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Turbulence effects on phytoplankton morphofunctional traits selection

Turbulence can regulate phytoplankton community structure in aquatic ecosystems by affecting sedimentation and nutrient acquisition. In rivers, nutrient concentrations are often high enough to sustain phytoplankton growth without limitation. Hence, turbulence mainly acts on phytoplankton by controlling its vertical position in such ecosystems. We conducted a laboratory experiment to see if the response of phytoplankton to turbulence could be predicted from morphofunctional traits related to sinking velocity and maximum growth rate. Turbulence was generated by horizontally oscillating grid systems in three 5 L chambers, which also constituted three chemostats. Two turbulence levels typical of lowland rivers (E 5 7.9 3 10 25 m 2 s 23 and E 5 7.8 3 10 23 m 2 s 23 ) were tested on an experimental community composed of six species from different taxonomic lineages. The species selected displayed different values for five morphofunctional traits related to sinking velocity and maximum growth rate (S : V ratio, algal unit size, density, shape, and motility). We showed that community structure could be partly predicted from morphofunctional traits. Under low turbulence (LT) (E 5 7.9 3 10 25 m 2 s 23 ), species displaying traits leading to high sinking velocity (i.e., large size and high density) were unable to sustain stable populations, whereas species which displayed the opposite traits (i.e., small size, flattened shape, or low density) dominated the community. Furthermore, one of the six species exhibited phenotypic plasticity in size and could adapt to both high and LT conditions.

Functional traits, first investigated in plants, are increasingly used to understand phytoplankton community structure in response to environmental factors [START_REF] Litchman | Trait-based community ecology of phytoplankton[END_REF][START_REF] Kruk | Phytoplankton community composition can be predicted best in terms of morphological groups[END_REF][START_REF] Fraisse | Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasted flow regime[END_REF]. A functional trait can be defined as any physiological and/or morphological feature at the individual level which provides a competitive advantage in a given environment [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Violle | Let the concept of trait be functional![END_REF]. Morphological traits are of particular interest as they are easily measurable and constitute good proxies for physiological traits [START_REF] Weithoff | The concepts of "plant functional types" and "functional diversity" in lake phytoplankton: A new understanding of phytoplankton ecology?[END_REF][START_REF] Kruk | A morphological classification capturing functional variation in phytoplankton[END_REF]. Initially described as "life-forms" by [START_REF] Margalef | Life-forms of phytoplankton as survival alternatives in an unstable environment[END_REF], they are currently widely known as morphofunctional traits. In phytoplankton, one of the most obvious morphofunctional traits is cell size. This is related to physiological traits controlling nutrient acquisition such as l max (maximum growth rate), V max (maximum uptake rate) and K s (half saturation constant), resulting in a competitive advantage for small species in a nutrient-limited environment [START_REF] Aksnes | A theoretical model for nutrient uptake in phytoplankton[END_REF][START_REF] Edwards | Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton[END_REF][START_REF] Marañ On | Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use[END_REF]. Size, given its range of variation in phytoplankton, has often been considered as a master trait. However, phytoplankton can exhibit numerous morphofunctional traits. For instance, shape affects diffusive transport, thus impacting nutrients acquisition, and results in competitive advantages for elongated as compared to spherical cells [START_REF] Pahlow | Impact of cell shape and chain formation on nutrient acquisition by marine diatoms[END_REF]. The presence of flagella can also influence nutrient uptake, allowing cells to reach layers of higher nutrient concentration [START_REF] Gervais | Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake[END_REF][START_REF] Pithart | Diurnal vertical migration study during a winter bloom of cryptophyceae in a foodplain pool[END_REF]. This is a decisive advantage in aquatic ecosystems where sedimentation may often be the major process of phytoplankton loss. Hence, other traits controlling sinking velocities such as shape [START_REF] Padis Ak | Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: An experimental study[END_REF], and the faculty to reduce density [START_REF] Walsby | Gas vesicles[END_REF][START_REF] Reynolds | Variability in the provision and function of mucilage in phytoplankton: Facultative responses to the environment[END_REF]) directly impact phytoplankton fitness. The importance of these traits is dependent on the turbulence level of a given ecosystem.

Indeed, in aquatic systems, turbulence is the dominant physical process controlling the distribution of dissolved and particulate matter [START_REF] Thorpe | An introduction to ocean turbulence[END_REF] and is assumed to be the most important factor (with nutrient supply) shaping the cell through evolution and "the only reason for proceeding to a functional interpretation of morphology" [START_REF] Margalef | Life-forms of phytoplankton as survival alternatives in an unstable environment[END_REF]. Turbulence plays a key role in regulating phytoplankton community structure, maintaining negatively buoyant taxa in the water column while homogenizing positively buoyant ones [START_REF] Bormans | Modelling the distribution of Anabaena and Melosira in a stratified river weir pool[END_REF][START_REF] Huisman | Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms[END_REF][START_REF] Peeters | Turbulent mixing and phytoplankton spring bloom development in a deep lake[END_REF]. Turbulence can also affect phytoplankton growth rate, the laminar shear induced by turbulence increasing the nutrient fluxes to cells below the *Correspondence: steph.fraisse@gmail.com Kolmogorov scale (i.e., scale of the smallest vortices that fluid motion supports in the face of viscosity, see Material and methods for calculation; [START_REF] Lazier | Turbulence and the diffusive layers around small organisms[END_REF][START_REF] Kiøboe | Turbulence, phytoplankton cell size, and the structure of pelagic food webs[END_REF][START_REF] Karp-Boss | Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[END_REF]. The resulting increase in nutrient fluxes is mostly significant for large species (> 60 lm; [START_REF] Lazier | Turbulence and the diffusive layers around small organisms[END_REF][START_REF] Karp-Boss | Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[END_REF], as illustrated experimentally by [START_REF] Peters | Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium[END_REF] but may also be significant for smaller species (20 lm) due to the intermittency of turbulence [START_REF] Lagadeuc | Nutrient fluxes toward phytoplankton: Is it useful to consider turbulence intermittency?[END_REF]. Cell organization also matters as filaments experience a greater increase in nutrient fluxes than solitary forms [START_REF] Pahlow | Impact of cell shape and chain formation on nutrient acquisition by marine diatoms[END_REF]). However, turbulence may have the exact opposite effect and reduce the growth rate through loss of flagella (e.g., [START_REF] Thomas | Effects of smallscale turbulence on microalgae[END_REF], mechanical destruction (e.g., [START_REF] Hondzo | Quantified small-scale turbulence inhibits the growth of a green alga[END_REF] or the inhibition of cell division [START_REF] Berdalet | Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii[END_REF][START_REF] Sullivan | Effects of small-scale turbulence on net growth rate and size species of marine dinoflagellates[END_REF]. Hence, turbulence, through both positive and negative effects, plays a key role in structuring the phytoplankton community [START_REF] Estrada | Phytoplankton in a turbulent world[END_REF][START_REF] Smayda | Community assembly in marine phytoplankton: Application of recent models to harmful dinoflagellate blooms[END_REF].

Previous studies of the role of turbulence on phytoplankton have mainly focused on marine species and those on freshwater species were often conducted in lakes [START_REF] Hondzo | Quantified small-scale turbulence inhibits the growth of a green alga[END_REF][START_REF] Hondzo | Coupled effects of small-scale turbulence and phytoplankton biomass in a small stratified lake[END_REF]. For instance, [START_REF] Margalef | Life-forms of phytoplankton as survival alternatives in an unstable environment[END_REF] investigated the functional role of different phytoplankton life-forms and determined which ones were best adapted depending on turbulence. However, large spatio-temporal fluctuations in turbulence can occur in rivers and play a role in shaping the phytoplankton community, especially its vertical distribution [START_REF] Descy | Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium)[END_REF][START_REF] Reynolds | Hydroecology of river plankton: The role of variability in channel flow[END_REF][START_REF] Tavernini | Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy)[END_REF]. Different morphofunctional traits related to sedimentation rate may thus be selected depending on the intensity of turbulence (C ozar and Echevarr ıa 2005;[START_REF] Fraisse | Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasted flow regime[END_REF]). However, variations in turbulence level usually co-occur with other environmental factors (like residence time, temperature, nutrient availability), thus highlighting the need for controlled experimental studies where all these confounding factors can be kept constant and the effects of turbulence isolated.

The aim of this study was to determine experimentally if the lotic phytoplankton community structure under contrasted turbulence regimes could be predicted from the morphofunctional traits. Two levels of turbulence were tested in nutrient replete conditions on a simplified phytoplankton community composed of species displaying different morphofunctional traits related to maximum growth rate (l max ) and sinking velocity. We hypothesized that under low turbulence (LT), morphofunctional traits associated with low sinking velocity would be selected. However, if the phytoplankton community was prevented from sinking under high turbulence (HT), it was expected be structured according to morphofunctional traits related to l max , with leading species displaying higher l max becoming dominant.

Material and methods

Morphofunctional traits of selected species

The phytoplankton community tested was a simplified one, composed of six species typical of riverine environments. These species were chosen according to morphofunctional traits related to different known sinking velocities and also to different values of l max (Table 1).

Two species were flagellated (Nephroselmis olivacea-CCAP1960/4B and Cryptomonas curvata-CCAP979/62) and the four others were organized either in filaments Table 1. Morphofunctional and functional traits values for the different species, where S : V ratio is the surface to volume ratio, MLD is the maximum linear dimension, U is the form coefficient resistance (for elongated form, horizontal, and vertical values, respectively, indicated), q 0 is the density, ESR is the equivalent spherical radius, V st is the theoretical sinking velocity (for elongated form, horizontal, and vertical values are, respectively, indicated), V sm is the measured sinking velocity (under still conditions) and l max is the maximum growth rate (measured under still conditions. Values in brackets are the standard deviation.

Elongated shape

Flattened shape Flagellated cell Due to the size range of phytoplankton species, the surrounding environment is characterized by a low Reynolds number (Re < 0.1) (Naselli-Flores and Barone 2011). Under these viscous conditions, the sinking velocity of inert spherical particles can be estimated from the Stokes equation [START_REF] Clift | Bubbles, Drops, and Particles[END_REF]. However, the selected species were not of spherical shape. Hence, a modified Stokes equation was used suitably adapted to calculate the sinking velocity V st (m s 21 ) of particles displaying complex shapes [START_REF] Jaworski | Variability in sinking rate of the freshwater diatom Asterionella formosa: The influence of colony morphology[END_REF]):

V st 5 2gr 2 ðq 0 2qÞ 9gU ( 1 
)
where g is the gravitational acceleration (9.81 m s 22 ), r (m) the ESR of the particle and q 0 (kg m 23 ) its density (Table 1). q is the medium density (999.5 kg m 23 at 18 C) and g its dynamic viscosity ( 1.002 3 10 23 kg m 21 s 21 at 18 C). / (a dimension-less number) is the form resistance coefficient which is dependent on shape and reflects the factor by which the sinking velocity of the particles differs from that of a sphere of identical volume and density [START_REF] Jaworski | Variability in sinking rate of the freshwater diatom Asterionella formosa: The influence of colony morphology[END_REF][START_REF] Padis Ak | Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: An experimental study[END_REF][START_REF] Walsby | Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning[END_REF].

As phytoplankton species display a wide range of densities, ranging from 1040 up to 1280 kg m 23 for diatoms [START_REF] Reynolds | Ecology of phytoplankton[END_REF]), the sinking velocity was calculated by measuring the density of each species by density gradient centrifugation, as described by [START_REF] Walsby | Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning[END_REF]. Percoll (Sigma) in 10 mL tubes was subjected to ultracentrifugation ( 30,000 3 g for 40 min) to obtain a linear density gradient, ranging from 1000 kg m 23 at the top to 1150 kg m 23 at the bottom of the tube. The phytoplankton suspension was then layered over this gradient and another series of centrifugations was run ( 530 3 g at the middle of the tube for 20 min). The sample migrated from the top to the isodensity layer, forming a green band (for S. pulchellum and P. boryanum) or a light brown band (for A. formosa and A. granulata). The phytoplankton band was then removed with a glass Pasteur pipette and its refractive-index was measured. The density was calculated from the refractive-index/density calibration curve obtained from measurements on a series of 10 dilutions of Percoll. The physical integrity of each species was assessed microscopically after the 530 3 g centrifugation (at 400X magnification) and no cell deterioration was observed.

The form resistance coefficient was derived empirically for each species and set of experimental conditions. For P. boryanum and A. formosa, we used the value inferred by Padis ak et al. (2003), which depends on the number of cells in the colony. For phytoplankton of elongated shape (S. pulchellum and A. granulata), / depends on their orientation in relation to the direction of movement [START_REF] Mcnown | Effects of particle shape on settling velocity at low reynolds numbers[END_REF]:

/5 16 3D ða1bÞ 
(2)

We, therefore, calculated / for vertical and horizontal positions. In this equation, b is a shape factor depending on the sinking orientation (for details, see [START_REF] Walsby | Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning[END_REF]. Two theoretical boundary velocities, corresponding to vertical and horizontal positions, were calculated.

The sinking velocity (V sm ) of each species was measured in still water following [START_REF] Smith | A simple theory of algal deposition[END_REF].

C t 5C 0 ð12 V sm t z Þ (3) 
where C t (cells mL 21 ) is the phytoplankton concentration in the water column at time t (s), C 0 (cells mL 21 ) is the phytoplankton concentration at t 5 0 (uniform with depth), V sm is the sinking velocity (m s 21 ) and z is the height of the Uterm€ ohl chamber. An inverted microscope and Uterm€ ohl device were used to count the live phytoplankton cells appearing at the bottom of the chamber at regular time intervals (five minutes), in a view centered in the middle of the column to minimize wall effects, and the time t x at which C t 5 0 (when no further variation was observed in the number of cells counted at the bottom of the chamber) was estimated. Hence, Eq. 3 becomes:

V sm 5 z t x (4) 
from which we can calculate V sm . Although it cannot be excluded that a thermal convection might have occurred during our measurements, which could have greatly influenced the sinking velocity of each species, we took great care to minimize such a phenomenon inside the chamber. Hence, during determination of the appearance rate, the laboratory temperature was set at the same value used for algal maintenance and for the experiments (i.e., 18 C). Furthermore, we conducted our measures in a small chamber column (height 5 0.0095 m; diameter 5 0.026 m) as the

A C C E P T E D M A N U S C R I P T
likelihood of convection currents occurring is greater in columns with a large height/diameter ratio (> 5) (H€ otzel and Croome 1999). The Uterm€ ohl chamber was kept under the microscope throughout the settling measurements.

The selected species displayed different surface to volume ratios (S : V ratio), calculated following [START_REF] Hillebrand | Biovolume calculation for pelagic and benthic microalgae[END_REF], a trait known to be related to maximum growth rate [START_REF] Banse | Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size: A review[END_REF]. They exhibited a S : V ratio from 0.3 (C. curvata) up to 1.3 (N. olivacea).

Maximum growth rate (l max ) was also determined in triplicate for each species, at constant temperature (18 C), under replete nutrients conditions and at nonlimiting light intensity (30 lmoles m 22 ) under a 14 L : 10 N photoperiod (following recommendations for the Culture Collection of Algae and Protozoa), assessing each culture every two days, and using the exponential growth equation [START_REF] Pirt | Principles of microbe and cell cultivation[END_REF]:

l max 5 lnC 2 2 lnC 1 Dt (5)
where C 1 and C 2 are the cell concentrations (cell mL 21 ) at time t 1 and t 2 , respectively, and Dt is the time interval between t 1 and t 2 .

Experimental device and turbulence calibration

Several devices exist to generate controlled turbulent conditions. Oscillating grid and orbital shaker tables are the most widely used systems, although nonhomogeneous turbulence has been reported with the latter [START_REF] Guadayol | Responses of coastal osmotrophic planktonic communities to simulated events of turbulence and nutrient load throughout a year[END_REF]. A horizontally oscillating grid system was adopted to generate homogeneous, stationary, and isotropic turbulence similarly to the device used by [START_REF] Schapira | Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle[END_REF]. As filamentous species were used in our experiments, such a device avoids any accidental resuspension of filaments stranded in the mesh, unlike vertical grid systems. Turbulence was gener-ated by movement of the grids in three glass chambers constituting three replicates (R1, R2, and R3; Fig. 1). Each chamber with internal length, width and height measuring 0.17 3 0.17 3 0.23 m was filled with 4.9 L of culture medium (height 5 0.17 m) and constituted a chemostat where new medium was added continuously (0.015 L h 21 ) to obtain a dilution rate of 0.07 d 21 . This dilution rate was controlled by a peristaltic pump and corresponded to a high enough residence time (approximately 13 d) to allow the development of all six phytoplankton species (the species with the lowest growth rate doubled its population in less than seven days).The grid was a polycarbonate plate with a mesh size of 4 3 10 22 m. It was placed 5 3 10 23 m above the tank, with 0.165 m immersed, corresponding to a solidity equal to 43% (Fig. 1).

Depending on its oscillating velocity, the grid motion produced different turbulence levels that could be quantified by particle imagery velocimetry (PIV) (Al-Homoud and Hondzo 2007). In each tank, the fluid was seeded with particle tracers (silver-coated hollow glass spheres, 10 lm in diameter) that followed the water movement. The successive positions of particles illuminated by a laser sheet in 0.04 3 0.04 m windows located in the center of the tank, were recorded at 15 Hz for 17 s (256 pairs of images) using a digital camera (Imager pro X2M). The measuring window was fixed and particles displacement was measured and integrated for numerous distances from the grid. Images where the grid was passing in the measuring window were removed for the averaging calculations. The time interval selected between the acquisitions of two images ranged from 4 ms to 10 ms. This lag time was short enough to avoid particles leaving or entering the camera field, but long enough to record particles displacement between two acquisitions. For each pair of images, the mean and root mean square (RMS) Fig. 1. The turbulence generating device is composed of three grids, each fixed on an arm connected to a moving frame. The translation motion of this moving frame is controlled by an electric motor (not shown) and results in horizontal oscillation of the grids. The velocity of grid oscillation depends on the electric voltage intensity supplied to the motor. Hence, the same turbulence intensity is generated in each tank, which includes three replicates. Each tank also constitutes a chemostat, as new medium is constantly supplied through a peristaltic pump. The same volume is also removed (tubes not shown) to keep the total volume constant (4.9 L). A dilution rate of 0.07 per day was applied. The grid is represented at the right of the figure. 1.65 3 10 21 m of it (code a) was under water as it was placed 5 3 10 23 m (code b) above the bottom of the tank, corresponding to a total immersed area immerged equal to 2.64 3 10 22 m 2 (length 5 1.65 3 10 21 m, width 5 1.6 3 10 21 m, code c). Each hole (4 3 10 22 m square) is separated by 1 3 10 22 m from the next one, and from the edge (code d).
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velocities of the particles were calculated using LAVISION software and averaged over the 256 pairs of images. Two sets of measurements with different configurations of the laser and camera positions were conducted to obtain x, y, and z components of particle velocities. The mean particle velocities in x, y, and z were null. We then estimated the turbulent kinetic energy (TKE; m 2 s 22 ; Pope 2003):

TKE5 1 2 ½ðVx RMS Þ 2 1ðVy RMS Þ 2 1ðVz RMS Þ 2 (6)
From TKE, we calculated the turbulent velocity u:

u5 ffiffiffiffiffiffiffiffiffiffiffiffi 2TKE p (7) 
And for each grid oscillation velocity, we calculated a turbulent dissipation rate (E):

e5 Au 3 1 (8)
with u the RMS turbulent velocity, A a constant assumed to be of order 1 [START_REF] Tennekes | A first course in turbulence[END_REF] and l the characteristic size of the largest eddy, commonly assumed to be the mesh size in an oscillating grid system [START_REF] Peters | Turbulence generation and measurement: Application to studies on plankton[END_REF]. Experiments were conducted at two turbulence intensities, low (E 5 7.9 3 10 25 m 2 s 23 ) and high (E 5 7.8 3 10 23 m 2 s 23 ), which are realistic levels when compared to the range of 10 26 m 2 s 23 to 10 23 m 2 s 23 reported for a straight lowland river [START_REF] Sukhodolov | Turbulence structure in a river reach with sand bed[END_REF]). These turbulence intensities correspond to different values of characteristic length scales:

Kolmogorov scale g k 5 ffiffiffiffi ffi t 3 e 4 r (9) 
Batchelor scale g b 5 ffiffiffiffiffiffiffiffiffiffiffi ffi

D 2 : t e 4 r ( 10 
)
where t is the kinematic viscosity of the fluid 1 3 10 210 m 2 s 21 and D is the molecular diffusion of inorganic nutrients such as nitrate or orthophosphate (1 3 10 29 m 2 s 21 ). As previously stated, the Kolmogorov scale is the scale of the smallest vortices due to turbulence before the dissipation of TKE as heat. The Batchelor scale is the scale of the smallest solute concentration gradient that fluid motion will support in the face of molecular diffusion [START_REF] Jumars | Turbulence plankton interactions: A new cartoon[END_REF]). The two turbulence intensities generated in the experiment corresponded to Kolmogorov scales of 334 lm (LT) and 106 lm (HT) and Batchelor scales of 10.6 lm (LT) and 3.3 lm (HT).

Sampling protocol, community structure, and physicochemical analyses

The phytoplankton species were grown in the same nutrient replete medium, which was a mix of diatom medium, bold-basal medium with threefold nitrogen and vitamins, and Jaworski's medium. Each chamber was seeded with the six species at day 0 (T0) and the initial biomass of each one (expressed as biovolume) was estimated from cell counts and measurements. Initial biomasses ranged from 2.4 3 10 4 lm 3 to 7.8 3 10 5 lm 3 for each species and were not evenly distributed. This bias was probably due to the larger species for which it was very difficult to get accurate counts. This resulted in a slightly higher biomass at T0 in LT than in HT although the LT and HT treatments, despite these differences, did not show any significant differences in community structure at T0 (t-test, p > 0.1). A given turbulence level (LT or HT) was then applied and kept constant for 20 d (end of the experiment T 5 20). Light sources (white light, OSRAM Luminlux daylight) were located on the side each chamber. The LT experiment was conducted for only nine days in one replicate (R3) due to contamination by an unknown ciliated protozoan, which was not observed in R1 or R2. Nutrient limitation was prevented by the continuous input of nutrients. Each chamber was sampled seven times during the 20 d, four centimeter below the surface at the center of the tank and analyzed for nutrient and phytoplankton species composition and biomass. The total volume was kept constant by adjusting the inflow after each sampling. The bottom of each tank (0.03 m above the bottom) was also sampled at the end of the experiment (T 5 20). At T20, we also measured light intensity at the top (0.04 m below the surface) and bottom (0.03 m above the bottom) of each tank. Filtered samples (Whatman GF/F) were analyzed by colorimetric methods to determine the concentrations of total dissolved nitrogen (TDN) [START_REF] Barnes | The determination of nitrite[END_REF] and total dissolved phosphorus (TDP) [START_REF] Murphy | A modified simple solution method for the determination of phosphate in natural waters[END_REF]. Unfiltered samples were also taken and analyzed for total nitrogen and total phosphorus by persulfate digestion. All nutrient measurements were performed by automated flow injection analyses (BRAN 1 LUEBBE, auto-analyser III). Phytoplankton samples were fixed with glutaraldehyde as this preserved the flagella (final concentration 2%) for cell counts and size measurements. Algal counts were performed with an inverted microscope and more than 200 cells per species were counted for each sample [START_REF] Lund | The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting[END_REF]. Cell volumes were calculated by measuring at least 20 individual cells of each species in each sample, following [START_REF] Hillebrand | Biovolume calculation for pelagic and benthic microalgae[END_REF]. Potential changes in the size of individual species were also monitored.

Statistical analyses

Temporal differences in phytoplankton community structure between the two modalities were assessed by calculating the Hellinger distance between each pair of samples. The Hellinger distance was chosen because it is not influenced by total biomass differences [START_REF] Legendre | Numerical Ecology[END_REF]. A distance matrix was obtained to which was applied the Ward clustering method to obtain a dendrogram quantifying differences between samples according to their phytoplankton structure. This statistical analysis was performed using the R [START_REF] Oksanen | Vegan: community ecology package[END_REF]). Cells, filaments, and colony size were compared between modalities for each species by applying a Kruskal Wallis test followed by a post hoc Nemenyi test [START_REF] Legendre | Numerical Ecology[END_REF].

Results

Theoretical and measured sinking velocities

Depending on the three morphological traits measured (size, shape, and density), the four nonmotile species were expected to exhibit different sinking velocities in still water (Table 1). According to the modified Stokes equation, species displaying elongated shapes and the largest size expressed as ESR were expected to sink faster (at least five times faster) than flattened colonies. The measured sinking velocities (V sm ) were in accordance with this pattern except for A. formosa which sank four times faster than predicted. As a result, the two species displaying the highest measured sinking velocities were S. pulchellum (large size, elongated shape, low density) and A. formosa (intermediate size, flattened colony, high density).

Surface to volume ratio and growth rate

According to their respective S : V ratios, species were expected to display different l max : with species showing higher S : V ratios growing more rapidly. The maximum growth rates measured were close to our expectations except for N. olivacea which, despite having the highest S : V ratio exhibited one of the lowest l max (0.17 d 21 ). On the contrary, the growth rate of A. formosa and A. granulata, which had similar S : V ratios to N. olivacea, attained 0.5 d 21 (Table 1).

Nutrient and light conditions during the turbulence experiment

Nutrient concentrations were nonlimiting for phytoplankton growth during the entire experiment because of the constant input of new medium into the chemostats. Under LT, TDN, and TDP concentrations increased, respectively, from 81.4 mg L 21 to 101.9 mg L 21 and from 53.5 mg L 21 to 58.1 mg L 21 at the end of the experiment. TDN and TDP followed the same trend during the HT experiment, increasing from 131.1 mg L 21 to 148.6 mg L 21 and from 53.9 mg L 21 to 60.6 mg L 21 , respectively. With respect to the growth rates of the selected phytoplankton species, the dilution rate in the chemostat was low enough to allow the establishment of stable populations of each species. At the beginning of both turbulence conditions (LT and HT), the light intensity at 0.04 m below the surface was 30 lmoles m 22 s 21 . At T20, whereas the same light intensity was measured (30 lmoles m 22 s 21 ) in all replicates (under LT and HT) near the surface, the light intensity near the bottom (0.14 m below surface) under LT was higher (9.8 lmoles m 22 s 21 ) than that measured at the bottom under HT (5.8 lmoles m 22 s 21 ).

Phytoplankton biomass dynamics

In both experiments, the total phytoplankton biomass increased from T0 to T20 but differences were apparent between LT and HT (Fig. 2). At T20 in both experiments, the phytoplankton biomass was almost six fold higher in HT (57 mm 3 L 21 ) than in LT (95 mm 3 L 21 ). This resulted in a lower light intensity reaching the bottom of the tank in HT. The phytoplankton biomass in bottom samples was two or three fold higher (R1 and R2, respectively) than in the surface samples at T20 under LT whereas the biomass was similar in top and bottom samples under HT (Fig. 2).

Phytoplankton community structure dynamics

The community structure dynamics from T0 to T20 differed between LT and HT (Fig. 3). Differences in community structure between LT and HT occurred at T3 and persisted until the end of the experiments. Indeed, the hierarchical clusterization based on the Hellinger distance showed that the LT and HT replicates sampled after T3 were grouped in distinct clusters. In addition, under HT the bottom samples and surface samples were similar at T20 (Hellinger distance < 1), whereas this was not the case under LT. Indeed, one of the highest distances was obtained at T20 for the bottom samples and surface samples under LT (Fig. 3).

Under LT, S. pulchellum which had the highest sinking velocity (V sm 5 14.4 lm s 21 ) rapidly disappeared from the water column (Fig. 3). No filaments of this species were observed in the surface samples at T9, even though it had accounted for 33% to 50% of the total biomass at the beginning of the experiment. A. formosa also sank faster than the other species. Although it was still present in the surface samples, its biomass was two times lower than its initial biomass, representing less than 0.4% of the total biomass at the end of the experiment (compared with 3% to 5% at the beginning) even though it had one of the highest maximum growth rates (l max 5 0.42 d 21 ). Although C. curvata was flagellated, and therefore, expected to regulate its vertical position, it was one of the rarest species, accounting for less than 5% of the total biomass at the end of the experiment (vs. 30-35% at T0).

Sinking species such as A. granulata and P. boryanum, which had lower sinking velocities, differed in their growth rate (0.5 d 21 and 0.18 d 21 ). They, therefore, accounted for different final proportions of the total biomass, i.e., 25% (8% at T0) for the former and 12% (14% at T0) for the latter. N. olivacea, the small flagellated cell, dominated the community and accounted for more than 50% of the biomass at the end of the experiment vs. 2% at the beginning. Under LT, four of the six species (A. granulata, C. curvata, N. olivacea, and P. boryanum) increased in biomass.

Under HT, the larger flagellate C. curvata completely disappeared three days after T0 (Fig. 3). In contrast, even though it accounted for only a small proportion of the total biomass ( 1% vs. between 14% and 30% at T0), S. pulchellum was still present in the water column after 3 weeks in all replicates. A. formosa, which represented a very small proportion of the total biomass under LT, accounted for 5% of the total biomass under HT at T20 (7-14% at T0). P. boryanum reached a similar level accounting for 4-5% of the total biomass at T20. The phytoplankton community was still dominated by N. olivacea, but also by A. granulata which attained a similar biomass to that of the small flagellate. Both species accounted for nearly 90% of the total phytoplankton biomass at the end of the experiment. Under HT, the biomass of all species (except C. curvata) was increased.

Size plasticity

We also investigated whether the different species displayed different values for a given morphofunctional trait under LT and HT. A. granulata exhibited variations in filament size between the two turbulence regimes (Fig. 4). Although the filament sizes under the initial conditions were similar, with a mean value of 79 6 36 lm under LT and 84 6 37 lm under HT, a significant increase (p < 0.05; Nemenyi test) was observed under HT where the mean (151 6 76 lm) was almost two fold higher than under LT (85 6 38 lm).

Discussion

Morphology as a proxy for sinking velocity and maximum growth rate

Increasing interest is being shown in the use of morphofunctional traits to explain phytoplankton community structure as these are directly or indirectly related to growth and loss processes. In this study, we attempted to explain phytoplankton community evolution in response to turbulence by focusing on five morphological traits (motility, size, shape, density, and S : V ratio) known to be related to two functional traits (sinking velocity and maximum growth rate).

The first step was to test if these morphological traits accurately reflected the sinking velocity and maximum growth rate and could alone be sufficient to predict these functional traits. Sinking velocity calculations based on the modified Stokes equation (V st ) appeared to be in good agreement with the measured values (V sm ) for three species (S. pulchellum, P. boryanum and A. granulata). Interestingly, Fig. 3. Hierarchical clustering (Ward method) on the distance matrix (Hellinger distance) of HT and LT replicates based on their species composition, where HT20_2 is the sample of HT, at day 20 from replicate 2. The composition of phytoplankton community (% of biomass) under LT (E5 7.9 3 10 25 m 2 s 23 ) and HT (E 5 7.8 3 10 23 m 2 s 23 ) was also represented for T0 5 day 0, T9 5 day 9, and T20 5 day 20.

A C C E P T E D M A N U S C R I P T
V sm for filaments was closer to the V st calculated for the horizontal position than the V st calculated for the vertical position, thus indicating that filaments are more likely to sink horizontally than sink vertically, which would corroborate the predictions made by [START_REF] Holland | Sinking rates of phytoplankton filaments oriented at different angles: Theory and physical models[END_REF]. However, some differences emerged for more complex forms like A. formosa which sank four times faster than predicted. This deviation from our expectations seemed to arise from the form coefficient value. We used a form coefficient resistance calculated by Padis ak et al. ( 2003) from measurements on large size phytoplankton Polyvinyl chloride (PVC) models sinking in glycerol medium. However, the large form coefficient they found (/ 5 5 when colonies contained more than six cells, as in this study) may have been overestimated. Although glycerol was used to increase the viscosity, these authors did not manage to get Re < 0.1 for some species [START_REF] Holland | Sinking rates of phytoplankton filaments oriented at different angles: Theory and physical models[END_REF] including A. formosa which resulted in an underestimation of sinking velocities and thus an overestimation of form resistance. Based on our results, the form coefficient should be close to 1, reflecting a minor effect of shape on A. formosa sinking velocity. Hence, size, shape, and density can be used to predict sinking velocity except for one species. Indeed, although form resistance has been well characterized for cylinders and prolate spheroids [START_REF] Holland | Sinking rates of phytoplankton filaments oriented at different angles: Theory and physical models[END_REF], understanding of more complex shapes is still scanty. Direct observations on modeled phytoplankton, like those conducted by [START_REF] Padis Ak | Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: An experimental study[END_REF] should provide significant insights. However, achieving a Reynolds number < 0.1 remains challenging. Smaller particles miming phytoplankton shapes and made with three-dimensional printers could provide a good alternative. This would allow the creation of small, (but large enough to be captured with a camera) accurate complex shapes for which a low Re be easier to attain.

We also investigated the S : V ratio to predict which species would have the highest maximum growth rate. S : V appeared to provide a good proxy for maximum growth rate, but failed to fully capture the variation between phytoplankton species, especially in the case of diatoms. This limitation had also been highlighted by [START_REF] Edwards | Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton[END_REF] based on a literature analysis of functional traits of 64 marine species. One possible explanation is that diatoms often display vacuoles [START_REF] Raven | The evolution of silicification in diatoms: Inescapable sinking and sinking as escape?[END_REF], which reduce the volume of metabolically active material, thereby increasing the effective S/V ratio, and thus the maximum growth rate [START_REF] Paasche | On the relationship between primary production and standing stock of phytoplankton[END_REF].

Turbulence effect on phytoplankton biomass and community structure

The two levels of turbulence intensity tested induced differences in phytoplankton biomass and community structure. The differences in community structure were independent of the initial biomass. For instance, S. pulchellum sustained a steady population under HT although its initial biomass was lower than the initial biomass under LT where the population declined. Under LT, phytoplankton biomass differed between the top (0.04 m below the surface) and bottom of the tank, although it was homogeneous throughout the water column under HT. Furthermore, the community structure in bottom and surface samples was similar under HT (distance < 1, Fig. 3), which would corroborate phytoplankton mixing under HT. Conversely and interestingly, the community structure at the bottom under LT was similar at T20 to that of the surface sample at T0. As there was no sedimentation constraint at the bottom (which constituted a solid boundary), the community at the bottom did not change over time in comparison to the surface sample where sedimentation occurred.

Although the same species were dominant under LT and HT at T20, differences in community structure were observed in response to the degree of turbulence which could be explained by morphofunctional traits. Species of the largest size (S. pulchellum) or highest density (A. formosa) disappeared from the water column under LT. For some species, the high density was counteracted by the form coefficient resistance (A. granulata) which enabled such species to maintain a steady population. As previously stated, A. formosa did not fall into this category because its form resistance coefficient had been overestimated. Under LT, the presence of flagella or a flattened shape combined with small size and low density also constituted an advantage by reducing loss through sedimentation. In contrast, and as expected, the fast-sinking species maintained stable populations over time in the water column and attained a higher biomass under HT. This suggests that the highest turbulence level maintained these species in the water column, despite their high intrinsic sinking velocity, which is in accordance with many theoretical [START_REF] Huisman | Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms[END_REF]) and field studies [START_REF] Bormans | Modelling the spatial and temporal variability of diatoms in the River Murray[END_REF][START_REF] Peeters | Turbulent mixing and phytoplankton spring bloom development in a deep lake[END_REF][START_REF] Fraisse | Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasted flow regime[END_REF].

Besides its effect on vertical distribution, turbulence is also known to act on phytoplankton growth rate, but contrasting effects have been shown (e.g., [START_REF] Berdalet | Species-specific physiological response of dinoflagellates to quantified smallscale turbulence[END_REF]) and no clear pattern has been put forward. Negative effects of turbulence on dinoflagellates have been well documented [START_REF] Berdalet | Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii[END_REF][START_REF] Sullivan | Effects of small-scale turbulence on net growth rate and size species of marine dinoflagellates[END_REF] even if such effects also occur across taxa, affecting Chlorophyta [START_REF] Hondzo | Quantified small-scale turbulence inhibits the growth of a green alga[END_REF], Cyanobacteria [START_REF] Regel | The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain[END_REF]) Cyanobacteria and Diatoms [START_REF] Wang | Can hydrodynamics change phosphorus strategies of diatoms? Nutrient levels and diatom blooms in lotic and lentic ecosystems[END_REF]). In our case, a negative effect was observed on the large flagellated species C. curvata (Cryptophyceae). However, our microscopic observations did not suggest that any mechanical destruction had occurred, such as flagella loss, which had been by [START_REF] Thomas | Effects of smallscale turbulence on microalgae[END_REF] on dinoflagellates. This indicates that turbulence can negatively affect phytoplankton in several ways and few are well-understood.

Turbulence could also have a positive effect on growth rate, depending on cell size, by increasing the nutrient concentrations in the vicinity of the cell [START_REF] Karp-Boss | Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[END_REF][START_REF] Peters | Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium[END_REF]. Indeed, growth rate depends on two phenomena: nutrient delivery to the cell (Q) and transport across the membrane (V). Turbulence leads to an increased growth rate by increasing Q. However, when nutrients are nonlimiting, Q overcomes V so that V becomes the process limiting nutrient uptake [START_REF] Karp-Boss | Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[END_REF], which was the case in this study. Nevertheless, even if the underlying mechanisms have not yet been identified, increases in phytoplankton growth rate have already been reported under replete nutrient conditions, in response to increased turbulence [START_REF] Iversen | Effects of small-scale turbulence on lower trophic levels under different nutrient conditions[END_REF][START_REF] Wang | Can hydrodynamics change phosphorus strategies of diatoms? Nutrient levels and diatom blooms in lotic and lentic ecosystems[END_REF]. The small flagellated species N. olivacea was dominant under both turbulence levels in our experiment and displayed a much higher growth rate under HT than under LT and under LT than in still water. The hypothesis of an increase in nutrient fluxes toward the cell, due to the laminar flow induced by turbulence, does not hold as the nutrient concentrations were never limiting. N. olivacea is a flagellated cell smaller than the Batchelor scale (at least under LT) and it could be that it forages patches of higher nutrient concentrations. But once again, this hypothesis does not hold as it grew under replete nutrient conditions. The observed growth rate enhancement might be due to the different light intensities experienced by N. olivaecea [START_REF] Litchman | Growth rates of phytoplankton under fluctuating light[END_REF] resulting from its movement through the water column by turbulent diffusion. The slightly higher light gradient under HT (surface: 35 lmoles m 22 s 21 ; bottom: 5.8 lmoles m 22 s 21 ) than under LT (surface: 35 lmoles m 22 s 21 ; bottom: 9.8 lmoles m 22 s 21 ) could explain the difference in growth rates between the two modalities.

In this experiment, to dominate the phytoplankton community, a species had to display morphofunctional traits related to a low sinking velocity under LT, or a high growth rate under HT. One surprising result was that the same two species dominated the community under both conditions. It was not unexpected that N. olivacea, which possesses flagella and exhibited the highest growth rate, dominated the community under both turbulence levels. A. granulata also displayed a high growth rate compared to the other species which would explain its dominance under HT. However, its codominance with N. olivacea under LT (even if less marked) was unexpected as its morphofunctional traits, as compared to those of the other species, were related to a high sinking velocity. The reason could be linked to the smaller size of the filament under LT than under HT.

Turbulence and morphological plasticity

Indeed, during the experiment, the A. granulata filament doubled its initial size 9 d after the beginning of HT whereas the cell size remained similar. This result is surprising as it was expected that the filament size under HT would be smaller than under LT. Indeed, the lower Kolomogorov scale (defining a lower eddy motion) produced under HT was expected to result in mechanical destruction, [START_REF] Thomas | Effects of smallscale turbulence on microalgae[END_REF]) and therefore, in a smaller filament size. A similar increase in filament size in response to an increased turbulence level has already reported [START_REF] Arin | Combined effects of nutrients and smallscale turbulence in a microcosm experiment. I. Dynamics and size distribution of osmotrophic plankton[END_REF], but no explanation has been proposed. Our results suggest that it could be linked to the sedimentation resistance. Indeed, according to the Stokes equation, the sinking velocity should increase as the filament size increases. A. granulata would attain a greater size under HT as the higher turbulent diffusion would be able to keep the longer filaments in suspension. This suggests a potential trait adjustment resulting in an increase in fitness of this species.

The interaction of filamentous species with turbulent flow is a complex phenomenon. Indeed, the motion of a chain is dependent on its flexibility and orientation [START_REF] Musielak | Nutrient transport and acquisition by diatom chains in a moving fluid[END_REF] and differences in flexibility occur between filamentous diatom species and are related to the connection between cells [START_REF] Young | Quantifying diatom aspirations: Mechanical properties of chain-forming species[END_REF]. This feature requires more 

Extrapolation to natural systems

By applying the turbulence levels characteristic of lotic systems [START_REF] Sukhodolov | Turbulence structure in a river reach with sand bed[END_REF], we were able to show how turbulence shaped the community in terms of morphofunctional traits. However, caution is required when extrapolating these results to natural systems, especially deep stratified systems with a turbulent surface mixed layer overlying a less turbulent bottom layer. Indeed in these cases, phytoplankton leaving the base of the surface mixing layer cannot be resuspended [START_REF] O'brien | Simple mixing criteria for the growth of negatively buoyant phytoplankton[END_REF]. As our device consisted of small tanks with a solid bottom, potential resuspension from the bottom upward under HT cannot be excluded, even if the mean vertical velocity of water was null (measured through PIV under LT and HT). Resuspension was less likely to occur under LT, as the biomass of all species was greater at the bottom of the tank. Hence, although our results cannot be transferred stricto sensu to natural systems, certain analogies can be put forward. Indeed, the HT condition reflected shallow systems where light is not limited even at the bottom, where turbulence is high and where the phytoplankton community can be influenced by resuspension, as is the case for some rivers [START_REF] Fraisse | Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasted flow regime[END_REF]. In contrast, the LT condition is representative of deeper systems where reduced mixing leads to the dominance of species displaying low sinking velocities [START_REF] Winder | Lake warming favours small-sized planktonic diatom species[END_REF].

Furthermore, it should be kept in mind when extending these results to ecosystems like lakes or oceans, that the turbulence levels used in this study were rather high and characteristic of rivers. Turbulence levels in lentic or marine systems are generally even lower than the lowest condition used in our study (i.e., 7.9 3 10 25 m 2 s 23 ) with 10 28 m 2 s 23 to 10 26 m 2 s 23 as typical values for the upper mixed layer in oceans [START_REF] Guadayol | Analysis of wind events in a coastal area: A tool for assessing turbulence variability for studies on plankton[END_REF]) and with 10 211 m 2 s 23 to 10 25 m 2 s 23 in lakes [START_REF] Hondzo | Coupled effects of small-scale turbulence and phytoplankton biomass in a small stratified lake[END_REF]. Hence, lentic and marine species should to exhibit morphofunctional traits related to lower sinking velocities, which is generally the case as marine phytoplankton are usually small or display cytoplasmic extensions that increase their form coefficient resistance. Furthermore, it has been stated that turbulence changes could explain the observed phytoplankton succession between diatoms and dinoflagellates based on their morphofunctional traits in coastal ecosystems [START_REF] Margalef | Life-forms of phytoplankton as survival alternatives in an unstable environment[END_REF]. Our study corroborates these results and one of the principal assumptions that turbulence is a major force shaping phytoplankton cells through evolution. 
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 2 Fig. 2. Total phytoplankton biomass at the end of the experiment (T20) in top (full bars) and bottom samples (hatched bars) under LT (E 5 7.9 3 10 25 m 2 s 23 ) and HT (E 5 7.8 3 10 23 m 2 s 23 ).
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 4 Fig. 4. Filament size of A. granulata under HT in three replicates (HTR1, HTR2, HTR3) and under LT (LTR1, LTR2, LTR3) at T0 and T20. * indicates significant differences (p < 0.05; Nemenyi test).

  understand the evolution of sinking velocity in different turbulent intensities.
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