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In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence
of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at
the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimen-
tally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently
measured velocity profiles is quantified by looking at the relationship between the localisation
length of the velocity profiles and the localisation length of the spatial distribution of plastic
events. To complement the cooperativity mechanisms studied in foam with those of other soft-
glassy systems, we compare the experiments with simulations of dense emulsions based on the
lattice Boltzmann method, which are performed both with, and without, wall friction. Finally,
unprecedented results on the distribution of the orientation of plastic events show that there is a
non-trivial correlation with the underlying local shear strain. These features, not previously re-
ported for a confined foam, lend further support to the idea that cooperativity mechanisms, orig-
inally invoked for concentrated emulsions (Goyon et al. 2008), have parallels in the behaviour
of other soft-glassy materials.

1. Introduction
Foams and emulsions are dispersions of a fluid phase in a liquid phase, stabilised by sur-

factants. The dispersed phase is constituted of gas bubbles in foams, and liquid droplets in
emulsions. These discrete objects are packed together and jammed, which makes foams and
emulsions complex fluids: they exhibit a yield stress σY below which they do not flow, but
deform elastically. Above yield stress, they flow like rheothinning fluids. Rheometric measure-
ments in a Couette cell or in cone–plate geometry have shown that the shear stress σ and the
shear rate γ̇ obey an empirical Herschel–Bulkley law: σ = σY + Aγ̇n, with A the plastic vis-
cosity and n an exponent generally lower than 1, and often close to 0.5 (Princen & Kiss 1989;
Marze, Langevin & Saint-Jalmes 2008; Denkov et al. 2009), with some dependence on the sur-
factants used (Denkov et al. 2009).

The aforementioned measurements did not give access to the micro-structure under flow, and
other techniques have been developed to visualise it. In emulsions, confocal microscopy on sys-
tems of matched optical index have recently enabled to measure the local structure (Jorjadze, Pontani & Brujić
2013) and the velocity field (Goyon et al. 2008; Goyon, Colin & Bocquet 2010; Mansard, Bocquet & Colin
2014). The latter could also be measured using magnetic resonance imaging (Ovarlez et al.
2008). In foams index matching is not possible and the route has been to devise bidimensional
(2D) experiments on either bubble rafts at the surface of a pool of soap solution, with or without a



2 B. Dollet, A. Scagliarini and M. Sbragaglia

confining top plate (Lauridsen, Chanan & Dennin 2004; Dollet et al. 2005; Wang, Krishan & Dennin
2006; Katgert, Möbius & Van Hecke 2008; Katgert et al. 2010), or on bubble monolayers con-
fined between two plates in a Hele-Shaw cell (Debrégeas, Tabuteau & di Meglio 2001).

Among many interesting features such as shear banding (see e.g. Schall & Van Hecke (2010)
for a review), these studies have called the Herschel–Bulkley law found in rheometry into ques-
tion. Among possible flow configurations, the Poiseuille flow in a straight channel is particu-
larly interesting, since this geometry enforces a linear variation across the channel of the shear
stress, which vanishes at the centre and reaches its maximum at the side walls. Together with
an evaluation of the shear rate from the measured velocity profile, it gives access to the relation
σ(γ̇) at the local scale. In particular, Goyon et al. (2008) and Goyon, Colin & Bocquet (2010)
have measured this relation in a series of experiments on emulsions, and they have shown that
it did not collapse on a single Herschel–Bulkley law. This deviation from a single flow curve
was ascribed to wall effects, more precisely to a nonlocal influence of plastic events happen-
ing in the vicinity of the boundaries. The velocity profiles were well fitted by a fluidity model
(Goyon et al. 2008; Goyon, Colin & Bocquet 2010). This model, based on a kinetic theory ap-
proach (Bocquet, Colin & Ajdari 2009), predicts that the fluidity, defined as f = γ̇/σ, is pro-
portional to the rate of plastic events and follows a nonlocal diffusion equation when it deviates
from its bulk value. The range of influence ξ appearing in this equation, called the spatial co-
operativity, was shown to be of the order of a few times (typically, five) the size of the elemen-
tary micro-structural constituent (the drop radius in the case of emulsions) (Goyon et al. 2008;
Goyon, Colin & Bocquet 2010; Geraud, Bocquet & Barentin 2013). This picture was later ap-
plied to other soft materials, such as Carbopol gels (Geraud, Bocquet & Barentin 2013), gran-
ular media (Amon et al. 2012; Kamrin & Koval 2012), and foams in a 2D cylindrical Couette
geometry (Katgert et al. 2010). The fluidity model agrees with existing experiments, and pro-
vides a convenient framework to rationalise the flow of complex fluids. However, at least two
points remain unclear and deserve further investigation. The first is the boundary condition at
solid walls for fluidity. As a matter of fact, most experimentalists have set it as a free fit pa-
rameter, which certainly improves the agreement between the measurements and the predictions
from the fluidity model, but does not provide any insight on the role of the walls. Only recently,
Mansard, Bocquet & Colin (2014) explored the role surface boundary conditions for the flow of
a dense emulsion. They show that both slippage and wall fluidisation depend non-monotonously
on the roughness, a behaviour that has been interpreted with a simple model invoking the building
of a stratified layer and the activation of plastic events by the surface roughness. These results
are interesting and call for further verification in terms of numerical simulations (Benzi et al.
2013; Sbragaglia et al. 2012) and other complex fluids (Katgert et al. 2010). Second, the flu-
idity parameter f has not been yet convincingly related to an independent measure of the local
density of plastic events. In experiments, only indirect indications of such a relation have been
proposed, based on the correlations of the fluctuations of the shear rate (Jop et al. 2012). Using
numerical simulations based on the bubble model (Durian 1997), Mansard et al. (2013) were
able to measure independently the fluidity and the density of plastic events, but they show that
the two quantities are not proportional; more precisely, the rearrangement rate was found to be a
sublinear power (with an exponent 0.4) of the fluidity.

Actually, fluidity models offer a potential explanation for the deviation from a unique rela-
tion between stress and strain rate, but they are not the only ones. Another approach has been
to develop elasto-viscoplastic models (see e.g. Cheddadi, Saramito & Graner (2012) for a re-
view of them) which, in essence, supplement the viscoplastic Herschel–Bulkley rheology by a
description of elasticity. These models are local, but since they treat elastic deformation as an
independent variable, they also predict deviations from a single Herschel–Bulkley relation. They
have been compared with experiments in Couette flows (Cheddadi, Saramito & Graner 2012),
but not for Poiseuille flows.
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All these theoretical approaches rely crucially on the modelling of plastic events, and how
they affect the elastic stress and the flow. However, although this connection between elasticity,
plasticity and flow has been studied in foam flows in complex geometries (Dollet & Graner
2007; Dollet 2010; Cheddadi et al. 2011), there is no existing experimental measurement of the
rate of plastic events in a Poiseuille flow. 2D foams are particularly well suited for such a study,
because elementary plastic events (so-called T1 events) are well characterised by the neighbour
swapping of four bubbles (Figs. 2 and 3) and are accessible by image analysis, more easily that
in other soft-glassy materials.

In this paper, we provide experimental measurements of the rate of plastic events in a Poiseuille
flow, on a confined foam in a Hele-Shaw geometry. Such a measurement has already been done
in Couette flows (Kabla & Debrégeas 2003; Wang, Krishan & Dennin 2006), but never in a
Poiseuille configuration, to our knowledge. We show that it is closely related to the indepen-
dently measured velocity profiles, and that there is still a non-vanishing plastic activity towards
the centre of the channel. The study of the spatial distribution in the number of plastic events and
the simultaneous analysis of the velocity profiles allows to bridge between the details of the irre-
versible plastic rearrangements and the corresponding cooperativity flow behaviour at the macro-
scopic level (Goyon et al. 2008; Goyon, Colin & Bocquet 2010; Geraud, Bocquet & Barentin
2013). We choose to explore this connection by looking at the relationship between the lo-
calisation length of the velocity profiles and the localisation length of the number of plastic
events. To complement the cooperativity mechanisms studied in foam with those of “other”
soft-glassy systems, we compare the experiments with simulations of emulsion droplets based
on the lattice Boltzmann method (Sbragaglia et al. 2012) (LBM). The numerical model falls
within the class of “mesoscopic” models, which have been vigorously pursued in the literature to
study the behaviour of soft-glassy flows (Sollich et al. 1997; Sollich 1998; Hébraud & Lequeux
1998; Bocquet, Colin & Ajdari 2009; Mansard et al. 2013; Nicolas & Barrat 2013). Its ele-
mentary, mesoscopic rules, at the level of the lattice units, are designed to reproduce the con-
tinuum behaviour of soft-glassy materials, in the very same way that Boltzmann equation in
statistical physics, once properly averaged, yields the Navier-Stokes equations. The numeri-
cal model we use possesses two advantages that are rarely present together. From one side, it
gives a realistic structure of the emulsion droplets, like for example the Surface Evolver method
(Cox & Janiaud 2008; Reinelt & Kraynik 2000; Kern et al. 2004); at the same time, due to the
built-in properties, the model gives direct access to equilibrium and out-of-equilibrium stresses
(Sbragaglia et al. 2012), including elastic and the viscous contributions. In contrast to other
mesoscopic models, such as Durian’s bubble model (Durian 1997), our model naturally incor-
porates the dissipative mechanisms and the interfacial stresses. Numerical simulations are partic-
ularly helpful to go beyond some of the limitations of the experiments: because of wall friction,
indeed, there is no simple relation between shear stress and shear rate, whereas the numerical
simulations can be performed both with, and without, wall friction. In this paper, wall friction
will always refer to the friction of the flowing foam on the confining top and bottom plates (see
Fig. 1), and not on the side walls, unless explicitly stated. Numerical simulations also offer the
possibility to test the robustness of some of the experimental findings versus a change in the
viscous ratio χ between the dispersed phase and the continuous phase, this being set to χ = 1
in all the numerical simulations, whereas χ ≈ 10−2 in foams; in that sense, the simulations look
closer to emulsions.
The paper is organised as follows. In Sec. 2, we describe the experimental set-up along with the
tools of image analysis for characterisation of the plastic events. In Sec 3, and supplementary ma-
terial presented in Appendices A and B, we review our computational model based on the LBM.
The review of the computational model will be accompanied by further benchmark tests on the
capability of the model to include crucial properties as disjoining pressure and wall friction. Re-
sults and discussions will be the subject of Sec. 4. The experimentally measured velocity profiles
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(Sec. 4.1) will be compared with local linear and nonlinear models (Sec. 4.2 and Appendix C).
Results of numerical simulations and comparisons with the fluidity model (Goyon et al. 2008;
Bocquet, Colin & Ajdari 2009) will be the subject of Sec. 4.3. In Sec. 4.4, we compare the local-
isations of the velocity profiles and of the rate of plastic events. In Sec. 4.5, we will finally report
details on the orientation of the plastic rearrangements in the flowing material. Conclusions will
follow in Sec. 5.

2. Experimental methods
2.1. Setup

We have adapted the setup described in Dollet (2010). The foam flows in a Hele-Shaw cell, made
of two horizontal glass plates of length 170 cm and width 32 cm, separated by a gap h = 2 mm
thin enough that the foam is confined as a bubble monolayer (Fig. 1a). Two plastic plates of
thickness 2 mm are inserted aside the Hele-Shaw cell, so that the width H of the channel is
reduced to 10.66 cm (Fig. 1b). These plates have a negligible roughness compared to the bubble
size. The channel is connected upstream to a vertical chamber (Fig. 1a) in which a soap solution
is fed at a prescribed flow rate Ql thanks to a syringe pump (PHD2000, Harvard Apparatus).
Nitrogen is continuously blown through injectors at the bottom of this chamber, producing rather
monodisperse bubbles (Fig. 1b). The flow rate in each injector is independently controlled with
an electronic flow-rate controller (Brooks). We identify the liquid fraction ϕl as the ratio of the
liquid flow rate to the total flow rate: ϕl = Ql/(Qg+Ql), withQg the gas flow rate. The resulting
foam accumulates on top of the chamber, then flows through the channel. The transit time through
the whole channel is less than 10 minutes in all experiments; we do not observe significant
change of bubble size during this time, hence coarsening is negligible. The soap solution is a
mixture of sodium lauryl-dioxyethylene sulfate (SLES), cocoamidopropyl betaine (CAPB) and
myristic acid (MAc), following the protocol described in Golemanov et al. (2008): we prepare
a concentrated solution of 6.6% wt of SLES and 3.4% of CAPB in ultra-pure water, we dissolve
0.4% wt of MAc by continuously stirring and heating at 60◦C for about one hour, and we dilute
20 times in ultra-pure water. The solution has a surface tension Γ = 22.4 mN/m. The contraction
region is lit by a circular neon tube, giving an isotropic and nearly homogeneous illumination
over a diameter of about 20 cm. Movies of the foam flow are recorded with a CCD camera at a
frame rate of 8 frames per second, with an exposure time of 8 ms. The movies are constituted
of 1000 images of 1312 × 672 pixels. The pressure drop is measured across the observation
zone, by a water–water differential manometer connected to two points of the channel (Fig. 1b)
through tubes full of water. We have performed five different experiments, a summary of which
parameters is provided in Tab. 1.

2.2. Image analysis

To extract the relevant rheological information from the movies, we follow a home-made pro-
cedure very similar to that presented in Dollet & Graner (2007) and Dollet (2010); we report
to these papers for full details. The velocity field is obtained after averaging of all the displace-
ments of all individual bubbles between consecutive frames (about 3 × 106 in total). Averaging
is performed along 53 lanes aligned with the flow direction. The T1s are tracked as described
in Dollet & Graner (2007). For the four bubbles concerned by a T1, we denote rd (ra) the vec-
tor linking the centres of the two bubbles that lose (come into) contact, θ′d and θ′a the angle of
these vectors with respect to the flow direction, that we can restrict to the interval [−π/2, π/2]
because the orientations of rd and ra are irrelevant (Fig. 2 and Fig. 3), and xd (xa) the position
of the midpoint of the centres of the two bubbles that lose (come into) contact. In our program,
the detection of appearing and disappearing contacts is first run independently. As a second step,
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FIGURE 1. (a) Sketch of the side view of the setup. (b) Snapshot of an experiment. The distance between
the two side walls is H = 106.6 mm. The average bubble size is 12.3 mm2 and the liquid fraction is
ϕl = 4.8%. The two spots at the left and right of the image are the points between which the pressure drop
is measured.

flow rate ϕl bubble v0 Lv αs θd θa dP/dx dσxy/dy symbol
(ml/min) (%) area (mm2) (mm/s) (mm) (rad) (rad) (kPa/m) (kPa/m)

27.5 4.8 13.0± 2.4 2.3 3.3 0.62 0.54± 0.14 −0.79± 0.24 1.08 0.50 ◦
52.5 4.8 12.6± 2.3 4.3 3.9 0.43 0.46± 0.16 −0.67± 0.33 1.08 0.68 �
102.5 4.8 12.1± 2.1 8.5 8.7 0.34 0.46± 0.19 −0.75± 0.46 2.23 0.51 ♢
152.5 4.8 12.3± 1.7 12.4 6.8 0.31 0.46± 0.17 −0.73± 0.41 2.27 0.91 △
160.2 16.9 15.1± 1.9 12.9 4.6 0.90 0.73± 0.22 −0.86± 0.21 0.91 0.087 ▽

TABLE 1. Summary of the main characteristics of the experiments presented in this paper, with the respec-
tive symbols used in the figures. The parameters v0, αs and Lv come from the fit of the velocity profiles by
the formula (4.1). The angles θd and θa are the orientations of plastic events (Figs. 2 and 3). The quantity
dP/dx is the pressure drop along the channel, and dσ/dy is the gradient of shear elastic stress across the
channel.

to identify a T1 and minimise artefacts, we decide that a pair of an appearing and a disappear-
ing contact constitute a single T1 if (i) they are on the same image or if the appearing contact
happens in the image next to the disappearing one; the latter condition is necessary, because it
happens that transient fourfold vertices are erroneously recognised as artificial small bubbles;
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FIGURE 2. Left Panel: A snapshot of the bubbles in the foam flowing from left to right. Right Panel: Sketch
of a plastic event. By following the displacements of the bubbles between subsequent images, we are able
to determine the features of a T1 rearrangement. In gray (black) we report the bubble edges just before
(after) the T1. With the solid (dashed) line, we report the link between the centres of the two bubbles that
lose (come into) contact during the T1. From the analysis of the links, we are able to determine the angles
associated with the links that disappear (d) or appear (a) in the T1 rearrangement.

(ii) the positions xd and xa are closer than a critical distance (that we choose to be of the order
of the bubble size, to separate from T1s occurring in the neighborhood); (iii) |θ′d − θ′a| is larger
than a critical angle (we choose π/4), this condition being necessary because of the apparition of
the aforementioned spurious bubbles. By visual inspection on 30 images, we estimate that this
procedure leads to an uncertainty of no more than 5% on the numberNT1 of T1s. We then define
the quantity (xd + xa)/2 as the position of a T1, and we ascribe this information to the box
where this position belongs. We thus compute the scalar field of the frequency of T1s per unit
time and area:

RT1 =
NT1

2Aboxtmovie
,

where Abox is the area of a box and tmovie the duration of a movie. Our T1 detection has two
major advantages: (i) it is directly based on the topological rearrangements, contrary to indirect
characterisations based on velocity correlations; (ii) it yields an unprecedented statistics, up to
2.5× 104 individual T1s, which enables to average over the same lanes as for the velocity and to
perform quantitative analysis.

We now address the measurement of stress. Batchelor (1970) has derived the general expres-
sion of the stress in a suspension of force-free particles, including the effect of surface tension.
This has first been applied to the calculation of the elastic stress in foams and emulsions by
Khan & Armstrong (1986), and it yields the same prediction of the elastic shear modulus as
Princen (1983), which has been experimentally validated (Princen & Kiss 1986) and used ever
since. Considering a representative volume element V of foam, the stress writes:

σ = − 1

V

∑
k

VkPk1− ϕℓp1+
µ

V

∫
Vℓ

γ̇ dV +
Γ

V

∫
S

(1− n⊗ n)dS, (2.1)

where the index k labels the bubbles contained within V , Vk and Pk are the volume and pressure
of bubble k, p is the pressure in the continuous phase of volume Vℓ and viscosity µ, γ̇ is the rate-
of-strain tensor, S is the surface of the gas/liquid interfaces contained within V and n is the local
normal unit vector. The two first terms in (2.1) give the pressure contribution to the stress, and
the third term gives the viscous contribution. We cannot measure these contributions in our setup.
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FIGURE 3. Left Panel: A snapshot of the droplets (identified by their corresponding Voronoi cells) in a
concentrated emulsion, flowing from left to right, obtained in numerical simulations based on the lattice
Boltzmann models. Right Panel: sketch of a T1 plastic event from the simulations. To systematically analyze
plastic events, we perform a Voronoi tessellation from the centres of mass of the droplets. Following the
Voronoi tessellation in time, we are able to identify T1 events and associated disappearing (red solid line)
and appearing (blue dashed line) links. In gray (black) we indicate the Voronoi cells soon before (after) a
T1 event. The numerical results will be compared with the experimental results (see also Fig. 2).

The last term in (2.1) is the elastic stress σe (Cantat et al. 2013). A specific advantage of quasi-
2D foams, confined in a Hele-Shaw cell so as to form a bubble monolayer, is the possibility to
measure elastic stress directly from image analysis. Neglecting the curvature of the films between
two bubbles, i.e. assuming that they are flat rectangles of height h and of horizontal side ℓ, which
is a reasonable approximation in practice (Fig. 2), the elastic stress equals:

σe = 2Γhρℓ

⟨
ℓ⊗ ℓ

ℓ

⟩
, (2.2)

with ρℓ the areal density of bubble edges, and where the average is computed over the same
lanes as for the velocity and plastic events. The total number of bubble edges ℓ treated for each
experiment is about 107.

The “force-free” assumption in the approach of Batchelor (1970) amounts to neglecting the
effect of buoyancy on the bubbles or, more precisely, to neglect the variation of hydrostatic
pressure ρgh over the height of the bubbles (with ρ = 103 kg/m3 the density of the soap
solution, g = 10 m/s2 the gravity acceleration, and h = 2 mm the cell gap) compared to
the capillary overpressure Γ/RPB , where RPB is the radius of the Plateau borders between
three neighbouring bubbles, or two neighbouring bubbles and a plate, the latter ones contain-
ing most of the solution for foams confined within a Hele-Shaw cell. The quantity RPB is
readily related to the liquid fraction ϕℓ: since in order of magnitude, each bubble of volume
Ah is surrounded by a total length ≈

√
A of such Plateau borders of cross-section ≈ R2

PB ,
one has RPB ≈ h1/2A1/4ϕ

1/2
ℓ . Hence, the ratio of the hydrostatic to capillary pressures is

ρghRPB/Γ ≈ ρgh3/2A1/4ϕ
1/2
ℓ /Γ = 0.01 or 0.02 for our experimental values of the parameters

(Tab. 1), much lower than 1. Therefore, it is safe to assume that the bubbles are “force-free”
particles.

3. Numerical method
For the numerical simulations, we adopt a dynamic rheological model based on the lattice

Boltzmann method (LBM) (Benzi, Succi & Vergassola 1992; Chen & Doolen 1998; Aidun & Clausen
2010). Historically, the main successful applications of LBM in the context of computational
fluid dynamics pertain to the weakly compressible Navier–Stokes equations (Benzi, Succi & Vergassola



8 B. Dollet, A. Scagliarini and M. Sbragaglia

1992; Chen & Doolen 1998) and models associated with more complex flows involving phase
transition/separation (Shan & Chen 1993, 1994; Benzi et al. 2009). In particular, we will make
use of a computational model for non-ideal binary fluids, which combines a positive surface ten-
sion, promoting the formation of diffuse interfaces, with a positive disjoining pressure, inhibit-
ing droplet (or bubble) coalescence. The model has already been validated for a wide spectrum
of problems/phenomena (Benzi et al. 2009, 2010, 2013; Sbragaglia et al. 2012). Among the
others, these problems/phenomena include the emergence of non-Newtonian Herschel–Bulkley
rheology (Benzi et al. 2010), importance of load-conditions on rheology (Benzi et al. 2013), co-
operativity flows (Sbragaglia et al. 2012) and ageing (Benzi et al. 2009). In this section we just
review the method and highlight its essential supramolecular features. The mesoscopic kinetic
model considers two fluids A and B, each described by a discrete kinetic distribution function
fζi(r, ci, t), measuring the probability of finding a particle of fluid ζ = A,B at position r and
time t, with discrete velocity ci. In other words, the mesoscale particle represents all molecules
contained in a unit cell of the lattice. The distribution functions evolve in time under the effect
of free-streaming and local two-body collisions, described, for both fluids (ζ = A,B), by a
relaxation towards a local equilibrium (f (eq)ζi ) with a characteristic time τLB :

fζi(r+ ci, ci, t+ 1)− fζi(r, ci, t) = − 1

τLB

(
fζi − f

(eq)
ζi

)
(r, ci, t) + S

(tot)
ζi (r, ci, t). (3.1)

Local equilibria are given by a low Mach number expansion of the Maxwellian distribution,
namely:

f
(eq)
ζi = w(|ci|2)ρζ

[
1 +

v · ci
c2s

+
vv : (cici − c2s

¯̄1)

2c4s

]
(3.2)

withw(|ci|2) a set of weights chosen in such a way to maximise the algebraic degree of precision
in the computation of the hydrodynamic fields, while cs = 1/

√
3 is a characteristic velocity (a

constant in the model). Our lattice scheme features nine discrete velocities (Shan et al. 2006),
whose details and associated weights are reported in Tab. 3 in Appendix A. Coarse grained
hydrodynamical densities are defined for both species ρζ =

∑
i fζi as well as a global mo-

mentum for the whole binary mixture j = ρv =
∑

ζ,i fζici, with ρ =
∑

ζ ρζ . Non-ideal

forces (Fζ) and a body force term (Fb) are introduced with the source term S
(tot)
ζi in Eq. (3.1).

Such source term produces the desired force once it is projected on the momentum field, i.e.∑
ζ

∑
i S

(tot)
ζi ci =

∑
ζ Fζ + Fb. The non-ideal forces include a variety of interparticle forces,

Fζ = F
(r)
ζ + F

(F )
ζ . First, a repulsive (r) force with strength parameter GAB between the two

fluids

F
(r)
ζ (r) = −GAB

ρ20
ρζ(r)

∑
i=1−8,ζ′ ̸=ζ

w(|ci|2)ρζ′(r+ ci)ci (3.3)

is responsible for phase separation (Benzi et al. 2009). The parameter ρ0 is a characteristic nor-
malisation parameter, used as a free parameter in the model. The “short” range interaction in
Eq. (3.3) is extended up to energy shells |ci|2 = 2 (lattice links have been normalised to a charac-
teristic lattice velocity). Phase separating interactions (3.3) are nothing but a lattice transcription
of continuum mean-field models for phase segregation (Bastea et al. 2002). When the strength
parameter GAB/ρ

2
0 in (3.3) is chosen above a critical value, the model achieves phase separation

and promotes the emergence of stable diffuse interfaces with a positive surface tension, which al-
lows for the simulation of a collection of droplets. However, the thin films between neighboring
droplets are not stable against rupture, as the interactions (3.3) give rise only to negative dis-
joining pressures (Shan & Chen 1993, 1994). To promote the emergence of a positive disjoining
pressure stabilizing the thin films, we introduce a mechanism for frustration (F ) for phase separa-
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tion with the help of competing interactions (Shore, Holzer & Sethna 1992; Seul & Andelman
1995). In particular, we model short range (nearest neighbor, NN) self-attraction, controlled by
strength parameters GAA,1 < 0, GBB,1 < 0), and “long-range” (next to nearest neighbor, NNN)
self-repulsion, governed by strength parameters GAA,2 > 0, GBB,2 > 0)

F
(F )
ζ (r) = −Gζζ,1ψζ(r)

∑
i=1−8

w(|ci|2)ψζ(r+ ci)ci − Gζζ,2ψζ(r)
∑

i=1−24

p(|ci|2)ψζ(r+ ci)ci

(3.4)
with ψζ(r) = ψζ [ρ(r)] a suitable pseudo-potential function. The pseudo-potential ψζ(ρζ) is
taken in the form originally suggested by Shan & Chen (1993, 1994)

ψζ [ρζ(r)] = ρ0[1− e−ρζ(r)/ρ0 ]. (3.5)

The parameter ρ0 actually marks the density value above which non-ideal effects come into play.
The prefactor ρ0 in (3.5) is used to ensure that for small densities the pseudopotential is linear in
the density ρζ . Despite their inherent microscopic simplicity, the above dynamic rules are able to
promote a host of non-trivial collective effects (Benzi et al. 2009, 2010). The model gives direct
access to the hydrodynamical variables, i.e. density and velocity fields, as well as the local (in
time and space) stress tensor in the system, the latter characterised by both the viscous as well as
the elastic contributions (see Eq. (A 1) in Appendix A, where both contributions appear).

A direct link between the ”micro-mechanics” of the model (3.3)-(3.4) and the more familiar
“macroscopic” concepts of surface tension and disjoining pressure can actually be established
(Benzi et al. 2009; Sbragaglia et al. 2012). To quantify the emergence of the surface tension and
the disjoining pressure, one has to consider a 1D problem. For a planar 1D interface, developing
along y, the surface tension Γ is a direct consequence of the pressure tensor developing at the
non-ideal interface and is computed as the integral of the mismatch between the normal (N) and
tangential (T) components of the pressure tensor. Such surface tension scales as as (Benzi et al.
2009)

Γ =

∫ +∞

−∞
[PN − PT (y)] dy ∝ −

∑
ζ=A,B

G̃ζζ

∫ (
dψζ

dy

)2

dy − GAB

ρ20

∫
dρA
dy

dρB
dy

dy. (3.6)

The quantity G̃ζζ = Gζζ,1 + 12
7 Gζζ,2 comes from a proper combination of the coefficients in

the competing interactions. For repulsive interactions, (GAB > 0) the second integral at the right
hand side is positive-definite, since (dρA/dy)(dρB/dy) < 0. With a proper use of the competing
interactions, one can choose G̃ζζ > 0, and the first term in the right hand side of Eq. (3.6) is
negative-definite; consequently, one can decrease the surface tension by simply increasing ρ0.
The decrease of the surface tension goes together with an increase of the disjoining pressure at
the thin film interface. The emergence of a positive disjoining pressure Πd(h) can be controlled in
numerical simulations by considering a thin film with two non-ideal flat interfaces, separated by
the distance h. Following Bergeron (1999), we write the relation for the corresponding tensions

Γf (h) = 2Γ +

∫ Πd(h)

Πd(h=∞)

hdΠd (3.7)

where Γf is the overall film tension. Similarly to what we have done for the surface tension
Γ, the expression for Γf is known in terms of the mismatch between the normal and tangen-
tial components of the pressure tensor (Toshev 2008; Derjaguin 1989), Γf =

∫ +∞
−∞ [PN −

PT (y)] dy, where, in our model, PN−PT (y) = ps(y) can be computed analytically (Shan 2008;
Sbragaglia & Belardinelli 2013). All the detailed expressions for the interaction stress tensor are
reported in Appendix A. From the relation s(h) = Γf (h)− 2Γ it is possible to compute the dis-
joining pressure: a simple differentiation of s(h) permits to determine the first derivative of the
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disjoining pressure, ds(h)/dh = hdΠd/dh. This information, supplemented with the boundary
condition Πd(h → ∞) = 0, allows to completely determine the disjoining pressure of the film
(Sbragaglia et al. 2012). In Fig. 4 we analyse quantitatively some of these features. In particular
we consider the interaction parameters GAB = 0.405, Gζζ,1 = −9.0, Gζζ,2 = 8.1 with ρ0 chosen
in the interval [0.72 : 0.84]. All numbers are reported in lbu (lattice Boltzmann units). As we can
see, by increasing the value of ρ0, we enhance the energy barrier at the onset of the film rupture.

The body force Fb = FP + FD in Eq. (3.1) contains the driving due to the imposed (con-
stant) pressure gradient (FP ) and a drag force (FD) mimicking the friction between bubbles
and confining plastic plates, as in the experimental setup (Fig. 1). Such drag force is taken to be
proportional to the velocity vector, as in Janiaud, Weaire & Hutzler (2006), i.e.

FD = −βv. (3.8)

Once the droplets are stabilised with a positive disjoining pressure, different packing fractions
and polydispersity of the dispersed phase can be achieved. In the numerical simulations presented
in the following sections, the fraction of the continuous phase (i.e. the equivalent of the liquid
fraction in the foam experiment) is kept approximately equal to ϕl ≈ 7.5%.

It must be stressed that the micro-mechanics of the model, Eqs. (3.3)-(3.4), is not meant to
mimic “specific” physico-chemical details of foams, but rather to model a “generic” soft-glassy
model with non-ideal fluid behavior (e.g., nonideal equation of state, phase separation), interfa-
cial phenomena (e.g., surface tension, disjoining pressure) and hydrodynamics. Mesoscale soft-
glassy models are indeed frequently used to characterise the rheology and cooperativity flow of
soft-glassy materials (Durian 1997; Mansard et al. 2013). As already stressed in the introduc-
tion, our numerical model represents a step forward in this direction, in that it provides two basic
advantages whose combination is not common. On one hand, it provides a realistic structure
of the emulsion droplets, like for instance the Surface Evolver method (Cox & Janiaud 2008;
Reinelt & Kraynik 2000; Kern et al. 2004); at the same time, due to its built-in properties, the
model gives direct access to dissipative mechanisms in thin films. This latter point will be fur-
ther discussed and detailed in Appendix B. We also remark that the viscous ratio between the
dispersed phase and the continuous phase is kept fixed to χ = 1 (the simulation parameters are
summarised in Tab. 2). This choice is dictated by purely numerical reasons, as numerical in-
stabilities emerge when one considers the case of a viscous ratio much smaller or much larger
than unity. Nevertheless, we can use this as an advantage in our joint numerical and experimental
study, as it offers the possibility to test the robustness of the experimental findings versus a change
in the viscous ratio χ between the dispersed phase and the continuous phase. It is also comfort-
ing that the latest version of our GPU code (Bernaschi et al. 2009) allows for the simulation of
emulsion droplets and their statistics in a reasonable amount of time. The current version runs on
multiple-GPU and, by using a combination of CUDA streams and non-blocking MPI primitives,
it is able to overlap completely the computation within the bulk of the domain with the exchange
of the boundaries. Most simulations have been carried out on Kepler “Titan” GPUs, featuring 14
Streaming Multiprocessors, with a total of 2688 cores running at 0.88 Ghz and a memory band-
width exceeding 200 GBytes/sec. Each run, spanning multi-million time steps for every single set
of parameters, takes less than 12 hours, to be compared with a running time of about 30 hours on
previous generation (Fermi) GPU cards. The speedup with respect to a highly tuned (multi-core)
CPU version is above one order of magnitude. To develop a systematic analysis of plastic events,
we perform a Voronoi tessellation (using the voro++ libraries (Rycroft et al. 2006)) constructed
from the centres of mass of the droplets, a representation which is particularly well suited to cap-
ture and visualise plastic events in the form of droplets rearrangements and topological changes,
occurring within the material.
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RUN FP |uwall| v0 β β∗

lbu lbu lbu lbu

P1 5× 10−7 0.0 2.15× 10−2 0 0
P2 5× 10−7 0.0 1.05× 10−2 10−5 100
P3 5× 10−7 0.0 8.05× 10−3 2× 10−5 200
P4 4× 10−7 0.0 6.10× 10−3 2× 10−5 200
P5 3× 10−7 0.0 4.55× 10−3 0 0
P6 3× 10−7 0.0 1.65× 10−3 2× 10−5 200
C1 0.0 2× 10−2 0.0 0 0
C2 0.0 2× 10−2 0.0 10−5 100

TABLE 2. Summary of the simulations parameters. The first six rows refer to runs in the Poiseuille (P#)
flow setup, while the last two are relative to the Couette (C#) flow numerical simulations. Other relevant
parameters (kept fixed among the various runs) are the fraction of the continuous phase ϕl ≈ 7.5% and
the viscous ratio between the dispersed and continuous phase χ = 1. The interaction parameters for the
phase separating interactions (see Eq. (3.3)) and competing interactions (see Eqs. (3.4)) are given in the
text and the pseudo-potential reference density is ρ0 = 0.83. The disjoining pressure for these interaction
parameters is characterised in Fig. 4. The total integration time is Ttot = 2 × 106 lbu (lattice Boltzmann
units) of which Tss = 1.25× 106 steps in the steady state.
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FIGURE 4. This figure shows the emergence of the disjoining pressure in the lattice Boltzmann model (see
Eq. (3.1) with phase separating interactions obtained with a repulsive (r) force (see Eq. (3.3)) supplemented
with competing interactions (see Eq. (3.4)) whose role is to provide a mechanism for frustration (F ). The
use of phase separating interaction is associated with a negative disjoining pressure. Competing interactions
stabilise thin films with the emergence of a positive disjoining pressure, the latter tunable with the parameter
ρ0 in Eqs. (3.3) and (3.4). Further details can be found in Sbragaglia et al. (2012).

4. Results and discussions
4.1. Experimental velocity profiles

The velocity profiles measured for five experiments are shown in Fig. 5. They are quite flat at
the centre (y = 0) of the channel, although not completely flat as would be expected from a
Herschel–Bulkley model, and decrease significantly close to the side walls (y = ±H/2). They
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FIGURE 5. Velocity profiles for the five experiments described in Tab. 1. These data have been symmetrised
with respect to the centreline; the error bars denote the standard deviation resulting from this averaging.
Each dashed line is a fit of the data by the law (4.1); see Tab. 1 for the values of the best fitting parameters.
The dotted line is a fit of the data series △ with the law (C 4) accounting for nonlinear wall friction and bulk
viscous stress; see Sec. 4.2.2 and Appendix C for details. It is barely distinguishable from the dashed line.

are well fitted by an exponential profile, which writes either v(y) = v1(1 +A cosh y/Lv), or:

v(y) = v0
cosh(H/2Lv)− αs − (1− αs) cosh(y/Lv)

cosh(H/2Lv)− 1
, (4.1)

with a set of three fitting parameters: v0, αs and Lv , which have a clear physical meaning:
v0 = v(y = 0) is the centreline velocity, and:

αs =
v(y = ±H/2)

v0
(4.2)

is the relative slip, i.e. the ratio of the slip velocity to the centreline velocity. The parameter Lv ,
that we will henceforth call the velocity localisation length, describes the range of influence of
the wall friction on the velocity profile. The values of the best fitting parameters are reported
in Tab. 1. Among the four experiments run at constant control parameters except the driving
flow rate, the relative slip tends to decrease, and the velocity localisation length to increase, at
increasing flow rate, except the experiment at flow rate 102.5 mL/min. The fifth experiment is run
at larger liquid fraction that the four other: it shows a larger relative slip, and a smaller velocity
localisation length, than the experiment with comparable flow rate.

4.2. Comparison of experiments with a local model

4.2.1. Linear model

To provide analytical reference equations for the velocity profiles and place our work in the
context of the existing literature, we start by comparing our velocity profiles to local models. We
start by a comparison to the model of Janiaud, Weaire & Hutzler (2006), that we adapt to the
Poiseuille configuration and to slip boundary conditions. It is appealing, owing to its simplicity,
and it has been shown to reproduce well experimental velocity profiles for foam flows in plane
Couette geometry (Katgert, Möbius & Van Hecke 2008). The model considers a steady unidi-
mensional flow, where inertia vanishes identically. We also neglect end effects, hence assume
that flow is streamwise invariant. Hence, the flow profile writes: v = v(y)ex, with x the stream-
wise direction and y the spanwise one. The streamwise invariance implies a constant pressure
drop: ∇P = exdP/dx with dP/dx constant. From depth-averaged momentum conservation,
0 = ∇ · σ −∇P + 2fD/h, with fD the foam/wall friction force per unit area. The term 2fD/h
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is analogous to the drag force FD used in simulations (see Sec. 3). Taking the streamwise com-
ponent of the equation, we get:

0 =
dσ

dy
− dP

dx
+

2

h
fD, (4.3)

where σ is the xy component of the stress tensor. The model assumes that for the shear stress:
σ = σY fe(γ/γY ) + ηγ̇ with γ the shear strain and γ̇ = dv/dy the shear rate, σY and γY the
yield stress and the yield strain, respectively, η a plastic viscosity of the foam, and fe a function
quantifying the variation of the elastic stress with the shear strain. Inserting this model in (4.3)
yields:

0 = η
d2v

dy2
+ σY

dγ

dy
f ′e

(
γ

γY

)
− dP

dx
− βv,

where fD is assumed to be proportional to the velocity, and β defined as:

fD = −1

2
hβv. (4.4)

If we neglect the elastic term for simplicity, we get the following ODE for the velocity:

d2v

dy2
− v

L2
0

= − v1
L2
0

,

where we have introduced the friction length:

L0 =

√
η

β
. (4.5)

A first boundary condition comes from the fact that x is a symmetry axis, hence v is an even
function of y, and we recover the exponential profile (4.1): v(y) = v1[1 + A cosh(y/L0)], first
proposed in Sec. 4.1 as an empirical fit, with the characteristic velocity v1 proportional to the
pressure gradient:

v1 = −L
2
0

η

dP

dx
. (4.6)

As shown in Sec. 4.1, it turns out that this functional form, with v1, A and L0 as free fitting
parameters, reproduces very well the experimental profiles (Fig. 5). However, there is a second
boundary condition, coming from a force balance of the foam at the side wall:

σ = ±fD at y = ±H/2, (4.7)

which differs from the original model of Janiaud, Weaire & Hutzler (2006), who assumed no-
slip boundary conditions. A macroscopic, visible signature of the balance (4.7) is the angle be-
tween the bubble edges and the side walls in Fig. 1b, see also Dollet & Cantat (2010). Inserting
(4.4), (4.5) and (4.6) in (4.3), dσ/dy = β(v − v1), hence:

σ (y = H/2) = βv1A

∫ H/2

0

cosh
y

L0
dy = βv1AL0 sinh

H

2L0
,

which we insert in (4.7) to get:

v(y) = v1

[
1− h cosh(y/L0)

2L0 sinh(H/2L0) + h cosh(H/2L0)

]
. (4.8)

This new functional form, with v0 and L0 as free fitting parameters, does not fit the experiments.
Actually, there is a major discrepancy with the relative slip; setting y = H/2 in (4.8) and using
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FIGURE 6. Relative slip measured in the experiments described in Tab. 1, as a function of the relative slip
(4.9) predicted by the local model.

the definition (4.2) of the relative slip, we get:

αs =
1

1 + h
2L0

coth H
2L0

≃ 1

1 + h/2L0
, (4.9)

since coth(H/2L0) is very close to 1 for all our experiments. This prediction is much higher
than the experimental value, except for the wet foam (Fig. 6).

4.2.2. Nonlinear model

A possible reason for the discrepancy lies in the fact that the wall friction force is nonlin-
ear in velocity, and the bulk viscous stress is nonlinear in shear rate. Following Denkov et al.
(2009), the bulk viscous stress for a 3D foam equals σ = (τV F + τV S)Γ/R (film and interface
contribution respectively) with R the bubble radius, and:

τV F = 1.16Ca0.47γ̇ (1− ϕl)
5/6 (0.26− ϕl)

0.1

ϕ0.5l

, (4.10)

with Caγ̇ = µγ̇R/Γ the capillary number (µ = 10−3 Pa s: bulk viscosity), and τV S = 9.8πBγ̇0.18

with B = 2.12× 10−3 S.I. an empirical constant for SLES/CAPB/MAc foams. Using as orders
of magnitude from the experiments R ≈

√
A/π ≈ 2 mm and γ̇ ≈ v0/Lv ≈ 1 s−1, we get

τV S/τV F ≈ 0.6, hence the film term is dominant, although the surface term is not negligible.
Keeping only the film term for simplicity, Eq. (4.10) shows that the bulk viscous stress scales
sublinearly with the shear rate:

σ = η′γ̇0.47, (4.11)

where the prefactor η′ (primed to distinguish it from the plastic viscosity in the linear law used
in Sec. 4.2.1) is:

η′ = 1.16
µ0.47Γ0.53

R0.53
(1− ϕl)

5/6 (0.26− ϕl)
0.1

ϕ0.5l

. (4.12)

For solutions giving rigid interfaces, like SLES/CAPB/MAc (Golemanov et al. 2008), foam/wall
friction is quantified by the force per unit area (or equivalently the wall stress) (Denkov et al.
2009):

fD =
Γ

R

[
1.25CIF

√
Ca∗

√
F3

1− F3
+ 2.1CIL(Ca

∗)2/3

]
F3, (4.13)
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with two empirical constants CIF = 3.7 and CIL = 3.5, Ca∗ = µv/Γ another capillary number,
and:

F3 =

√
1− 3.2

(
1− ϕl
ϕl

+ 7.7

)−1/2

.

For v ≈ 1 cm/s, the ratio of the second term to the first term in (4.13) is 5, hence we neglect
the second term. Eq. (4.13) then shows that the wall friction force scales sublinearly with the
velocity:

fD = −1

2
hβ′√v, (4.14)

with the following value of the wall friction constant (primed to distinguish it from its counterpart
in the linear law used in Sec. 4.2.1):

β′ =
2.5CIF

hR

√
Γµ

√
F 3
3

1− F3
. (4.15)

Like in Sec. 4.2.1, see Eq. (4.5), we can construct a characteristic length from η′ and β′. To do
so, it is convenient to replace the exponent 0.47 by 1/2 in (4.11), recasting the factor γ̇0.03 in the
definition (4.12) of η′; this factor is almost constant, and equal to 1, for all our experiments. The
characteristic length is then L′

0 = (η′/β′)2/3. It is the extension the friction length L0 defined
in (4.5), to the case of the nonlinear wall friction (4.14) and the nonlinear bulk viscous stress
(4.11). We compute with all the experimental values of the parameters appearing in (4.12) and
(4.15): L′

0 = 1.9 mm for ϕl = 4.8%, and 2.7 mm for ϕl = 16.9%. These orders of magnitude
are compatible with the experimental values of the localisation lengths (Tab. 1).

The effect of nonlinear wall friction and bulk viscous stress on the velocity profile has been the-
oretically considered for Couette flows (Weaire et al. 2008; Weaire, Clancy & Hutzler 2009),
but not for Poiseuille flows. Therefore, in Appendix C, we compute analytically the velocity pro-
file using the nonlinear laws (4.11) and (4.14), and we show that the role of these nonlinearities
on the velocity is negligible.

Hence, the present model is too simple to capture wall slip in our experiments, which suggests
that the role of elastic stresses is crucial. This is qualitatively supported by the fact that the only
experiment for which the local model is quite accurate in predicting the amount of slip is for a wet
foam, which stores less elastic energy (Cantat et al. 2013). To further support this idea, we plot
the shear component of the elastic stress and the normal elastic stress difference in Fig. 7; see the
end of Sec. 2.2 for the measurement of the elastic stress. The shear elastic stress is indeed about
four times weaker for the wet foam than for the four other experiments. For these experiments
at given bubble area and liquid fraction, its variation across the channel is as follows: towards
the centre of the channel, although with a significant asymmetry for some experiments, there
is a zone of quasilinear increase around σe

xy = 0. The width of this region decreases slightly
at increasing flow rate. Outside this region, the elastic shear stress plateaus to a value which
does not depend much on the flow rate. Interestingly, there is still some velocity variation, and
a significant plastic activity, outside those regions where the shear elastic stress plateaus. Except
the experiment for the wet foam, the normal elastic stress difference σe

xx−σe
yy is always positive,

i.e. the bubbles are elongated streamwise, an effect which is clearly visible on Fig. 1b. It tends to
increase towards the wall.

Eq. (4.3) expresses the balance between the driving pressure gradient, the foam/wall friction,
and the gradient of elastic and bulk viscous stresses. Close to the middle of the channel, the
velocity gradient is very weak, hence bulk viscous stress is negligible, and the gradient of the
shear elastic stress is roughly constant (Fig. 7). It is interesting to compare the value of this
gradient dσe

xy/dy and the pressure gradient dP/dx. Their experimental values are reported in
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FIGURE 7. Left panel: shear component of the elastic stress, and right panel: normal difference of the

elastic stress, for the five experiments described in Tab. 1.

Tab. 1; the pressure gradient is always larger than the gradient of shear elastic stress, the missing
part being wall friction. This is a major difference with Poiseuille experiments in 3D channels
(Goyon et al. 2008; Goyon, Colin & Bocquet 2010; Geraud, Bocquet & Barentin 2013), where
wall friction is absent. This prevents us from measuring directly the spanwise stress from the
pressure gradient, contrary to the aforementioned studies.

4.3. Numerical simulations and comparison with the fluidity model

We have shown the inaccuracies of a local model without elasticity to capture our experimental
data thanks to the inspection of the boundary condition at the wall. To test the effects of elastic-
ity, local visco-elastoplastic models could be used (Cheddadi, Saramito & Graner 2012), but it
is not straightforward to deduce from them testable predictions. Moreover, elasticity is not the
only aspect of the physics of foams and dense emulsions missed by a model such as that dis-
cussed in the previous sections. It has been recently shown in experiments of flowing emulsions
in microchannels (Goyon et al. 2008) that in order to capture the velocity profiles, the intrinsic
non-local rheology of such soft-glassy materials must be considered. Non-locality is due to the
long-ranged relaxation of stress released after a plastic rearrangement occurs. Building up on pre-
vious models for soft-glassy rheology (Sollich et al. 1997; Sollich 1998; Hébraud & Lequeux
1998), Bocquet, Colin & Ajdari (2009) proposed a kinetic elasto-plastic model (KEP hence-
forth) describing explicitely spatial interactions among plastic events. The continuum limit of
KEP suggests that the local relation between stress σ and rate of strain γ̇ is dictated by a kind of
inverse effective viscosity, the fluidity

f =
γ̇

σ
, (4.16)

which obeys a non-local diffusion-relaxation equation of the form

ξ2∆f(x) + fb(σ(x))− f(x) = 0, (4.17)

where fb is the bulk fluidity, i.e. the value of the fluidity in the absence of spatial cooperativity
(ξ = 0) and ξ is the cooperativity length scale within the material due to spatial heterogeneities
and represents, basically, a correlation length for the fluidity itself, as it can be easily derived
from Eq. (4.17). The other important result of KEP is that such fluidity must be expected to be
proportional to the rate of occurrence of plastic events RT1 in the system, i.e. f ∝ RT1. Further-
more, KEP encompasses the effect of elasticity through the nonlocal relaxation of elastic stress
induced by plastic events. There is, however, a difficulty in testing this nonlocal model against our
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FIGURE 8. Numerical velocity profiles, normalised by the centreline velocity v0, at changing the wall
friction constant. Data from three sets of simulations are shown with dimensionless wall friction parameter
(see equation 4.18) β∗ = 0, 100, 200 (runs P1-3 in table Tab. 2); the experimental velocity profile with flow
rate 152.5 ml/min (see Tab. 1) is also reported to show that we are able to tune the wall friction parameters
in the numerics to achieve the same localisation observed in the experiments. The equivalent β∗ in the
experiments is β∗ ≈ 250 (see text for details). On the abscissae, the y-location across the channel has been
normalised by the total channel height.

experiments. The role of wall friction is crucial in experiments, whereas the nonlocal model has
been set up and tested in its absence, although recent studies have considered the coupled role of
wall friction and nonlocality (Barry, Weaire & Hutzler 2011; Scagliarini, Dollet & Sbragaglia
2014). Indeed, wall friction complicates the stress profile across the channel, as discussed in
Sec. 4.2, and it is thus not straightforward to extract relevant flow curves σ(γ̇) from our experi-
ments. Hence, it is interesting to run numerical simulations, where the wall friction can be set off
and tuned at will.
Various sets of numerical simulations have been performed in the (FP , β

∗) parameter space (see
Tab. 2 for the numerical values used), where β∗ is meant to be the value of friction coefficient
(Eq. 3.8) β made dimensionless with the channel width H and viscosity η, i.e.

β∗ =
βH2

η
=
H2

L2
0

, (4.18)

where the last equality is based on the definition of the friction length L0 given in (4.5). A flat
velocity profile in the bulk is shown by all curves (Fig. 8), including the case with β∗ = 0, wit-
nessing the presence of a non trivial bulk rheology (Goyon et al. 2008; Goyon, Colin & Bocquet
2010; Geraud, Bocquet & Barentin 2013). We also report the experimental velocity profile with
flow-rate 152.5 ml/min (see Tab. 1), just to show that we are able to tune the wall friction param-
eters in the numerics to achieve the same localisation observed in the experiments for which an
equivalent wall friction parameter β∗ ≈ 250 can be estimated based on the wall friction constant
(4.15) and the plastic viscosity (4.12). While a direct comparison of experiments and numerics
in terms of velocity profiles is complicated by boundary conditions (as observed in the exper-
imental data of Fig. 5, slippage is found to occur at the surfaces of the experiments, while the
numerical simulations are performed by imposing no-slip at the walls), an important insight will
be provided by simulations in validating the picture of the plastic flow (Sec. 4.4) at changing
the wall friction constant which is a freely tunable parameter in the numerical model, unlike in
experiments.
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The top panel of Fig. 9 indeed provides some indications that wall friction does not seem
to dramatically affect the distribution of plastic events. There we plot the rate of plastic rear-
rangements, normalised by the total number of events, from experiments and numerics (for the
three β∗’s). Data show a moderately good collapse onto each other. At a given driving pressure
drop, increasing wall friction results in a decrease of the total number of plastic events NT1 . We
could estimate the number NT1 in the numerical simulations and it is reported in the bottom
panel of Fig. 9: for the same simulation time (see caption of Tab. 2) plastic events diminish from
NT1 ∼ 6×103 toNT1 ∼ 2×103 for increasing β∗ from 0 to 400. A similar trend is observed for
the centreline velocity which is reported in the inset of the bottom panel of Fig. 9. To make this
statement more quantitative, we notice that the overall decrease in the number of plastic events
can be well captured by the function

G(β∗) =
2b2N

(0)
T1

β∗

[
1− 1

cosh(
√
β∗/b)

]
, (4.19)

a scaling behaviour that can be obtained from the expression of the centreline velocity, v0 in (4.1),
with αs = 0 (no-slip boundary condition for the numerics). The parameter N (0)

T1 in equation
(4.19) sets the number of plastic events in the limit β∗ → 0 whereas the argument

√
β∗/b of

the hyperbolic function in Eq. (4.19) is inversely proportional to the velocity localisation length.
The choice of equation (4.19) as a fitting function is suggested by the consideration that the
total number of plastic events is dominated by events occurring in boundary regions where the
shear stress is approximately constant and, hence, the fluidity f is basically proportional to the
shear rate γ̇. Consequently, being the number of events, by definition, equal to the integral of the
corresponding rate RT1 and since RT1 ∝ f ≈ |γ̇|, we can assume that G(β∗) ∝

∫H/2

0
|γ̇|dy,

which equals the centreline velocity. Interestingly, the estimate of b that we get from a best fit
procedure (b ≈ 6.0) is greater than the estimate of b based on the friction lengthL0 in (4.5), which
would yield b = 2. This is an indication that the velocity localisation length in the numerical
simulations is larger than the localisation length induced by the wall friction FD = −βv. This
is not a surprise, because our numerical simulations had already confirmed the presence of a
cooperativity length scale (Sbragaglia et al. 2012), without wall friction, in a Couette flow setup.
This supports the idea that an effective localisation length results from the sum of the friction
length plus the cooperativity length (Barry, Weaire & Hutzler 2011), an issue that we will further
explore in Sec. 4.4.

The study of the spatial distribution in the number of plastic events and the simultaneous anal-
ysis of the localisation in the velocity profiles, allows to bridge between the “microscopic” details
of local irreversible plastic rearrangements and the macroscopic flow. A connection between the
rate of T1 events and the fluidity field is indeed visible in the top panel of Fig. 9. The dashed line
indicates sinh(y/Lv)/y, which is the “synthetic” fluidity profile (up to an unessential numerical
scaling factor) based on the hyperbolic cosine fit of the velocity profile (see Sec. 4.1) and a linear
variation of the shear stress across the channel. Interestingly, a significant plastic activity remains
towards the centre of the channel, and it is well correlated to the fluidity field, which remains fi-
nite in such regions, whereas the strain-rate goes to zero. Moreover, a closer inspection reveals
that the decrease in the number of plastic events is affected by the wall friction constant β∗, with
a steeper decrease associated with the larger β∗. Fig. 9 calls therefore for a deeper understanding
with regard to the link between the rate of plastic events and the local flow properties.

4.4. Localisation lengths: comparison of plasticity and shear rate

To go further, we choose to explore the connection between the rate of plastic events and the
local flow properties, by looking at the relationship between the localisation length of the ve-
locity profiles, Lv , and the localisation length of the number of plastic events, Lp (henceforth
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FIGURE 9. Top Panel: plot of the rate of plastic rearrangements as a function of y: experiments (△ in Tab. 1)
are compared with numerical data from runs P1-3. The dashed line indicates the function sinh(y/Lv)/y,
representing the fluidity profile based on the hyperbolic cosine fit of the velocity profile (see Sec. 4.1 for
details). Numerical data have been symmetrised. Bottom Panel: Total number of T1s as function of β∗ from
the simulations; the dashed line is a fit with the functional form given in Eq. (4.19). Inset: the centreline
velocity vs β∗ is reported.

called plastic localisation length). This connection enables to compare experiments and simula-
tions, despite their different boundary conditions. The velocity localisation lengthLv is estimated
by a hyperbolic cosine function cosh(y/Lv), from which the decay length Lv is extracted (see
Sec. 4.1). Simultaneously, the plastic localisation length Lp is computed out of an exponen-
tial fit of the symmetrised rate of plastic events close to the wall (Top Panel of Fig. 10). Since
our numerical simulations have already confirmed the presence of a cooperativity length scale
(Sbragaglia et al. 2012) without wall friction, they are good candidates to complement the ex-
perimental findings, showing how the spatial distribution of plastic events is affected by a change
in the wall friction parameter β. Hence, in the Bottom Panel of Fig. 10 we also look at the locali-
sation in the numerics, by fixing the pressure gradient and changing β∗, something that cannot be
easily done in experiments with the data at hand. At fixed pressure gradient, we show the log-lin
plot of the rate of plastic events from simulations with different β∗. The extracted Lp is found to
be a decreasing function of β∗.
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of y/H , for the five experiments described in Tab. 1. These data have been symmetrised with respect
to the centreline; the error bars denote the standard deviation resulting from this averaging. Data below
10−4 mm−2·s−1 are not shown because they are statistically irrelevant (less than ten T1s counted per
bin per experiment). Dashed lines represent the linear fits of the data. Bottom Panel: data from numerical
simulations complement the experimental results reported in the Top Panel. In particular, to appreciate the
effect of wall friction at fixed pressure gradient, we show the log-lin plot of the rate of plastic events from
simulations P1-3 (fixed pressure drop and different β∗) close to the bottom wall (the dashed lines represent
best linear fits of the data). Inset: Plastic localisation length as function of the wall friction parameter β∗.

In Fig. 11 we report a scatter plot of the velocity localisation length Lv versus the plastic
localisation length Lp for three sets of data: experiments (symbols as in Tab. 1), simulations with
fixed pressure drop and various β∗’s (filled squares) and simulations with fixed β∗ = 200 and
various pressure drops (filled circles). Fig. 11 shows that the two localisation lengths are indeed
close to each other. The fact that the values Lp and Lv agree, confirms the picture of the “plastic
flow”; it is also compatible with the fact that the rate of plastic events and the fluidity seem to be
proportional (Sec. 4.3).

Barry, Weaire & Hutzler (2011) have combined the local model presented in Sec. 4.2 with
the nonlocal equation for the fluidity field (4.17), in the case of a Couette flow with linear laws
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FIGURE 11. Scatter plot of the velocity localisation length Lv (computed from a hyperbolic cosine fit
of the velocity profiles) vs the plastic localisation length Lp (computed out of an exponential fit of the
symmetrised rate of plastic events across the channel) for three sets of data: experiments (symbols as in
Tab. 1), simulations of Poiseuille flow with fixed pressure drop and various normalized friction coefficients
β∗’s (filled squares) and with fixed β∗ = 200 and various pressure drops (filled circles) and simulations of
Couette flow at two β∗’s (filled triangles); both lengths are normalised by the mean bubble diameter. The
dashed line is the Lv = Lp curve.

for the bulk viscous stress and wall friction (as in Sec. 4.2.1). They predicted that the velocity
localisation length is an increasing function of both the cooperativity length ξ, and of the friction
length L0 defined by (4.5). Here, this theoretical prediction can be tested for the first time versus
our experiments and simulations. Some care is required in doing so because of the nonlinear
nature of wall friction and bulk viscous stress in experiments and of the difference between
Couette and Poiseuille flows. However, we have shown in Appendix C that the effect of nonlinear
wall friction and bulk viscous stress is very weak. Since the velocity localisation length Lv is
much smaller than the channel width and the stress does not vary much across the localisation
zone, the comparison with the Couette predictions is relevant. For this reason, we also repeated
some numerical simulations in a Couette flow geometry (see Tab. 2). The associated data nicely
collapse on the same master curve, stressing even more the robustness of our findings at changing
the load conditions.

In experiments, at given liquid fraction and bubble area, the localisation length Lv increases
with increasing flow rate. Moreover, Tab. 1 shows that at given flow rate (up to 5%) and bubble
area, the localisation length is lower for a wet foam than for a dry one, in qualitative agreement
with the experiments of Goyon, Colin & Bocquet (2010) on emulsions. We tried to get further
insight on these findings, by investigating the local effect of single plastic events, namely by
measuring the way they affect displacement and elastic stress fields on their surroundings, in the
spirit of Picard et al. (2004) in theory and Chen, Desmond & Weeks (2012) in experiments. Our
hope was to directly evidence the cooperativity length as the range of influence on displacement
and stress fields of single plastic events, and whether it would depend on flow rate and liquid
fraction. However, the data turned out to be too noisy to address this specific question, in partic-
ular because of the difficulty to properly substract the effect of the mean flow. Hence, we cannot
directly measure the cooperativity length. In some sense, the work presented here bypasses the
problem of an accurate measurement of the cooperativity length, but directly explores the link
between localisation phenomena in the velocity profiles and the rate of plastic events.

4.5. Orientation of the plastic events

The importance of plastic rearrangements has been stressed in that the occurrence of these
events induces long range correlations within the soft-glassy material. It is also acknowledged
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FIGURE 12. Normalised distributions of the orientations of plastic events. Distributions of appearing (left
Panel) and disappearing (right Panel) centre-to-centre links of bubbles involved in rearrangements are
shown, from experiment (thin blus line) and simulations (thick red line). θ denotes the angle formed by
the link and the direction of the flow, i.e. the positive x-axis. Following Princen (1983), the extreme values
are found for a dry foam at liquid fraction ϕl = 0 and are indicated with a dashed line.

(Picard et al. 2004; Schall, Weitz & Spaepen 2007) that T1s possess a non trivial angular struc-
ture with a quadrupolar topology. It seems, then, reasonable to argue that for a full understanding
of the way they determine nonlocal effects inside the system, not only the distribution of their
locations in space, but also their orientational properties need to be addressed. Therefore, we go
further with the description of plastic events, and study their angular statistics from experiments
and simulations. More precisely, focusing on the four bubbles involved in a T1, we define as a
disappearing link the segment connecting the centres of the two bubbles which were in contact
before the event (and which are then far apart), and as an appearing link the connector between
the other two bubble centres (see also Sec. 2 and Figs. 2 and 3); we then measure for each event
the angle between such links and the flow direction. We have observed that the angles are re-
versed between both sides of the channel, consistently with the fact that y = 0 is an axis of
symmetry. Therefore, we choose to analyse the statistics of the quantities θd = θ′d sign (y) and
θa = θ′asign (y) (see Fig. 1 for the sign convention of y). We did not observe a significant vari-
ation of the distribution of these angles across the channel, hence we analyse the distributions of
these angles for all T1s, whatever their location across the channel. Fig. 12 shows the histogram
of θd and θa for one experiment and one simulation, while the average and standard deviation of
these quantities are summarised for all experiments in Tab. 1. This analysis shows that T1s have
preferential orientations: θd is peaked around 0.5 rad, with a small dispersion, and θa around
−0.7 rad, with a larger dispersion. The average values do not depend significantly on the flow
rate. For the wet foam, θd is larger, and θa slightly smaller.

We now derive some reference values for these angles from a micro-structural analysis. Since
our foams are rather monodisperse, it is interesting to use the simple geometrical model of a
sheared 2D hexagonal foam (Princen 1983) (see also Khan & Armstrong (1986)). In this model,
the unit cell drawn in dashed lines in Fig. 13 is sheared, and the location of the vertices is com-
puted to comply with the equilibrium rule that the three edges meet at equal angles. To account
for the finite liquid fraction, the vertices are decorated with Plateau borders which radius RP is
an increasing function of the liquid fraction (Fig. 13, left): ϕl = (2

√
3 − π)R2

P /Ah, with Ah

the area of one hexagon. This structure can be sheared up to the point where two neighbouring
Plateau borders meet, which defines the onset of the T1 (Fig. 13, right).

The two angles θ′a and θ′d can be computed from simple geometry, when the two Plateau
borders come into contact (Fig. 13, right). The length of the edge c between the two bubbles about
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FIGURE 13. Portion of an unsheared (left) and sheared (right) hexagonal foam. The strain is defined as
γ = 4∆x/3a.

to detach is equal to RP . Now at a given strain γ, this length equals (Khan & Armstrong 1986):
c = a(1 − γ

√
3/2)/

√
4 + γ2, where a is the side length of the undeformed hexagon. Setting

c = RP in the latter equation yields the strain γc at which the T1 occurs; γc is a decreasing
function ofRP . Moreover, γ = 1/

√
3−cotα (Princen 1983), and we compute from geometrical

considerations in the right panel of Fig. 13: cot θ′d = 2/
√
3− cotα = 1/

√
3 + γc, and cot θ′a =

−2/
√
3− cotα = −

√
3 + γc. Qualitatively, these two expressions show that both θ′d and θ′a are

decreasing functions of γc, hence increasing functions of RP , hence of the liquid fraction. The
extreme values are found for a dry foam at ϕl = 0, for which γc = 2/

√
3 (Princen 1983), and

for the jamming transition for which γc = 0: θ′d varies between π/6 ≃ 0.52 rad (dry foam) and
π/3 ≃ 1.05 rad (jamming transition), and θ′a between −π/3 and −π/6. Our measured values
are indeed in these ranges. The values of the disappearing angles for the four experiments with
ϕl = 4.8% are compatible (within experimental dispersion) with the dry foam prediction, the
latter indicated with a vertical dashed line in Fig. 12. The predicted increase of the angles with
liquid fraction is compatible with the experiments for θd, but not for θa.

Although the model by Princen (1983) gives useful reference values, it is difficult to make
a more quantitative comparison based on liquid fraction, because the distribution of liquid is
specific to each system. In simulations, the films between droplets are thick, and contain a sig-
nificant proportion of the liquid. In experiments, the distribution of water is complex because
of the 3D structure of the bubbles; there is relatively more water close to the confining plates
than in the midplane in between (Cox & Janiaud 2008). The hexagonal foam model of Princen
(1983) is a good approximation of the structure of our experimental foams across the midplane
between the top and bottom confining plates, but the liquid fraction across this plane, relevant
in the hexagonal model, is significantly lower than the experimental liquid fraction. Moreover,
the measurement of the appearing angle is less precise than that of the disappearing one, because
the relaxation of the four bubbles after a T1 is fast; hence, the measurements made on the image
after the topological rearrangement may not be representative of the configuration at the instant
of a T1. This also explains why the dispersion is larger for θa than for θd.

5. Conclusions
We have reported on the first experimental study measuring the rate of plastic events in

Poiseuille flows of foams. Experiments have been supplemented by numerical simulations, capa-
ble to capture the realistic foam structure and to incorporate naturally the expected mesoscopic
dynamics. We have addressed the relation between T1 distribution and macroscopic rheology
and revealed a link between the localisation lengthscale of the velocity profiles and that of plas-
tic events across the channel, confirming the relevance of cooperativity for foams (Katgert et al.
2010). The use of numerical simulations allowed to study in a controlled way (something not eas-
ily feasible in the experiments) the effect of wall friction, helping to confirm its role in the emer-
gence of an extra localisation for the velocity profiles, as predicted theoretically (Barry, Weaire & Hutzler
2011). Our study highlighted that the elasticity gives rise to a complex near-to-wall dynam-



24 B. Dollet, A. Scagliarini and M. Sbragaglia

ics which calls for focused studies both experimentally (in the spirit of the recent work by
Mansard, Bocquet & Colin (2014)) and numerically, and for a more refined theoretical mod-
elling of the boundary conditions. Finally, unprecedented results on the distribution of the ori-
entation of plastic events show — with good agreement between experiments and numerics —
that there is a non-trivial correlation with the underlying local shear strain; this suggests that
more complex forms for the propagators invoked in theoretical models of soft-glassy materials
(Bocquet, Colin & Ajdari 2009) may be needed, with an explicit angular structure, especially in
situation of non-homogeneous stress (as it is for Poiseuille flows).

The authors kindly acknowledge funding from the European Research Council under the EU
Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no[279004]. We ac-
knowledge computational support from CINECA (IT). MS and AS gratefully acknowledge M.
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Appendix A. Pressure tensor in LBM simulations
In this Appendix we provide the technical details for the lattice Boltzmann pressure tensor used

in equations (3.6) and (3.7) to compute both the surface tension and the disjoining pressure at the
non-ideal interface. Given the mechanical model for the lattice interactions described in (3.3)-
(3.5), an exact lattice theory is available (Shan 2008; Sbragaglia & Belardinelli 2013) which
allows to connect the interaction forces to the lattice Pressure Tensor. The exact pressure tensor
is given by

Pαβ =
∑
ζ,i

fζic
α
i c

β
i +

∑
ζ

P
(int)
ζ,αβ . (A 1)

The term
∑

ζ,i fζic
α
i c

β
i represents an internal contribution to the pressure tensor and its out-

of-equilibrium contribution gives the dissipative stress in the system (Gross et al. 2011), while
P

(int)
ζ,αβ is a contribution coming from the interactions and embeds the elastic stresses of the sys-

tem. As for P (int)
ζ,αβ , we can separately write the contributions coming from the repulsive (r) phase

separating interactions (see equation (3.3)), and those coming from competing interactions pro-
viding a mechanism of frustration (F) (see equation (3.4))

P
(int)
ζ,αβ = P

(r)
ζ,αβ + P

(F,1)
ζ,αβ + P

(F,2)
ζ,αβ + P

(F,4)
ζ,αβ + P

(F,5)
ζ,αβ + P

(F,8)
ζ,αβ . (A 2)

The contribution coming from the phase separating interactionsP (r)
ζ,αβ is (Sbragaglia & Belardinelli

2013)

P
(r)
ζ,αβ =

GAB

2
ρζ(r)

∑
i=1−8

w(|ci|2)ρζ′(r+ ci)c
α
i c

β
i ζ ′ ̸= ζ (A 3)

while the contributions coming from the frustrating interactions are given by various terms,
P

(F,1)
ζ,αβ , P (F,2)

ζ,αβ , P (F,4)
ζ,αβ , P (F,5)

ζ,αβ , P (F,8)
ζ,αβ , labeled with the number of the “energy shell” (see Tab. 3)

P
(F,1)
ζ,αβ =

Gζζ,1

2
ψζ(r)

∑
i=1−4

w(1)ψζ(r+ci)c
α
i c

β
i +

Gζζ,2

2
ψζ(r)

∑
i=1−4

p(1)ψζ(r+ci)c
α
i c

β
i (A 4)

P
(F,2)
ζ,αβ =

Gζζ,1

2
ψζ(r)
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w(2)ψζ(r+ci)c
α
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β
i +

Gζζ,2

2
ψζ(r)
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i (A 5)

P
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Plastic flow of foams and emulsions in a channel 25

Phase Separating Interactions Eq. (3.3) Shell lattice Links

w(|ci|2) |ci|2 ci

4/9 0 (0, 0)
1/9 1 (±1, 0); (0,±1)
1/36 2 (±1,±1)

1st term, rhs Eq. (3.4) 2nd term, rhs Eq. (3.4) Shell lattice links

w(|ci|2) p(|ci|2) |ci|2 ci

4/9 247/420 0 (0, 0)
1/9 4/63 1 (±1, 0); (0,±1)
1/36 4/135 2 (±1,±1)
0 1/180 4 (±2, 0); (0,±2)
0 2/945 5 (±2,±1); (±1,±2)
0 1/15120 8 (±2,±2)

TABLE 3. Links and weights of the two belts, 25-speeds lattice (Shan et al. 2006; Benzi et al. 2009) for all
interactions given in equations (3.3) and (3.4). The first belt lattice velocities are indicated with i = 1...8
while the second belt ones with i = 9...24. p(|ci|2) or w(|ci|2) indicate the weight associated with the i-th
link in the various interactions. The weights associated to the velocity at rest, w(0) and p(0), are chosen to
enforce a unitary normalisation,

∑i=8
i=0 w(|ci|2) = 1 and

∑i=24
i=0 p(|ci|2) = 1.

P
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Gζζ,2

4
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Appendix B. Friction forces in LBM simulations
In this Appendix, we propose benchmark tests for the LBM introduced in section 3 with re-

gard to the viscous drag forces acting on individual bubbles. Friction properties in the thin films
between neighbouring droplets/bubbles or between droplets/bubbles and the walls are impor-
tant for both foams and concentrated emulsions (Denkov et al. 2006, 2008, 2009; Katgert et al.
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2009). We start by presenting benchmark computations for the motion of droplets in confined
channels at changing the capillary number. The drag force on a single bubble that slides past
a solid wall was first investigated by Bretherton (1961) and has recently received renewed at-
tention (Denkov et al. 2006, 2008; Katgert et al. 2009). For a single bubble sliding past a solid
wall, Bretherton (1961) showed that the drag force scales non-linearly with the capillary num-
ber, Ca, defined in terms of the dynamic viscosity of the carrier liquid and the relative velocity
between the bubble and the wall. The lubrication approximation yields the velocity U of the
bubble immersed in the Poiseuille flow to be approximated at leading order in

U/Uav = 1 + 1.29(3Ca)2/3, (B 1)

where Uav represents the mean flow velocity. This theory can be readily modified for the 2D bub-
ble placed in the Poiseuille flow between two parallel plates (Afkhami, Leshansky & Renardy
2011)

U/Uav = 1 + 0.643(3Ca)2/3. (B 2)

An extension to droplets with an arbitrary viscosity has been considered in various papers (Schwartz, Princen & Kiss
1986; Hodges, Jensen & Rallison 2004). For a very viscous drop, results analogous to the pre-
vious equations can readily be found, as the coefficients 1.29 and 0.643 in equations (B 1) and
(B 2), respectively, are reduced by a factor of 2−1/3 ≈ 0.794, yielding

U/Uav = 1 + 1.023(3Ca)2/3 (B 3)

for a bubble in a cylindrical capillary and

U/Uav = 1 + 0.511(3Ca)2/3 (B 4)

for a 2D bubble in a channel. In Fig. 14 we present our benchmark tests for equation (B 4). As
we can see, the predicted scaling for the velocity of the bubble well agrees with the theoretical
prediction, confirming a scaling exponent in the capillary number close to 2/3 and a numerical
coefficient in between the case of a very viscous droplet and the case of a bubble

We now continue by presenting benchmark tests for the drag force between two bubbles sliding
past each other, Fbb. Some recent works (Denkov et al. 2006, 2008; Katgert et al. 2009) have
provided evidences that the viscous drag force scales like Fbb ∝ Caξ, with a scaling exponent ξ
between 1/2 and 2/3. This is an important test for our numerical simulations: LBM modelling
of two phase flows is intrinsically a diffuse interface method and involves a finite thickness of the
interface between the two liquids and related model parameters. The values of the interface thick-
ness and capillary number need to be larger than the one suggested by physical considerations in
order to make the simulations affordable (Komrakova et al. 2013; Magaletti et al. 2013). Nev-
ertheless, the structure and the dynamical properties of the emulsion droplets that we reproduce
in the numerical simulations share nontrivial features with the experiments (Goyon et al. 2008;
Goyon, Colin & Bocquet 2010; Mansard, Bocquet & Colin 2014). It is therefore of great im-
portance to investigate the scaling laws associated with friction properties, to show that they are
realistic and in line with those measured in experiments. In particular, we measure the viscous
drag forces between bubbles directly by rheological experiments where two rows of ordered bub-
bles are sheared past each other. Results are reported in Fig. 15. A scaling law in the velocity
difference U between the two rows of droplets is confirmed, Fbb ∼ Caξ, with a scaling exponent
between 1/2 and 2/3.

Appendix C. Velocity profile in the nonlinear local model
In this Appendix, we provide a solution of the velocity profile, obeying momentum conserva-

tion (4.3) with the nonlinear law (4.14) for wall friction, and (4.11) for the bulk viscous stress
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FIGURE 14. Velocity of a 2D droplet in a confined channel. The viscous ratio between the dispersed phase
and the continuous phase is set to χ = 1 in all the numerical simulations. In the top panel we report two
snapshots associated with two different capillary numbers. Blue/white (dark/light) colors indicate regions
with majority of the dispersed/continuous phase. The droplet is driven by a constant pressure gradient.
The average velocity of the droplet is normalised with respect to the mean flow velocity (Uav) in the in-
let of the channel. The scaling laws for both very viscous (χ ≫ 1) droplet (Schwartz, Princen & Kiss
1986; Hodges, Jensen & Rallison 2004) and a bubble in a 2D channel are reported (Bretherton 1961;
Afkhami, Leshansky & Renardy 2011). The velocity scaling well agrees with the theoretical prediction,
confirming a scaling exponent in the capillary number close to 2/3 and a numerical coefficient in between
the two extreme cases (χ ≫ 1 and χ ≪ 1).
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FIGURE 15. Viscous drag force Fbb between droplets measured directly in rheological experiments where
two rows of ordered bubbles are sheared past each other. The packing fraction of the continuous phase into
the dispersed phase is changed in the interval ϕl = [0.06 : 0.18]. The left panel reports three snapshots
of the simulations for two different packing fractions. Blue/white (dark/light) colors indicate regions with
majority of the dispersed/continuous phase. A scaling law in the Capillary number is found, Fbb ∼ Caξ,
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but with a velocity exponent 1/2 instead of 0.47, an approximation which enables to provide an
analytical solution. Hence we solve for −H/2 ≤ y ≤ 0 (so that dv/dy ≥ 0):

0 = η′
d

dy

[(
dv

dy

)1/2
]
− dP

dx
− β′v1/2,

with boundary conditions: dv/dy = 0 at y = 0, and σ = −fD at y = −H/2.
We make space and velocity dimensionless: ȳ = y/L′

0 and v̄ = v/V , by rescaling them by

L′
0 = (η′/β′)2/3 V = [(−dP/dy)/β]2. (C 1)
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Then the problem becomes:

0 = (v̄
1/2
ȳ )ȳ − v̄1/2 + 1, (C 2)

where the subscript designs derivation, with boundary conditions: v̄ȳ = 0 at ȳ = 0, and v̄1/2ȳ =

hv̄1/2/2L′
0 at ȳ = −H/2L′

0. The velocity thus obeys an autonomous equation of the form:
v̄ȳȳ = F (v̄, v̄ȳ), with F (x, y) = −2(1−

√
x)
√
y. This kind of equation can be recast as a first-

order ODE (Polyanin & Zaitsev 2003) by setting w̄ = v̄ȳ: it then becomes w̄v̄ = F (v̄, w̄)/w̄ =
−2(1−

√
v̄)/

√
w̄. The latter is an ODE with separable variables, which is thus simply integrated

to yield: 2w̄3/2/3 = −2v̄ + 4v̄3/2/3 + const. The boundary condition at ȳ = 0 imposes that
w̄ = 0 for the unknown centreline velocity v̄0, hence 2w̄3/2/3 = −2(v̄− v̄0)+4(v̄3/2− v̄3/20 )/3.
In the limit 2L′

0/H ≪ 1, which is a good approximation in our experiments, the dimensionless
bulk viscous stress term (v̄

1/2
ȳ )ȳ is negligible at the centre of the channel, hence after (C 2),

v̄0 = 1. Therefore,
v̄ȳ = [(1−

√
v̄)2(2

√
v̄ + 1)]2/3. (C 3)

The right-hand side is a decreasing function over [0, 1], equal to 1 for v̄ = 0 and to 0 for v̄ = 1.
Therefore, for a given value of the parameter h/2L′

0, the boundary condition at the wall: v̄ȳ =
h2v̄/4L′2

0 , admits a single solution for v̄ and v̄ȳ at ȳ = −H/2L′
0. The velocity field obeying

(C 2) and the boundary condition then obeys the implicit equation: ȳ+H/2L′
0 = Φ(v̄)−Φ(v̄s),

with:

Φ(v̄) =

∫
dv̄

[(1−
√
v̄)2(2

√
v̄ + 1)]2/3

= (1 + 2
√
v̄)1/3

[
2

(1−
√
v̄)1/3

+ 21/332/32F1

(
1

3
,−2

3
,
4

3
,
1

3
(1 + 2

√
v̄)

)
−21/332/3

12
2F1

(
4

3
,
1

3
,
7

3
,
1

3
(1 + 2

√
v̄)

)]
,

where 2F1 designs the hypergeometric function. With this complicated expression, fitting the
experimental data is not easy. A simpler alternative consists in developing (C 3) for 1 − v̄ ≪ 1.
This gives: v̄ȳ = (3/4)2/3(1 − v̄)4/3, with general solution: 1 − v̄ = 48/(ȳ + const.)3. This
gives an alternative fitting formula for the velocity profile:

v = V

[
1− 48L′3

0

(y − y0)3

]
. (C 4)

Taking V , L′
0 and y0 yields a fit which is close to the exponential fit (4.1), the difference between

both fits being within the dispersion of the experimental data. This suggests that the effect of the
nonlinearities of wall friction and of the bulk viscous stress on the flow profile is weak. Finally,
we have checked that the qualitative conclusions brought by Fig. 6, namely that the relative
slip is overestimated by the local model, remains valid with nonlinear laws. Hence, the role of
nonlinearities is secondary in this study, and can be neglected.
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