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SUMMARY

Among immunoglobulins (Igs), IgE can powerfully
contribute to antimicrobial immunity and severe al-
lergy despite its low abundance. IgE protein and
gene structure resemble other Ig classes, making it
unclear what constrains its production to thousand-
fold lower levels. Whether class-switched B cell re-
ceptors (BCRs) differentially control B cell fate is
debated, and study of the membrane (m)IgE class
is hampered by its elusive in vivo expression. Here,
we demonstrate a self-controlled mIgE+ B cell stage.
Primary or transfectedmIgE+ cells relocate the BCRs
into spontaneously internalized lipid rafts, lose
mobility to chemokines, and change morphology.
We suggest that combined proapoptotic mecha-
nisms possibly involving Hax1 prevent mIgE+ mem-
ory lymphocyte accumulation. By uncoupling in vivo
IgE switching from cytokine and antigen stimuli, we
show that these features are independent from B
cell stimulation and instead result from mIgE expres-
sion per se. Consequently, few cells survive IgE class
switching, whichmight ensureminimal long-term IgE
memory upon differentiation into plasma cells.

INTRODUCTION

In mammals, IgE contributes to immunity against pathogens and

toxins (Marichal et al., 2013; Palm et al., 2013). It also yields se-

vere allergies, making it crucial to restrain IgE production and

control IgE immune memory. Since IgE+ cells are scarce in vivo,

it is unclear whether, as for other Igs, cells with an IgE B cell re-

ceptor (BCR) become memory lymphocytes. Globally, humoral

memory relies on the dual ability of B cells to either differentiate

into long-lived plasma cells (PCs) or survive as memory B lym-

phocytes. The BCR, providing both tonic and ligation-induced

signals, includes membrane-anchored Igs (mIgs) differing from

secreted Igs by inclusion of an extracellular membrane-proximal

domain, a transmembrane segment, and a cytoplasmic tail vary-

ing between heavy chain (HC) classes (Venkitaraman et al.,

1991). Human mIgE exists with either a long (‘‘mLIgE’’) or a short

(‘‘mSIgE’’) membrane-proximal domain (Batista et al., 1995).

Mouse mIgE was studied in the abundant mIgE+ B cells ap-

pearing in vitro after class switch recombination (CSR) in the

presence of interleukin-4 (IL-4) (Anand et al., 1997; Coffman

et al., 1986). Such mIgE+ B cells are rare in vivo, except in T/B

monoclonal or hyper-TH2 LATY136F mice (Aguado et al., 2002;

Genton et al., 2006, Erazo et al., 2007). A single spontaneous

mIgE+ lymphoma cell line was reported (Sitia, 1985). In mIgE+

cells, BCR expression is weak (Karnowski et al., 2006). That

mIgE+ B cells are mandatory for generating IgE PCs (similar to

mIgG and mIgA) was proven by knocking out membrane exons

(Achatz et al., 1997; Amin et al., 2012; Kaisho et al., 1997). To

avoid Fcε receptor-mediated artifacts, IgE+ B cells can be char-

acterized by intracellular rather than surface staining (Wesemann

et al., 2011). After tagging mIgE or knocking in an IRES-GFP

cassette downstream from Cε, it was suggested that within

germinal centers, caspase activation was higher in IgE+ than in

IgG1+ cells (Talay et al., 2012; He et al., 2013). However, the

IRES-GFP strategy monitors not only mIgE but also germline

Cε transcription. It was also proposed that among antigen-acti-

vated cells, mIgE+ cells vanished through accelerated differenti-

ation into PCs and were more apoptotic and less mobile than

IgG+ cells (Yang et al., 2012). These observations did not provide

an explanation for the increased ratio of PCs versus activated B

lymphocytes in the IgE+ compartment, and more importantly

with regard to long-term immunity, they gave no clue about the

status of memory B cells.

In immature mouse B cells, transfected IgE expression re-

sulted in BCR ligation-inducible growth inhibition as with IgM

(Batista et al., 1996). In mature cells binding antigen, it is un-

known whether class-switched and naive IgM+ cells are differ-

entially stimulated or eventually undergo activation-induced

cell death (Guzman-Rojas et al., 2002; Figgett et al., 2013; Péron

et al., 2012). Cross-linking of a transfected mIgE was reported to

induce apoptosis (Poggianella et al., 2006). In vivo, the rarity of

mIgE+ cells could involve either a specific influence of cytokines

and cell interactions promoting IgE CSR or specific signals from

the mIgE BCR. Globally, mIgE+ cells have only been observed

transiently and in minute amounts in vivo after B cell activation,

but never as resting memory B cells. These peculiar restrictions

of IgE synthesis prompted us to look for a putative mIgE-BCR-

dependent and B cell intrinsic self-control. To explore mIgE
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specificities, we designed models uncoupling mIgE expression

from immune activation, and we evaluated the potential changes

of B cell fate resulting frommIgE expression per se. We checked

whether mIgE can mimic mIgM and support B cell survival, as

shown for other HCs (Duchez et al., 2010; Horikawa et al.,

2007; Lutz et al., 1998). We show that, independent of stimula-

tion, mIgE expression per se alters the B cell phenotype in mul-

tiple regards, with notably a short lifespan.

RESULTS

Premature Cε Expression Ablates Mature B Cells
While abundant in vitro upon stimulation in the presence of IL-4,

mIgE+ cells barely appear in vivo. We forced mIgE expression

and set up the 3KI mutation replacing Smwith a human C 3encod-

ing both secreted IgE and mIgE (Figures S1A and S1B). Human

IgE weakly binding mouse Fc 3receptors was chosen to prevent

nonspecific staining (Wesemann et al., 2011). Heterozygous

wt/ 3KI mice were derived, but no B cell expressing IgE appeared

(Figure S1C). This culminated in complete B cell lymphopenia in

εKI/εKI animals, with bone marrow expansion of CD43+/CD25�

pro-B (16.5% to 94.7% of all B220+/CD19+ cells, p < 0.0001)

but lack of CD25+/B220+ pre-B cells (43.4% to 0.05% of all

B220+/CD19+ cells, p < 0.0001), while both follicular and mar-

ginal zone B cells were absent (Figure S1D). Neither murine Ig

nor human IgE were detected in blood (Figure S1E). This did

not involve defective association of human εHCwith mouse sur-

rogate light chains since a transfected human ε HC efficiently

reached the surface of mouse 18–81 pre-B cells (Figure S1F).

Apoptosis and Poor Survival of Primary mIgE+ Cells
We set up a staining protocol that removed bound soluble IgE

from the cell surface (Figure S1G) and confirmed that true

mIgE+ cells appear in vitro under anti-CD40/IL-4 stimulation of

wt mouse B cells. They proved more prone to spontaneous or

cytokine-deprivation induced apoptosis than mIgG1+ cells (Fig-

ures 1A and 1B). Decreased DJm potential suggested mito-

chondrial apoptosis, although use of bcl2 transgenic cells pre-

served a difference between mIgG1+ and mIgE+ cells (Figures

1A and 1B).

LATY136F mutant mice overproducing TH2 cytokines (Genton

et al., 2006) generated [B220+, IgE+] cells in vivo, expressing

CD138 much more frequently than IgM+ or IgG+ cells and thus

likely engaged in PC differentiation (Figure 1C). Two days after

bromodeoxyuridine (BrdU) injection, these cells stained as

short-lived BrdU+ cells (Figure 1D).

To compare survival according to Ig class, we transferred

LATY136F splenocytes into RAG2�/� gC�/� mice. Cell survival

was estimated by monitoring levels of m, g1, and 3HC transcripts

in spleen 48-hr post-transfer compared with their ‘‘input’’

amount in transferred cells. Differences appeared between per-

sisting m expression, falling g1 levels, and still more strongly van-

ishing 3expression. The faster disappearance of 3versus g1 and

m transcripts affected not only membrane but also secreted Ig

transcripts, refuting the hypothesis that mIgE+ cells disappeared

by differentiating into PCs (Figure 1E).

Convergent observations were made with in vitro CD40L/IL4-

stimulated human cells grafted to RAG2�/� gC�/� mice: tran-

scripts evaluated after 48 hr indicated collapsed IgE production

compared with IgM (Figure 1F).

mIgE-Dependent Changes in B Cells
The short lifespan of IgE-switched wt or LATY136F cells might

relate to either mIgE expression per se or a short-lived program

promoted by TH2 stimuli. We designed models for mIgE expres-

sion in B cells without prior stimulus by transiently transfecting

human or murine cell lines. Expression vectors encoded either

the short or long (mS or mL) form of human mIgE, or mIgM as

a control. In all cases, cytometry showed increased early

apoptosis (with annexin V staining) specific to mIgE+ cells.

Decreased DJm potential confirmed mitochondrial apoptosis

(Figures 2A and 2B). Accordingly, apoptosis was inhibited by

cyclosporin A or caspase inhibitor Q-VD-OPh (Figure 2B).

Thus, mIgE expression promotes apoptosis independently of

B cell stimulation in cell lines. The 28 amino acid long mIgE

tail was reported to interact with Hax1, putatively through a

conserved tyrosine-based DYANILQ motif in mouse IgE (found

as DYTNVLQ in human IgE, but absent in tails of all other Ig

classes) (Oberndorfer et al., 2006). It was recently shown that

Hax1 is an apoptosis inhibitor binding mitochondria and that

the vpr protein triggers apoptosis by relocalizing Hax1 (Simmen,

2011). We wondered whether mIgE expression could also re-

relocate Hax1 and carried out flow imaging of BL41 transfec-

tants. While transfection with control vectors preserved homo-

geneous Hax1 staining, mIgE expression associated with

Hax1 relocalization and heterogeneous staining (quantified by

flow-imaging bright detail evaluation) (Figures 2C and 2D).

Mouse IgE+ primary cells also featured increased heteroge-

neous Hax1 staining (Figures 2D and S2A). Co-localization ex-

periments of Hax1 and mitochondria-targeted DsRed showed

mitochondrial Hax1 depletion in mIgE+ cells (Figure 2E). Finally,

Hax1 staining globally increased in mIgE+ cells (mean fluores-

cence intensity 36,824 for mIgG1+ versus 68,864 for mIgE+

mouse primary B cells and 145,667 for empty vector-trans-

fected versus 332,353 for mIgE-transfected BL41 cells). This

might result from lowered Hax1 catabolism upon binding IgE,

since Hax1 normally undergoes rapid proteosomal degradation

(Li et al., 2012).

We also inserted a VDJ segment upstream of Cε in the εKI

construct, checking that it supported mIgE expression in trans-

fected murine A20 cells. While a Cm control construct readily

yielded stable mIgM+ transfectants, mIgE expression first ap-

peared transient. Obtaining stable transfectants required

repeated sorting of mIgE+ cells. Both transiently transfected

and sorted/stabilized mIgE+ cells constantly showed higher

apoptosis than untransfected cells or mIgM+ transfectants (Fig-

ure S2B). We looked for transcriptional changes between un-

transfected, stable mIgM+ and two independent stable mIgE+

A20 transfectants. Unsupervised analysis clustered both εHC

transfectants together, while the mHC transfectant clustered

with untransfected A20. The strongest (over 3-fold) changes in

mIgE+ cells fell into four major categories (Figure 3A; Table S1):

d Apoptosis: several pro-apoptotic genes were strongly up-

regulated including Phlda3, Card12, and two inducers of

mitochondrial apoptosis (Map3K9 and Bim), while some
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anti-apoptotic geneswere underexpressed, including Bcl3

and Cdkn1a.

d Metabolism: upregulation of DecR1, a fatty acid catab-

olism enzyme inhibiting cell proliferation; Slc16a3,

which extracts lactate; and Bhd1, a ketone pathway

regulator.

d Signaling and mobility: two transporters extracting cyto-

solic Ca2+, Slc24a3, and Npc1l1 were upregulated. The

Rgs13 inhibitor of small GTP protein-coupled receptors

(GPCRs) known to reduce intra-GC B cell mobility

(Hwang et al., 2013) was overexpressed, which might

alter cytoskeleton reorganization and responses to che-

mokines. Finally, downregulation affected the gc chain

of IL-2-4-7-21 receptors (major receptors for B cell acti-

vation), the semaphorin receptor plexin D1 that normally

promotes B cell mobility (Holl et al., 2011), S1pR1, pro-

moting lymphoid egress from GCs, and the CXCL13 re-

ceptor CXCR5.

d Other surface receptors: these included underexpressed

integrins and receptors involved in adhesion to laminins

or glycosaminoglycans (Itga6, Vsig1, CD97.) and in B-T

cell interactions or cytokine responses (CD70, CD69,

IL2Rg) and increased expression of the IgG/IgE-receptor

FcgR4.

Figure 1. Primary Class-Switched IgE+ B Cells Are Short Lived and Sensitive to Apoptosis

(A and B) After stimulation of splenocytes from wt (n = 8) or bcl2 transgenic mice (n = 6), apoptosis was determined after 24 hr cytokine deprivation (data are

means ± SEM, three experiments, unpaired t test between mice and paired t test between isotypes).

(C) Splenocytes split by flow cytometry into B lymphocytes (B220+/CD138�) and PCs (CD138+). Ratios were quantified for each Ig class.

(D) Amounts of recently divided (BrdU+) and long lived (BrdU�) cells from wt or LATY136F mice (data are means ± SEM, n = 7, three experiments, paired t test).

(E) Lymphocytes from LATY136F mice were transferred into RAG2�/� gC�/�mice. Cm, Cg1, and C 3membrane and secreted transcripts were quantified by qPCR,

estimating survival of the corresponding B cells (data are means ± SEM, n = 6, three experiments, paired t test).

(F) Human lymphocytes were stimulated and transferred into RAG2�/� gC�/� mice. Cm, Cg1, and C 3total transcripts were quantified by qPCR (data are means ±

SEM, n = 4, four experiments, Mann-Whitney test).

See also Figure S1.
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Variations of apoptosis-related genes fitted with the

observed ongoing apoptosis of mIgE+ cells. Other changes

likely to impact cell fate related to signaling, cell adhesion,

mobility, and thus optimal interactions with the microenviron-

ment, notably due to underexpressed plexin D1 and/or

increased RGS13 and GPCR inhibition thereof. A20 mIgE+

transfectants indeed showed actin cytoskeleton reorganization

and loss of pseudopods by confocal microscopy (after phalloi-

Figure 2. Membrane IgE Induces Apoptosis

and Hax1 Relocalization in B Cells

(A and B) Transient transfection of A20 and BL2

B cell lines with expression vectors for SHORT

or LONG mIgE. Annexin V and DiOC6 staining

were compared between mIgE+ and mIgE-

cells in the absence (�) or presence (+) of

Q-VD-OPh or cyclosporine A (Cyclo A) (data are

means ± SEM, n = 6, three experiments, paired

t test).

(C and D) Hax1 staining patterns compared by

flow imaging between BL41 mIgE� and mIgE+.

Increased width of ‘‘bright detail intensity’’ peak

indicates increased heterogeneity of staining and

was quantified in transfected BL41 (n = 3, two

experiments each evaluating �1,000 IgE+ cells)

or stimulated mouse splenocytes (n = 4, two

experiments each evaluating �1,800 IgE+ cells)

(scale bar represents �20 mm; data are

means ± SD).

(E) Hax1 colocalization to mitochondria in BL41

cells (three experiments evaluating �60 IgE+

cells, unpaired t test).

See also Figure S2.

din labeling) and increased circularity by

flow imaging (Figure 3B). Increased

circularity also marked primary cells

induced in vitro to ε compared with g1

CSR (Figure S3A).

Basal intracellular tyrosine phosphory-

lation and phospho-ERK levels were

decreased in mIgE+ A20 transfectants

(Figure 3C). In addition, mIgE+ cells

showed spontaneous BCR co-localiza-

tion with lipid rafts (Figure 3D) and

increased abundance of rafts both in

transfected A20 and mIgE+ activated pri-

mary B cells compared with mIgM+ or

mIgG1+ cells from the same culture

(Figure S3B).

In mIgE+ transfectants, the aforemen-

tioned increased FcgR4 transcription

correlated with increased surface

expression and binding of fluorescently

labeled IgE (Figure S3C). Since genes

connected to mobility showed variations,

we assayed responses to chemokines of

primary and transfected mIgE+ cells. In

all cases, mIgE+ cells proved less reac-

tive to either CXCL12, CXCL13, or mixed chemokines pro-

duced by lymphoid stromal cells (Figures 3E and S3D).

mIgE+ cre-Switched B Cells Internalize mIgE BCR, Lose
Mobility, and Are Short Lived
Since εKI mice were B-less, we generated mεKI animals whose B

cells initially express Cm and can later be cre-deleted toward Cε

expression. The Cε gene encoded both secreted IgE and mIgE
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(Karnowski et al., 2006) (Figure 4A). In homozygous mice, the

mεKI mutation and associated Sm deletion homogenously

imposed human IgM expression instead of any mouse Ig (Fig-

ure 4B). Mating with creERT2 mice yielded tamoxifen-inducible

IgE expression. In vivo, cre deletion was efficient at the DNA level

in spleen (Figure S4A). It also massively occurred in vitro in

immortalized IgM+ hybridomas from mεKI/creERT2 mice (Fig-

ure S4B). While inducible in primary B cells in vivo and in vitro,

IgE detection required intracellular staining, reminiscent of re-

quirements for staining mIgE+ primary cells (Wesemann et al.,

2011). Contrasting with massive cre deletion at the DNA level

in spleen, most primary B cells retained IgM expression in vivo,

Figure 3. Phenotypic Changes Induced by

Membrane IgE

(A) Unsupervised clustering split mIgE+ trans-

fectants and untransfected or mIgM+ A20.

(B) (Top) Circularity was quantified for A20 cells and

IgM or IgE transfectants by flow imaging (data are

represented as boxplot with whiskers from min to

max, �5,000 cells, two experiments, unpaired t

test) and parallel confocal microscopy (bottom,

representative cells).

(C) (Top) Phosphorylation of proteins from A20 and

transfectants; GAPDH is a loading control (two

experiments). (Bottom) Erk-phosphorylation (two

experiments).

(D) BCR (in blue) and lipid rafts stained by cholera

toxin (green) show increased co-localization (i.e.,

superimposition of curves) in IgE+ cells (repre-

sentative cells, three experiments) (quantification

followed red arrows along cell contours; scale bar

represents �5 mm).

(E) Cell mobility experiments in response to gradi-

ents of (left) a mix of chemokines produced by

human stromal cells, and (right) recombinant

CXCL12 (data are means ± SEM, n = 3 to 8, five

experiments, paired t test).

See also Figure S3.

with IgE expression remaining below 4%

and vanishing within 4 weeks after cre in-

duction (Figure 4C). Cm deletion and sub-

sequentmIgE ‘‘cre-CSR’’ were thus coun-

terselected in B cells and did not yield

long-lived mIgE+ cells. Also, similar to

normal primary mIgE+ cells (and to trans-

fected cells), cre-switched cells showed

reduced chemokine-induced mobility

(Figure 3E). Feeding mice with BrdU for

10 days, 20 days after tamoxifen induc-

tion, distinguished nonproliferating

‘‘long-lived’’ cells from recently divided

‘‘short-lived’’ cells: IgE+ cells overwhelm-

ingly scored as BrdU+, i.e., short lived

(Figure 4D), in agreement with transient

mIgE expression in blood or spleen lym-

phocytes. In serum, human IgE peaked

at the same time as IgE+ cells, but per-

sisted at levels around 1,000 KU/l after

IgE+ cells completely vanished from blood and spleen, over

5 months after tamoxifen induction. Memory of cre switching

was thus only attested to by a few remaining IgE secreting cells

(Figure 4C).

Direct mIgE staining has been documented as weak or absent

on primary B cells (Karnowski et al., 2006; Wesemann et al.,

2011). Since it was also virtually absent in mεKI B cells, we

wondered whether this could reflect spontaneous mIgE internal-

ization. To preserve membrane receptor trafficking, B cells were

stained at 37�C instead of 4�C, with fluorescently labeled anti-

IgE antibodies. This clearly and specifically stained tamoxifen-

induced IgE+ mεKI cells, showing that mIgE BCRs do reach the
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Figure 4. mεKI Mutant Mice

(A) (Top) Targeted IgH locus (not to scale) with floxed human Cm gene, neor cassette, and Cε gene. (Bottom) The mεKI locus normally undergoes V(D)J re-

arrangement, expressed with human Cm; after breeding with CreERT2 mice, Cε is expressed upon cre deletion of Cm.

(B) B cells from mεKI mice express human IgM BCR (n = 20, five experiments).

(C) mεKI x CreERT2 mice were sacrificed 1 day to 5 months after tamoxifen administration. IgE B cells among splenocytes were quantified by cell cytometry after

intracellular staining (mean ± SEM, n = 3 to 7 mice per group, four experiments); human IgE was evaluated in sera.

(D) BrdU was injected 10 days before sacrifice, 20 days after tamoxifen treatment, and incorporation was evaluated (mean ± SEM, n = 5, two experiments, paired

t test).

(E) Cell cytometry (left) of IgE expression among [CD19+] cells in mεKI3 CreERT2 mice 24 hr after cre induction, readily detects IgE after permeabilization but not

by surface labeling at 4�C. In contrast, 6-hr incubation at 37�C with fluorescent anti-IgE antibodies stains cells specifically from mice expressing cre (n = 9, four

experiments, paired t test). Confocal imaging of internalized fluorescent antibodies (right ; scale bar represents �10 mm).

(legend continued on next page)
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membrane but are then internalized, eventually together with a

labeling antibody (Figures 4E and 4G).

Similarly, in CD40L-stimulated human primary B cells, IgE

expression appeared faint after staining at 4�C but strongly

increased by staining at 37�C and was restricted to IL-4-

exposed cells (Figures 4F and 4G).

DISCUSSION

Class-specific variations of BCR functions are incompletely un-

derstood (Laffleur et al., 2014). Compared with IgM, cross-link-

ing of class-switched BCRs more strongly boosts PC differenti-

ation (Horikawa et al., 2007; Pogue and Goodnow, 2000; Sato

et al., 2007; Waisman et al., 2007; Wakabayashi et al., 2002).

Specific mIgG or mIgE interactions were reported with Grb2 (En-

gels et al., 2009). The mIgE tail also interacts with Hax1, which

binds the Syk target Hs1 (Batista et al., 1996; Oberndorfer

et al., 2006). However, transfected cells reacted similarly to

mIgE or mIgM cross-linking (Poggianella et al., 2006).

Independent of cross-linking, it is unknown whether constitu-

tive signals from the various HC classes differentially support B

cell survival. Rare primary class-switched mIgE+ lymphocytes

aremandatory precursors of IgE PCs (Achatz et al., 1997; Bright-

bill et al., 2010). The elusive nature of the mIgE+ stage in vivo has

been attributed to accelerated PC differentiation, increased

apoptosis, or poor Sε efficacy during CSR, three non-mutually

exclusive explanations (He et al., 2013; Misaghi et al., 2013;

Wu and Zarrin, 2014; Yang et al., 2012). The TH2 context yielding

mIgE+ cells might also shorten their survival, similar to some

T cells in which Socs-1 induction by IL-4, IL-13, and Stat6 pro-

motes activation-induced cell death (Alexander, 2002; Heben-

streit et al., 2003; Oh et al., 2012). Whatever the mechanisms

involved, altogether they limit IgE production in vivo to levels

10,000- to 100,000-fold lower than other classes.

Since mIgE+ cells abundantly arise in vitro from B cell stimula-

tion, we suspected that one basis for their in vivo rarity might be

that mIgE expression per semodulates B cell fate. To assay such

a potential mIgE effect independently of any antigen-dependent

cross-linking and T cell help, we first forced mIgE expression in

mice by replacing Smwith a Cε Ig gene. Early in vivo ε expression

instead of m HC in homozygous εKI mice abrogated B cell lym-

phopoiesis. Tonic signals successively provided by the pre-

BCR and BCRs support B cell development (Mårtensson et al.,

2007; Rossi et al., 2006). Albeit with variable efficiencies, tonic

signals provided by d, g, or a HCs can replace m during lympho-

poiesis (Duchez et al., 2010; Horikawa et al., 2007; Lutz et al.,

1998). The εKI lymphopenia shows that ε differs from other

HCs in this regard.

We explored mIgE expression in [VDJ-Cε]-transfected cells

and found it unstable in prolonged cultures. Additionally and

reminiscent of the εKI B cell defect, mIgE+ transfected cells

showed multiple functional and morphologic changes, with

defective chemokine-triggered mobility, decreased intracellular

tyrosine phosphorylation, increased circularity, BCR clustering

into lipid rafts, and finally increased apoptosis. Associated tran-

scriptional changes had the potential to inhibit responses to che-

mokines (with modified RGS13, integrins, and plexin D1 expres-

sion), modulate receptors involved in T-B interactions, affect

metabolism, and promote apoptosis. Multiple phenotypic alter-

ations were common to various mIgE+ cells (transfected cells,

primary cells, and knock-in models). Interestingly, mIgE expres-

sion induced relocalization of the Hax1 anti-apoptotic protein,

suggesting that the mIgE intracellular tail could be a sink for

Hax1.

Endogenous mIgE expressing B cells obtained in vitro (after

stimulation of human or wt mouse B cells) or ex vivo showed

mIgE to be transiently expressed and internalized. These

mIgE+ cells, recently divided, survived less than other B cells

upon transfer into immunodeficient mice.

To characterize mIgE function in primary B cells indepen-

dently of immune stimulation, we studied mεKI B cells express-

ing mIgE upon creERT2 induction. It is known from previous

studies that creERT2 has no major toxicity in B cells (Dogan

et al., 2009). In mεKI mice, the cre deletion was counter-selected

in B cells, and rare mIgE+ B cells were again short lived both

in vivo and in vitro. Similar to transfectants or classical switched

B cells, they expressed low levels of a rapidly internalized IgE

BCR. They also poorly responded to CXCL12 and easily under-

went apoptosis. In contrast, IgE secretion lasted for months

in mεKI mice after induction, indicating long-term survival of

IgE PCs.

Altogether, our data suggest an immobile, reprogrammed, and

rapidly apoptotic phenotype of mIgE+ cells notably involving

Hax1 sequestration by mIgE and inhibition of responses to che-

mokines. This phenotype directly imposed by mIgE expression

prior to any antigen encounter may explain the short lifespan

and in vivo rarity of mIgE+ cells. It is thus questionable whether,

among IgE+ cells, the high ratio of PCs represents boosted PC

differentiation or accelerated death of non-PC cells. Since the

mIgE+ stage is mandatory for PC differentiation (Achatz et al.,

1997), it appears as a bottleneck limiting IgEmemory (prohibiting

survival of mIgE+ memory B lymphocytes, but allowing a few to

escape deletion, reach the mIgE stage, and survive as PCs).

Existence of long-lived PCs is consistent with the common

observation of long-term IgE atopy. Noticeably, PCs deriving

from cells with a mIgE BCR poorly respond to CXCL12

(Achatz-Straussberger et al., 2008), possibly accounting for their

absence in bonemarrow (He et al., 2013). This suggests that part

of the mIgE+ phenotype is durably imprinted into PC differentia-

tion afterward.

Altogether, a reasonable picture of IgE responses in light of our

data and previous studies is that multiple mechanisms concur to

restrict IgE production to minute amounts. IgE CSR is less effi-

cient than IgG CSR; it yields mIgE+ cells only appearing

(F) Cell cytometry (left) of IgE expression among stimulated human B cells, incubated 6 hr at 37�C with fluorescent anti-IgE. Confocal imaging of internalized

fluorescent antibodies (right; scale bar represents �10 mm) (n = 6, three experiments, Mann-Whitney test).

(G) Quantification of endocytosis from data of (E) and (F). BCR endocytosis was quantified in mouse primary cells with the 37�C IgE staining procedure, using

either mεKI or mεKI3 creERT2 cells treated with tamoxifen, and in human B cells stimulated for 4 days with either CD40L or CD40L + IL4. Data are means ± SEM.

See also Figures S1A and S4.
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transiently in both humans and mice, poorly effecting migrations

associated with maturation within lymphoid organs and thus

quickly eliminated by spontaneous and activation-induced

apoptosis without survival as mIgE+ memory cells. Only few

IgE PCs might eventually survive this pathway, become long-

lived, and solely ensure true long-term IgE memory. Given the

short half-life of IgE, such rare long-lived IgE PCs are likely

responsible for immediate IgE allergy, while mIgM+ or mIgG+

memory cells can eventually generate new IgE cells after CSR.

Direct or sequential CSR was indeed documented as providing

new IgE+ cells from either Ag-experienced mIgM+ or mIgG1+

cells (Xiong et al., 2012).

This multifaceted restriction of IgE responses most likely at-

tests to the beneficial accumulation throughout evolution of mul-

tiple means to both keep on producing the most powerful magic

bullet of adaptive immunity while maintaining its hazardous pro-

duction under tight control. Each of these specific constraints on

the IgE B cell compartment will clearly deserve in-depth molec-

ular analysis in the future.

EXPERIMENTAL PROCEDURES

Mice

RAG2�/� gC�/� (Colucci et al., 1999), AID�/� (Muramatsu et al., 2000), and

LATY136F (Aguado et al., 2002; Genton et al., 2006) mice were used. εKI mice

carried an inserted humanCε gene replacing Sm, mεKImice carried a floxed hu-

man Cm followed by Cε (expressed upon cre deletion of Cm). Detailed methods

are described in Supplemental Experimental Procedures.

B Cell Transfectants

Expression of rearranged Ig chains was in A20, BL2, and BL41 cell lines.

Detailed methods are described in the Supplemental Experimental

Procedures.

Transcription Analysis

RNA was analyzed by qPCR for expression of m, g, and ε Ig HC secreted and

membrane forms. Microarray analyses were with Agilent chips. Detailed

methods are described in the Supplemental Experimental Procedures.

Cell Cultures

Sorted B cells were stimulated for IgE CSR in the presence of IL-4. In

transfer experiments, cells were injected intravenously into RAG2�/� gC�/��

mice. Detailed methods are described in Supplemental Experimental

Procedures.

Cytometry, Confocal Microscopy, and Flow Imaging

Proliferation was monitored by BrdU incorporation. Apoptosis was monitored

by Annexin V and DiOC6 staining. Detailed methods are described in Supple-

mental Experimental Procedures.

Cell Mobility

Evaluation was done using transwells and recombinant or natural chemo-

kines. The detailed method is described in Supplemental Experimental

Procedures.

Statistical Analyses

Student’s t test or Mann-Whitney tests were used (*p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001).
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Microarray data have been deposited to the GEO database under accession
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