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Abstract 

Cornelia de Lange syndrome (CdLS) and KBG syndrome are two distinct developmental 

pathologies sharing common features such as intellectual disability, psychomotor delay, and 

some craniofacial and limb abnormalities. Mutations in one of the five genes NIPBL, SMC1A, 

SMC3, HDAC8 or RAD21, were identified in at least 70% of the patients with CdLS. 

Consequently, additional causative genes, either unknown or responsible of partially merging 

entities, possibly account for the remaining 30% of the patients. In contrast, KBG has only 

been associated with mutations in ANKRD11.  

By exome sequencing we could identify heterozygous loss-of-function mutations in 

ANKRD11 in two patients with the clinical diagnosis of CdLS. Both patients show features 

reminiscent of CdLS such as characteristic facies as well as a small head circumference 

which is not described for KBG syndrome. Patient A, who carries the mutation in a mosaic 

state, is a four-year-old girl with features reminiscent of CdLS. Patient B, a 15-year-old boy, 

shows a complex phenotype which resembled CdLS during infancy, but has developed to a 

more KBG overlapping phenotype during childhood. These findings point out the importance 

of screening ANKRD11 in young CdLS patients who were found to be negative for mutations 

in the five known CdLS genes. 

 

Key words: ANKRD11, cohesin, Cornelia de Lange syndrome, KBG syndrome, mosaicism, 

whole exome sequencing 

 

Introduction 

Cornelia de Lange syndrome (CdLS, OMIM #122470, 300590, 610759, 300882, and 614701) 

and KBG syndrome (OMIM #148050) are two distinct rare multisystem developmental 

disorders.  
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CdLS is characterized by clinical and genetic heterogeneity (1). The main features of the 

syndrome are pre- and post-natal growth retardation, intellectual disability, psychomotor 

delay, limb anomalies and a typical facies. These distinctive facial features include a low 

anterior hairline, arched eyebrows, synophrys, depressed nasal bridge, anteverted nares, long 

and smooth philtrum and thin upper lip with down-turned corners of the mouth. The cardiac, 

gastro-intestinal and genitourinary systems are also frequently involved (1). Heterozygous 

mutations in five different genes have been identified in patients with CdLS: NIPBL (5p13.2, 

OMIM #608667), SMC1A (Xp11.22, #300040), SMC3 (10q25.2, #606062), HDAC8 

(Xq13.1, #300269) and RAD21 (8q24.11, #606462). All five genes are associated with the 

cohesin complex and its regulation. While the proteins SMC1A, SMC3 and RAD21 represent 

structural components of the cohesin complex, NIPBL and HDAC8 are associated regulators: 

NIPBL mediates the cohesin loading onto DNA and HDAC8 promotes SMC3 deacetylation 

to regulate proper cohesin dissociation from chromatin (2-7). The cohesin complex is 

involved in a large spectrum of functions including sister chromatid cohesion, DNA damage 

response, chromatin modification, transcriptional regualtion and long-range interactions 

between distant genomic regions (8). 

NIPBL is the major gene of the syndrome and alterations can be identified in more than half 

of the patients (9). Mutations in NIPBL are usually associated with a severe phenotype and 

with a high frequency of limb anomalies (9). Recently, a high proportion of mosaic mutations 

have been identified in patients with CdLS, thus partially accounting for the wide variability 

of expression: more than 20% of patients who were mutation negative in peripheral blood 

have been shown to carry mutations in NIPBL on DNA extracted from buccal mucosa or 

fibroblasts (10, 11). 
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Besides NIPBL, the remaining four genes account for about 15% of the patients, who are 

usually characterized by a more moderate or milder phenotype as those with mutations in 

NIPBL (6, 7, 12, 13).  

KBG syndrome is a very rare genetic disorder characterized by macrodontia of the upper 

central incisors, short stature, skeletal anomalies, psychomotor delay, intellectual disability, 

seizures, and craniofacial abnormalities which include a round facies, brachycephaly, 

hypertelorism, a bulbous nasal tip, long philtrum and broad and arched eyebrows (14, 15). 

KBG has been associated with loss of function mutations in the ANKRD11 gene (16q24.3, 

#611192), which codes for the ankyrin repeat-containing protein 11, also known as ankyrin 

repeat-containing cofactor 1 (ANCO-1) (16). This protein is known to inhibit the 

transcriptional activation of nuclear receptors target genes through the recruitment of the 

histone deacetylases HDAC3, HDAC4 and HDAC5 (17). Sirmaci et al. (16) demonstrated 

that ANKRD11 localizes within the nuclei of neurons and accumulates in discrete inclusions 

when neurons are depolarized, suggesting a role in neural plasticity. The protein contains five 

ankyrin repeats involved in protein-protein interactions, two repression domains (at the N- 

and C-terminus) and one activation domain capable of stimulating transcription (18). 

Herein we report on two patients with a tentative clinical diagnosis of CdLS who were found 

to be negative for mutations in the five known CdLS genes but carry heterozygous loss-of-

function mutations in ANKRD11 identified by exome-sequencing approaches.  

 

Patients and methods 

Patients 

Patient A (Fig. 1 a-h) is a German female, the fourth offspring of healthy and non-

consanguineous parents. The patient was born at 37 weeks of gestation after caesarian 

section. The Apgar scores were 9 and 10 at 1 and 5 minutes, respectively. Birth weight was 
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2350 g (-1.6 SD), birth length was 46 cm (1.75 SD) and the Occipital Frontal Circumference 

(OFC) was 31.5 cm (- 2 SD). The patient showed early feeding difficulties resulting in a poor 

increase of weight. She also showed general muscular hypertonia.  

The patient was re-evaluated at the age of four months. At this age, weight was 5600 g (+0.3 

SD), height was 59 cm (-1.75 SD) and OFC was 38.3 cm (-0.3 SD). She showed a small 

brachycephalic head, open anterior fontanelle, synophrys, downslanting palpebral fissures, 

anteverted nares, depressed nasal bridge, long philtrum, thin lips with downturned corners of 

the mouth, short neck, mild brachydactyly, proximally set thumbs and mild micrognathia. 

She presented with impressive hypertonia. She was able to sit at the age of 16 months, and to 

walk without support at the age of 20 months.  

Last evaluation was performed at the age of four years. At this age, the patient was not able to 

eat without assistance. She presented with speech delay, being able to speak about 50 words 

and showed an aggressive and self-injurious behavior associated with autism. She showed a 

moderate intellectual disability. Her gait was wide based. Hearing or vision impairment were 

not observed.  

Based on these clinical features the patient was considered to have CdLS. 

Patient B (Fig. 1 i-k) is an Italian male and the third child of healthy and non-consanguineous 

parents. Birth weight was 3150 g (-1.7 SD), length was 53 cm (0.3 SD) and the OFC was 33 

cm (-2.9 SD). A bilateral vesico-ureteral reflux was surgically treated in the first year of life. 

Moreover, ultrasound kidney evaluation showed kidney dysplasia. Subsequent analysis of the 

renal function indicated the presence of a mild non nephrotic proteinuria without impairment 

of kidney function. He presented gastro-esophageal reflux with esophagitis of first degree. 

For this reason, he received proton pump inhibitors therapy.  

At the age of four he presented with moderate psychomotor and cognitive delay. He was able 

to walk independently, to speak in sentences and was completely able to manage himself in 
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daily life. At the age of nine he started to show severe behavioral problems, characterized by 

auto- and hetero-aggression. He also showed generalized epilepsy.  

At the age of 15 years the boy was in a good health condition. His weight was 41.2 kg (-0.5 

SD), height was 161 cm (-1.6 SD) and the OFC was 54 cm (-1.2 SD).  

He showed the following facial dysmorphisms: Low anterior hairline, broad and arched 

eyebrows with synophrys, long eyelashes, high nasal bridge, large nasal tip, smooth philtrum, 

large mouth with thin lips, macrodontia of superior central incisors, mild micrognathia. He 

also showed mild lumbar and forearms hirsutism, myopia and astigmatism, proximally placed 

thumbs and clinodactyly of the fifth finger. He was clinically diagnosed as having CdLS 

during childhood. 

Methods 

DNA extraction and sequencing 

Genomic DNA was isolated from peripheral blood, buccal mucosa and fibroblasts. Extraction 

from blood and fibroblasts was performed with the QIAamp DNA Mini Kit (Qiagen, Milan, 

Italy), while the PureGene Buccal Cell Core Kit A (Qiagen) was used for gDNA isolation 

from buccal mucosa cells. PCR products were sequenced using the Big Dye terminator v3.1 

Sequencing Kit and run on the ABI PRISM 3130xl sequencer (Applied Biosystems, Foster 

City, CA, USA). Electropherograms were analyzed with ChromasPro Software version 1.7.6 

(Technelysium Pty Ltd, Tewantin QLD, Australia) and aligned with the wild type ANKRD11 

sequence (RefSeq NM_013275). 

Gene panel 

Targeted gene panel analysis was performed on the fibroblast DNA of both patients with the 

Personal Genome Machine (Ion Torrent PGM, Life Technologies, Darmstadt, Germany) as 

described by Braunholz et al. (11). 

Exome sequencing 
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Targeted enrichment was performed via Sure Select All Exon Kit V2 (Agilent, Waldbronn, 

Germany) for patient A, and through the TruSeq Exome Enrichment preparation kit 

(Illumina) for patient B. Sequencing was performed with Illumina’s HiSeq 2500 system.  

For bioinformatics analysis, read tags were aligned on human reference genome (GRCh37.5) 

using bwa 0.6.1 (19) or Novoalign (Novocraft Technologies, Selangor, Malesia). Single 

nucleotide variants (SNVs) and short insertions and deletions (indels) were called with 

GATK according to the best practice guidelines. The variant annotation on a functional level 

was performed using Jannovar or snpEff (20) and filtered in GeneTalk for somatic variants 

(21). 

Pyrosequencing 

The allelic dosage was quantified with an assay specific for each patient. The analysis was 

performed with the Pyro Gold Reagent Kit on the Pyro MarkID Q24 (Qiagen). 

 

Results 

Initial Sanger sequencing as well as high coverage target-enriched gene panel sequencing 

could not detect any pathogenic mutation in the CdLS-associated genes in either of the 

patients. Because of the high frequency of mosaic mutations in patients with CdLS that 

cannot be detected in DNA derived from blood, buccal mucosa and fibroblasts were also 

analyzed, as suggested by Braunholz et al. (11).  

Since no obvious disease-causing mutation could be identified in any of the DNA samples, 

both patients were selected for a whole exome-sequencing analysis, which was performed on 

blood DNA samples. 

For patient A four possible de-novo variants were considered as valid candidates: one 

splicing mutation in the Bone Morphogenetic Protein Receptor 2 (BMPR2) gene, two 

missense mutations in the ACAP3 (ArfGAP with Coiled-coil, Ankyrin repeat and PH 
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domains 3) and in the ERC2 genes (ELKS/RAB6-interacting/CAST family member 2) as 

well as a nonsense mutation in ANKRD11. No obvious functional correlation was found 

between the first three genes and the cohesin complex. Moreover, three different 

bioinformatic tools (PolyPhen-2, SIFT and Mutation Taster) predicted the first three variants 

to be not pathogenic. Besides, mutations in ANKRD11 were recently identified in three 

patients with CdLS-overlapping phenotypes (22). The ANKRD11 mutation of patient A, 

c.5483G>T; p.S1828X, was found in 31% (836) of the 2664 sequencing reads, indicating a 

possible mosaic state.  

For patient B four variants were detected. Three genes, namely ZW10 

(Centromere/Kinetocore protein zw10 homolog), SMC1B (Structural Maintenance of 

Chromosome protein 1B) and ASPM (Abnormal Spindle-like Microcephaly-associated 

Protein), carried a missense mutation, while a four base-pairs deletion resulting in a frame-

shift was identified in the ANKRD11 gene. All three missense variants were found to be 

inherited; therefore, we focused on the frame-shift deletion affecting exon 9 of ANKRD11 

(c.2297_2300delAGAA, p.K766_K767fsX9). Similar to the analysis of patient A, an uneven 

distribution of the wild type to the mutant allele (47/13 reads) was detected, thus raising the 

suspicion of a mosaicism. 

Both ANKRD11 mutations were confirmed and proven as de novo by Sanger sequencing on 

different tissues (Fig. 2a). While the electropherograms of patient A further indicated an 

unequal ratio between the wild type and the mutant allele, no significant difference in the 

distribution of the two alleles could be observed in patient B. To further investigate the role 

of the putative mosaicism for both mutations we performed pyrosequencing analyses. By this, 

we could confirm the presence of a mosaic state for patient A while the mutation in patient B 

was excluded to be mosaic. In detail, the quantification of the two alleles in patient A showed 

a 30:70 ratio between the mutant and the wild type allele in blood DNA and a 50:50 ratio on 
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fibroblasts DNA, whereas equal distribution of wild type and mutant allele was observed in 

blood, buccal mucosa as well as fibroblast DNA of patient B (Fig. 2b). 

 

Discussion 

Although CdLS and KBG are rare distinct syndromes, both show overlapping features such 

as cognitive impairment, growth retardation and some craniofacial abnormalities including 

brachycephaly, broad arched eyebrows and anteverted nostrils. Limb anomalies, specifically 

small hands and feet, clinodactyly of the fifth finger and syndactyly of the second and third 

toes, are also described in both syndromes. In this context, it is worth to be noted that both 

ANKRD11 and the cohesin complex are involved in gene expression regulation. The main 

function of ANKRD11 is to repress the transcriptional activation of target genes of nuclear 

receptors by recruiting deacetylases to different promoters (17). Similarly, the cohesin 

complex is involved in the regulation of gene expression, mediating both transcriptional 

activation and repression (23, 24). It is therefore tempting to speculate that the dysregulation 

of functionally interconnected sets of genes due to deficiency of the cohesin complex or 

ANKRD11 might result in overlapping phenotypical features. 

Despite some shared phenotypical features, both syndromes must be considered as two 

distinct entities. In this regard, the head circumference and the teeth conformation may be 

used as main distinguishing features: CdLS patients are normally characterized by a marked 

microcephaly, which is not described for patients with KBG. Teeth anomalies including 

macrodontia of the central incisors, fused incisors, malposition, oligodontia and overcrowded 

teeth are instead frequent in patients with KBG, and not typical for CdLS (Table 1).  

Here we report on two CdLS patients with a mutation in ANKRD11. Patient A shows some 

clinical signs common to both CdLS and KBG, specifically brachycephaly, short neck, 

arched eyebrows, anteverted nares, a long philtrum, intellectual disability and behavioral 
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problems. Nevertheless, the small head circumference, synophrys, long eyelashes, a 

depressed nasal bridge and the absence of macrodontia or fused incisors were suggestive for 

the clinical diagnosis of CdLS. Patient B also shows features present in CdLS and KBG, such 

as broad and arched eyebrows, long philtrum, clinodactyly, intellectual disability and 

behavioral problems. Typical for CdLS are the low anterior hairline, synophrys, long 

eyelashes, smooth philtrum, thin lips with downturned corners of the mouth and a small head 

circumference. Despite the presence of a fifth finger clinodactyly, the hands of patient B 

show long fingers which is rather atypical for CdLS (Fig. 1k). Suggestive for KBG are the 

large nasal tip and macrodontia of the central upper incisors. Although patient B showed 

typical clinical features reminiscent for CdLS during early childhood, at the age of 15 years 

his phenotype was more compatible with KGB.  

Interestingly, patient A carries the mutation in a mosaic state. In the last years, mosaicism has 

been proved to play an important role in CdLS (10).  

So far, only one mosaic mutation in the ANKRD11 gene has been reported in the mildly 

affected mother of a KBG proband (25). In our patient A it might be possible that the 

presence of mosaicism with a variable ratio of the wild type and mutant gene product in 

different tissues can contribute to the mitigation of the KBG features and may explain the 

more CdLS-overlapping phenotype. 

In summary, mutations in ANKRD11 can result in a CdLS-overlapping phenotype which 

seems to be most distinct in early childhood. Therefore, a detailed clinical follow up is 

strongly recommended. Sequencing analysis of ANKRD11 has to be considered for those 

patients with the suspected clinical diagnoses of CdLS during childhood who were tested as 

mutation negative in the five known CdLS genes. 
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Legends 

Fig. 1  

Phenotype of the patients. (a-h) Patient A: (a, b) frontal and lateral view of the patient at the 

age of four months. (c) Facial gestalt at the age of four years. (d) Appearance of the teeth. (e) 

Picture of the left foot. (f-h) Pictures of the left hand, revealing shortened first metacarpal, 

clinodactily of the fifth finger and proximally set thumb. (i-k) Patient B: (i, j) Facial 

appearance at the age of eight and 15 years, respectively. (k) Picture of the left hand, showing 

clinodactyly of the fifth finger and proximally set thumb. 

 

Fig. 2 

Analysis of multiple tissues of both patients through Sanger sequencing (a) and 

pyrosequencing (b).  

Sanger sequencing shows an unequal distribution between the mutant and the wild type allele 

in patient A, but not in patient B. The pyrosequencing analysis confirms the Sanger 

sequencing results, showing a 50:50 ratio between the two alleles in patient B and in the 

fibroblast DNA of patient A; blood DNA of patient A reveals the presence of 32% of mutant 

allele, and 68% of wild type allele, thus confirming the presence of mosaicism. 
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Table 1. Overlapping CdLS and KBG clinical features of the reported patients 

  CdLS KBG Patient A Patient B 
Growth abnormality IUGR + - - - 
 Delayed bone age - + - - 
 Short stature + + + - 
Craniofacial abnormality Brachycephaly + + + - 
 Small head circumference + - + + 
 Short neck + + + - 
 Low anterior hairline + - + + 
 High forehead - + - - 
 Frontal bossing - + - - 
 Round/triangular face - + - + 
Eyebrow abnormality Broad eyebrows + + + + 
 Arched eyebrows + + + + 
 Synophrys + ± + + 
Eye abnormality Hypertelorism/telecanthus + + - + 
 Myopia/strabismus ± - - + 
 Long eyelashes + - + + 
Nose abnormality Depressed nasal bridge + - + - 
 Large/bulbous nasal tip - + - + 
 Anteverted nostrils + + + - 
 Long philtrum + + + + 
 Smooth philtrum + - + + 
Mouth abnormality Thin upper lip + - + + 

 
Downturned corners of the 
mouth + - + + 

Teeth abnormality Macrodontia of central 
incisors - + - + 

 Fused incisors - + - - 
 Gap between upper incisors ± - + - 
 Malposition - + - - 
 Poly/oligodontia - + - - 
 Others ± + - - 
Skeletal abnormality Costovertebral anomaly - + - - 
 Small hands + + + - 
 5th finger clinodactily + + + + 
 Proximally set thumbs + - + + 
 2nd, 3rd toe syndactyly + + - - 
Neurological features Structural brain malformation - + - - 
 Intellectual disability + + + + 
 Speech delay + + + + 
 Behavioral problems + + + + 
Seizures  + + - + 
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Fig. 1  

Phenotype of the patients. (a-h) Patient A: (a, b) frontal and lateral view of the patient at the 

age of four months. (c) Facial gestalt at the age of four years. (d) Appearance of the teeth. (e) 

Picture of the left foot. (f-h) Pictures of the left hand, revealing shortened first metacarpal, 

clinodactily of the fifth finger and proximally set thumb. (i-k) Patient B: (i, j) Facial 

appearance at the age of eight and 15 years, respectively. (k) Picture of the left hand, showing 

clinodactyly of the fifth finger and proximally set thumb. 



This article is protected by copyright. All rights reserved 

 

 

 

 

 

 

 

 



This article is protected by copyright. All rights reserved 

 

 

 

Fig. 2 

Analysis of multiple tissues of both patients through Sanger sequencing (a) and 

pyrosequencing (b).  

Sanger sequencing shows an unequal distribution between the mutant and the wild type allele 

in patient A, but not in patient B. The pyrosequencing analysis confirms the Sanger 

sequencing results, showing a 50:50 ratio between the two alleles in patient B and in the 

fibroblast DNA of patient A; blood DNA of patient A reveals the presence of 32% of mutant 

allele, and 68% of wild type allele, thus confirming the presence of mosaicism. 


