the specimens were embedded in DMP30-Eponate for 24 h at 60°C. Sections (0.5 µm) were cut on a LEICA UC7 microtome and stained with toluidine blue. Ultra-thin sections (90 nm) were obtained, collected onto copper grids and counterstained with 4% uranyl acetate then with lead citrate. Examination was performed with JEOL 1400 electron microscope (Tokyo, Japan) operated at 120 kV.

Viability

For measurement of necrotic/late apoptotic cells, the cells were plated on UpCell plates (Nunc, Rochester, NY, USA). These plates were unique in that the surface of these dishes is temperature-responsive and allows cells to detach without the use of cell scrapers at temperatures below 32°C.

For harvesting, the dishes were put on ice for 10 min to allow detachment. Since necrotic and late apoptotic cells lose membrane integrity they cannot exclude PI and PI-staining is thereby detectable using flow cytometry. Briefly, cells were plated on UpCell dishes, after 24 h the cells were pretreated with the autophagy inhibitor for 1 h before AOH exposure for 24 h. After exposure the cells were harvested as described above. Cells were stained with PI (5 g/ml) by adding the dye directly to the medium, incubated for 10 min in the dark at ambient temperature and analyzed immediately by flow cytometry (Accuri C6). Debris and doublets were excluded by gating and 10 000 cells were analyzed.

Senescence β-galactosidase staining

β-galactosidase activity is present only in senescent cells. RAW264.7 cells were fixed and stained according to the protocol provided by the manufacturer (Cell Signaling). The number of βgalactosidase positive cells in randomly selected fields was analysed by light microscopy (Leica DMIL, Solms, Germany) and expressed as percentage of all cells counted. A minimum of 300 cells were counted per incubation. Pictures were taken by Moticam 1000 (Motic, Hong Kong, China).

Statistical analysis

The data analyzes were performed using Sigma Plot version 12.0. Statistical significance (p < 0.05) was assessed using 1-way-ANOVA, followed by Dunnett's post-test between control and treated samples or Tukey's post-test between two treated groups.

Results

AOH induces morphological changes

To assess the effect of AOH on the morphology of RAW264.7 cells, the cells were treated with AOH (30 µM) for 18, 24 or 48 h before investigation under light microscopy. Fig. 1A shows that AOH induces changes in the cell morphology already after 18 h exposure. The cells changed from small and round-shaped cells into big star-shaped cells with an extensive vacuolization. After 24 h with AOH (30 µM) exposure, the changes were very distinct and about 40% of the cells had a starshaped morphology (Fig. 1B). In accordance with our previous findings [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF][START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF], little or no cell death was observed (Fig. 5).

AOH induces autophagy

To test if the increased vacuolization could be due to autophagy, we stained the AOH treated cells with Acridine Orange (AO). AO accumulates in acidic vacuoles like lysosomes and autolysosomes.

Analysis done by fluorescence microscopy revealed that AOH treatment increased the numbers as well as the size of acidic vacuoles (Fig. 2A). The increased level of AO upon AOH treatment was further analyzed and quantified by flow cytometry. Significant accumulation of AO was found after 24 and 48 h, starting at 30 µM AOH (Fig. 2B) suggesting increased autophagy. Next we wanted to test if AOH-induced ROS production was responsible for the accumulation of acidic vacuoles. Addition of the ROS scavenger N-acetyl-L-cysteine (NAC, 5-20 mM) did not change the AOH-induced enhancement of acidic vacuoles (Fig. 2C). These data suggests that AOH-induced accumulation of acidic vacuoles is not directly mediated by ROS, or indirectly through oxidative DNA damage.

LC3II is generated by conjugation of LC3 to phosphatidylethanolamine in the autophagosome membrane upon autophagy activation, and is considered as an indicator of autophagosome number [START_REF] Klionsky | Guidelines for the use and interpretation of assays for monitoring autophagy[END_REF][START_REF] Mizushima | Methods in mammalian autophagy research[END_REF]). To investigate if the increased level of acidic vacuoles was due to enhanced initiation of autophagy, we determined the expression level of LC3II. Indeed, treatment with AOH enhanced the protein levels of LC3II, as determined by both flow cytometry (Fig. 3A) and western blotting (Fig. 3B). In further agreement with AOH-induced autophagy, AOH significantly increased the number and intensity of autophagosomes, as indicated by the typical punctuate pattern observed upon immunofluorescence staining of endogenous LC3 (Fig. 3C-E).

Enhanced levels of autophagosomes often reflect increased autophagic activity, but could also be due to reduced autolysosomal turnover. To distinguish between these two possibilities we next assessed the autophagic flux by measuring the degradation of long-lived proteins, which are considered to be bona fide autophagy substrates [START_REF] Klionsky | Guidelines for the use and interpretation of assays for monitoring autophagy[END_REF]. In support of an increased autophagic activity, AOH significantly enhanced the degradation of long-lived proteins (Fig. 4).

The rate of degradation was increased to ~50% of the level induced by amino acid starvation, which is a potent inducer of autophagy often used as a positive control. AOH-induced protein degradation was almost completely reversed by an inhibitor of autolysosomal degradation, Concanamycin A (ConA) [START_REF] Huss | Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c[END_REF], further confirming enhanced protein degradation via AOH-induced autophagy (Fig. 4).

Next we wanted to examine if the induced autophagy protected against AOH-induced cellular stress, as cell death was barely detectable after AOH exposure [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]. AOH was incubated together with the well-known autophagy inhibitor, chloroquine (CQ) [START_REF] Klionsky | Guidelines for the use and interpretation of assays for monitoring autophagy[END_REF][START_REF] Poole | Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages[END_REF]) and cytotoxicity was detected by the uptake of PI and quantified by flow cytometry. In accordance with previous findings 30 µM AOH induced little or no cytotoxicity (Control: 1.8% ± 0.54 vs AOH: 8.0% ± 5.6), whereas slight cytotoxic effects could be observed after exposure to CQ alone (Fig. 5). Most interestingly, CQ markedly potentiated the cytotoxic effects of AOH compared to the effects of these two compounds given separately. This finding suggests that AOH-induced autophagy acts as a pro-survival response.

To elucidate the possible mechanisms underlying AOH-induced autophagy, we examined the effect of AOH on the mTOR signaling pathway, a well-known negative regulator of autophagy [START_REF] Jung | mTOR regulation of autophagy[END_REF][START_REF] Rodriguez-Rocha | DNA damage and autophagy[END_REF]. Indeed, the phosphorylation of mTOR as well as its substrate S6K was decreased in parallel with the AOH-induced increase in LC3II (Fig. 6).

Furthermore, AOH increased the expression of Sestrin2 simultaneously with increased phosphorylation of AMPK, an established negative regulator of mTOR [START_REF] Jung | mTOR regulation of autophagy[END_REF]. Taken together these data suggest that AOH induces autophagic activity that may be induced by the Sestrin2-AMPK-mTOR-S6K signaling pathway (Fig. 9).

AOH induces changes in the cellular ultrastructure associated with autophagy and changed lipid metabolism.

As revealed by phase contrast microscopy, AOH induced severe cellular retraction and appearance of vacuoles in the cytoplasm together with changed morphology (Fig. 1). A deeper insight into the subcellular alterations observed in AOH-treated cells was acquired by TEM. Control cells showed a normal ultrastructure with uncondensed chromatin and well preserved organelles (Fig. 7A). When treated with AOH (30 µM, 24 h), the most striking ultrastructure modification was an extensive vacuolization of the cytoplasm (Fig. 7 B). When treated cultures were observed in detail, autophagosomes and autolysosomes, common structures associated with autophagy were observed (Fig. 7 C-F). Interestingly, lamellar bodies, associated with changes in the lipid metabolism and phospholipidosis, were also observed in AOH-treated cells (Fig. 7 C-E).

AOH induces senescence

Since AOH-treated cells are arrested in G2 [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF]) with a flattened and enlarged morphology (Fig. 1), enhanced autophagy (Fig. 3), but apparently without increased cell death [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF], we lastly wanted to explore if AOH induced senescence. Senescence associated β-galactosidase (SA-β-Gal) is commonly used as a senescence biomarker [START_REF] Dimri | A biomarker that identifies senescent human cells in culture and in aging skin in vivo[END_REF][START_REF] Rodier | Four faces of cellular senescence[END_REF]. As can be seen in Fig. 8, AOH increased the level of SA-β-Gal in a time-and concentration-dependent manner, suggesting that AOH induced senescence.

Interestingly, approximately 80% of the cells were positive for the senescence marker after prolonged AOH exposure (48-72 h, 30-60 µM).

Discussion

Our previous studies [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF][START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]) revealed that exposure of RAW264.7 macrophages to the mycotoxin AOH increased the production of ROS and the level of DNA damage. Somewhat surprisingly, this DNA damage did not result in any increased cell death, neither necrosis nor apoptosis. However, the AOH-exposure resulted in an almost complete G2 cell cycle arrest with high sustained levels of cyclin B1, or possibly in a kind of G1 arrest as most of the arrested cells had diploid or abnormal partly divided nuclei. The AOH-induced cell cycle arrest was found to be independent of ROS production. This indicates that the ability of AOH to interfere with topoisomerase activity thereby causing DSBs [START_REF] Fehr | Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform[END_REF]) is of more importance for the cell cycle arrest. In the present study, we show that this AOH-induced cell cycle arrest is accompanied by increased autophagy and senescence. Such effects could have implications for immune cells thereby modulating the immune responses.

A number of chemicals have been reported to induce autophagy. However, several of the earlier studies suffer from inadequate methodology. Indeed, recent reviews on autophagy focus on the need for a more mechanistic approach when reporting effects on this process [START_REF] Klionsky | Guidelines for the use and interpretation of assays for monitoring autophagy[END_REF]).

Here we have employed a wide spectrum of well-known autophagy methods to show that AOH induces autophagic activity in RAW264.7 cells. Initially, AOH was found to increase the number and expand the size of acidic vacuoles. Our more detailed examination of the induced process suggested that the increased vacuolization was due to increased initiation of autophagy as judged by increased protein levels of LC3II, as well as a clear induction of LC3-positive spots. Finally, in support of a real increase in the autophagic activity, AOH was shown to enhance the lysosomedependent degradation of long-lived proteins.

The first cellular interaction explaining how autophagy is initiated is for most chemicals not known.

The reason for this is that specific chemicals most often interact with many different cellular molecules and will then trigger various types of damage. Such interactions induces several stress responses including oxidative stress, DNA damage response (DSBs) and ER stress, which are known to induce of autophagy [START_REF] Deegan | Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress[END_REF][START_REF] Niforou | Molecular chaperones and proteostasis regulation during redox imbalance[END_REF][START_REF] Rodriguez-Rocha | DNA damage and autophagy[END_REF]). However, similar cellular signaling pathway is also often involved in other cellular responses such as inflammation and apoptosis [START_REF] Kroemer | Autophagy and the integrated stress response[END_REF]. The molecular mechanisms connecting these initial events and the final cellular responses are just beginning to be understood.

It is well known that p53 regulates several signaling pathways in response to certain type of cellular stress, and involves cell cycle arrest, apoptosis as well as metabolic changes [START_REF] Vousden | Blinded by the Light: The Growing Complexity of p53[END_REF]. It has been suggested that both genotoxic and oxidative stress can stimulate autophagy through p53-dependent transcription of Sestrin 1/2 [START_REF] Budanov | p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[END_REF][START_REF] Maiuri | Stimulation of autophagy by the p53 target gene Sestrin2[END_REF][START_REF] Rodriguez-Rocha | DNA damage and autophagy[END_REF]. Downstream of Sestrin2 the AMPK is activated and mTOR is suppressed [START_REF] Budanov | p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[END_REF], thereby releasing the negative regulation on autophagy [START_REF] Jung | mTOR regulation of autophagy[END_REF]. Recently, we found that AOH induced ROS and DNA damage followed by p53 activation and a p53-dependent expression of Sestrin2 [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF]. Interestingly, the ROS scavenger NAC was found to only partially reduce the AOH-induced expression of Sestrin2 [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF], suggesting that the DNA damage/ p53-activation also was the result of other type of DNA damage, more specifically the interference with topoisomerase activity. Here, we find that NAC do not reduce the AOH-induced accumulation of acidic vacuoles. It seems therefore that the ability of AOH to interfere with topoisomerase activity, rather than its effect on ROS production, is a more likely explanation of the increased autophagy. Further linking this DNA damage and p53 response to autophagy, we find that AOH in addition to increase the expression of Sestrin2 also enhanced p-AMPK and decreased the activation of mTOR and its substrate S6K.

As autophagy is found to be induced via the p53-Sestrin2-AMPK signaling pathway in several recent studies [START_REF] Hay | p53 strikes mTORC1 by employing sestrins[END_REF][START_REF] Wang | Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells[END_REF], a similar link between these pathways and the observed AOH-induced autophagy seems reasonable. However, there are other DNA-damage initiated signaling pathways than p53-Sestrin2-AMPK-mTOR-S6K that also are linked to autophagy [START_REF] Cam | p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through two independent parallel pathways in the presence of DNA damage[END_REF]), which cannot be ruled out at this stage.

Autophagy can be induced as a response to various types of DNA damage [START_REF] Rodriguez-Rocha | DNA damage and autophagy[END_REF]. Most interestingly, also other DNA damaging agents that interfere with topoisomerase activity (e.g. camptothecin and etoposide) are found to initiate cell cycle arrest, autophagy [START_REF] Abedin | Autophagy delays apoptotic death in breast cancer cells following DNA damage[END_REF][START_REF] Katayama | DNA damaging agentinduced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells[END_REF]) and senescence [START_REF] Brel | Cytotoxicity and cell death mechanisms induced by the polyamine-vectorized anti-cancer drug F14512 targeting topoisomerase II[END_REF][START_REF] Gewirtz | Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation[END_REF][START_REF] Zhao | New biomarkers probing depth of cell senescence assessed by laser scanning cytometry[END_REF]. Besides a role of p53, is has been suggested that the sequestration or degradation of mitotic proteins after DNA damage (in particular DSB) by autophagy might be one way by which cells can maintain a robust checkpoint arrest in the M-phase (Dotiwala et al. 2012). However, this is likely not the case with regard to AOH as the AOH-induced cell cycle arrest is rather in G2/M transition or possibly secondary in G1 phase than in the M-phase [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF].

Interestingly, another novel link between DSB and autophagy has been suggested [START_REF] Robert | HDACs link the DNA damage response, processing of double-strand breaks and autophagy[END_REF][START_REF] Shubassi | Acetylation: a novel link between double-strand break repair and autophagy[END_REF]. Upon DNA damage, DNA repair factors become acetylated and are then together with the damaged DNA transported out of nuclei and degraded by autophagy. This probably allows the DNA repair machinery to be sequestered away from actively replicating DNA, which contains naturally nicks and breaks. Mistakenly "repairing" replication associated breaks and nicks could result in potentially harmful DNA damage. Both histone deacetylase (HDAC) inhibitors and rapamycin are found trigger autophagy, which then conteracts DNA repair [START_REF] Robert | HDACs link the DNA damage response, processing of double-strand breaks and autophagy[END_REF]. Interestingly, HDAC is also found to interact directely with DNA topoisomerase II [START_REF] Tsai | Histone deacetylase interact directely with DNA topoisomerase II[END_REF]. This prosess might therefore be relevant for AOH induced DNA damage and autophagy as well.

ER stress is another cellular process often associated with autophagy [START_REF] Deegan | Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress[END_REF].

Disturbances in the ER`s homeostatic environment disrupts the protein folding machinery and results in an accumulating of unfolded proteins in the ER lumen, thus activating the unfolding protein response [START_REF] Deegan | Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress[END_REF]. Autophagy is therefore often induced and may help to digest misfolded proteins (Appenzeller-Herzog and Hall 2012). The mechanistic links between ER stress and autophagy are currently not well understood, but are suggested to involve inhibition of mTOR via Sestrin2 activation [START_REF] Bruning | Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation[END_REF]. It has been suggested that the double evolvement of autophagosomes with membranes from the ER might explain the presence of lamellar bodies if multiple cycles of autophagy occur [START_REF] Morissette | Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: procainamide-induced autophagic cell vacuolization[END_REF]. Thus, the AOH increased autophagic activity may be linked to the enhanced level of lamellar bodies and induced cellular senescence.

An accumulation of phospholipids in lysosomes and the appearance of lamellar bodies are also found to be commonly induced by drugs that alter the lipid metabolism [START_REF] Anderson | Drug-induced phospholipidosis[END_REF], as autophagy is also suggested as a mechanism to remove accumulated lipids (Kovsan et al. cells had gone through karyokinesis via mitotic slippage ending up as G1 like cells. These findings propose that the same triggering mechanisms causing sustained cell cycle arrest and autophagy following AOH treatment also might be linked to senescence. p21 is considered to be a critical component in stress-induced senescence [START_REF] Darzynkiewicz | In search of antiaging modalities: Evaluation of mTOR-and ROS/DNA damage-signaling by cytometry[END_REF][START_REF] Gewirtz | Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation[END_REF], and is found to be necessary for Adriamycin/topoisomerase II inhibitor-induced autophagy and senescence in MCF-7 cells [START_REF] Goehe | The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?[END_REF]. Consistent with an activation of this pathway, we also found a robust accumulation of p21 after AOH exposure [START_REF] Solhaug | Mechanisms involved in alternariol-induced cell cycle arrest[END_REF], in the same timeframe as the occurrence of abnormal nuclear morphology and senescence. Also, AOH-induced autophagy and cell cycle arrest seems to appear earlier than the induction of senescence, further support the notion that senescence is a consequence of DNA damage, cell cycle arrest and autophagy.

Conclusion

We found that the mycotoxin AOH induces autophagy in RAW264.7 macrophages, possibly through the Sestrin2-AMPK-mTOR-S6K pathway. The induction of autophagy is most probably associated to AOH-induced DNA damage, due to association with topoisomerase activity rather than the production of ROS. After prolonged AOH exposure the cells entered senescence. These in vitro experiments suggest possible modulator effects of AOH on immune cells, and they should therefore be followed up by in vivo studies. 
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2010; [START_REF] Morissette | Intracellular sequestration of amiodarone: role of vacuolar ATPase and macroautophagic transition of the resulting vacuolar cytopathology[END_REF][START_REF] Peropadre | Cellular responses associated with dibucaine-induced phospholipidosis[END_REF][START_REF] Schmitz | Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages[END_REF]. However, judged by the TEM analyzes; AOH did not cause a marked increase in lipid vacuoles in RAW264.7 cells.

Senescence is known to be induced by several topoisomerase poisons [START_REF] Gewirtz | Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation[END_REF]). Here we report that also prolonged exposure of AOH results in cellular senescence. Together with increased β-galactosidase activity, cellular senescence is generally accompanied by morphological changes, which may be quite striking [START_REF] Kuilman | The essence of senescence[END_REF]). The cells are described as large, flat and more irregularly shaped. This is very similar to the appearance of the RAW264.7 cells observed after exposure to AOH. Furthermore, we found that the autophagy inhibitor CQ potentiated AOH induced cell death. This suggests that AOH induced autophagy as well as senescence can be considered as pro-survival mechanisms. In fact autophagy and senescence share a number of characteristics that collaterally protects the cells from toxicity of external stress. Interestingly, autophagy has also been suggested as an effector mechanism of senescence. This may be important for the rapid protein remodelling required for making an efficient transition from proliferative to a senescent state [START_REF] Young | Autophagy mediates the mitotic senescence transition[END_REF]). However, it is also found that an inhibition of autophagy is permissive for senescence [START_REF] Gewirtz | Autophagy and senescence: a partnership in search of definition[END_REF]. This type of relationship is logical if both autophagy and senescence act in a cytoprotective manner, as senescence then might serve as a backup response in the event that autophagy fails to provide effective protection to the injured cells. Interestingly, Psedolaric Acid B (an anti-tubulin drug), induce mitotic catastrophe, G2/M cell cycle arrest followed by mitotic slippage into G1 followed by autophagy-dependent senescence [START_REF] Yu | Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell[END_REF]). In our previous study [START_REF] Solhaug | Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages[END_REF] we also considered that AOH induced mitotic slippage. After prolonged AOH exposure, the cells were arrested in G2 (4N) with high levels of cyclin B1, but abnormal nuclear morphology (partly or completely divided). This suggests that the
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