HAL
open science

One pot $\operatorname{Pd}(\mathrm{OAc}) 2$-catalysed 2,5-diarylation of imidazoles derivatives

Abdelilah Takfaoui, Liqin Zhao, Rachid Touzani, Jean-François Soulé, Pierre

H. Dixneuf, Henri Doucet

To cite this version:

Abdelilah Takfaoui, Liqin Zhao, Rachid Touzani, Jean-François Soulé, Pierre H. Dixneuf, et al.. One pot $\mathrm{Pd}(\mathrm{OAc}) 2$-catalysed 2,5-diarylation of imidazoles derivatives. Tetrahedron, 2014, 70 (44), pp.83168323. 10.1016/j.tet.2014.09.012 . hal-01114981

HAL Id: hal-01114981
https://univ-rennes.hal.science/hal-01114981

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

One $\operatorname{Pot} \operatorname{Pd}(\mathrm{OAc})_{2}$-Catalysed 2,5-Diarylation of
 Imidazoles Derivatives

Leave this area blank for abstract info.

Abdelilah Takfaoui, Liqin Zhao, Rachid Touzani, ${ }^{*}$ Jean-Francois Soulé, Pierre H. Dixneuf, and Henri Doucet, ${ }^{*}$

- No phosphine ligand on Pd	- Easily available substrates
- No co-catalyst	- Wide functionnal group
- Good yields	tolerance on ArBr
- Oxidant free conditions	

One Pot $\operatorname{Pd}(\mathrm{OAc})_{2}$-Catalysed 2,5-Diarylation of Imidazoles Derivatives

Abdelilah Takfaoui, ${ }^{\text {a,b }}$ Liqin Zhao, ${ }^{\text {a }}$ Rachid Touzani, ${ }^{\text {b,c* }}$ Jean-François Soulé, ${ }^{\text {a }}$ Pierre H. Dixneuf, ${ }^{\text {a }}$ and Henri Doucet, ${ }^{\text {, }{ }^{*}}$
${ }^{a}$ Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes
"Organométalliques: Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France.
${ }^{b}$ Laboratoire de Chimie Appliquée et Environnement (LCAE-URAC18), Faculté des Sciences, Université Mohamed Premier, Oujda, Maroc.
${ }^{c}$ Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, BP: 300, Selouane 62700, Nador, Maroc

Abstract

The regioselective 2- or 5-arylation of imidazole derivatives with aryl halides using palladium catalysts has been described in recent years; whereas the arylation at both C 2 and C 5 carbons of imidazoles in high yields has not been performed. We found conditions allowing the access to these 2,5 -diarylimidazoles via a one pot reaction. The choice of the base was found to be crucial to obtain these products in high yields. Using CsOAc as the base, DMA as the solvent and only $2 \mathrm{~mol} \%$ of the phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ the catalyst, the target 2,5-diarylated imidazoles were obtained in moderate to good yields with a wide variety of aryl bromides. Substituents such as fluoro, trifluoromethyl, formyl, acetyl, propionyl, ester, nitro or nitrile on the aryl bromide were tolerated. Sterically congested aryl bromides or heteroaryl bromides can also be employed. Surprisingly the nature of the substituent at position 1 on the imidazole derivative exhibits a huge influence on the reaction.

1. Introduction

Aryl-substituted imidazoles including 2,5diarylimidazoles are important structures due to their biological properties. For example, Fenflumizol and Trifenagrel are platelet aggregation inhibitors (Fig 1).

Fenflumizol

Trifenagrel

Figure 1. Examples of bioactive 2,5-diarylimidazoles
Suzuki, Stille or Negishi palladium-catalysed crosscoupling reactions are among the most efficient methods to prepare 2,5 -diarylimidazoles. ${ }^{1}$ However, they require the previous preparation of an organometallic derivative. As early as 1990, Ohta et al. reported that the direct arylation of heteroaromatics with aryl halides via a $\mathrm{C}-\mathrm{H}$ bond activation proceed in moderate to good yields using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst. ${ }^{2}$ Since these exciting results, the Pd-catalysed direct arylation of heteroaryls using aryl halides as coupling partners has proved to be a very powerful method for a simpler and greener access to a wide variety of arylated heterocycles, as the major byproducts of the reaction are a base associated to HX, instead of metallic salts produced under more classical
cross-coupling procedures. ${ }^{3}$ Moreover, the method avoids the preliminary preparation of an organometallic derivative. However, so far, the direct arylation of imidazoles has attracted less attention than the arylation of thiophenes or thiazoles, and in most cases monoarylations have been described. ${ }^{4-6}$ The first example of direct 5 -arylation of imidazoles using chloropyrazines as coupling partners and $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst was reported by Ohta and co-workers in $1992 .{ }^{4}$ Since these results, several groups described conditions allowing the intermolecular Pd-catalysed direct 2- or 5arylation of imidazoles. ${ }^{5,6}$

So far, to our knowledge, only a few examples of Pdcatalysed arylations at both C2 and C5 carbons of imidazoles in one pot have been described. ${ }^{7-9}$ In 1998, Miura et al. reported the regioselectivity of the arylation of 1 -methylimidazole using various reaction conditions. ${ }^{8 a}$ In the presence of bromobenzene, they observed the formation of a mixture of 5-arylation and 2,5-diarylation products in a $54: 24$ ratio (Scheme 1, top). They also reported that the addition of 2 equiv. of CuI to the reaction mixture, using iodobenzene as the coupling partner, drastically modify the selectivity of the reaction, as a mixture of C 2 and $\mathrm{C} 2, \mathrm{C} 5$ arylation products in a 37:40 ratio was obtained. It should be noted that CuI itself promotes the C 2 arylation of imidazole. Bellina, Rossi and co-workers also studied the influence of several parameters for the arylation of imidazoles, and succeeded in a few cases to obtain directly the 2,5-diarylated

[^0]imidazoles although in moderate yields. ${ }^{8 b}$ A few 2,5diarylimidazoles have also been prepared by Shibahara, Murai et al. using a 1,10 -phenanthroline containing Pd catalyst and aryl iodides as coupling partners. ${ }^{9}$ However, so far sequential Pd-catalysed direct arylations remains the most reliable method to prepare 2,5-diarylimidazoles in good yields. ${ }^{10}$

Scheme 1. Reported examples of Pd-catalysed one pot access to 2,5 -diarylimidazoles

Therefore, the discovery of effective conditions, for the direct coupling of aryl halides at both C2 and C5 positions of imidazole derivatives in one pot, would constitute a
considerable advantage allowing a simpler access to 2,5diarylimidazoles.
Here, we wish to (i) report that $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst without any additional ligand promotes the direct access to 2,5 diarylimidazoles in one pot, (ii) report on the reaction scope using a large set of electronically and sterically diverse aryl bromides, (iii) reveal the influence of the imidazole N-substituent.

2. Results and discussion

We have recently reported the direct 5 -arylation of a range of imidazole derivatives using a phosphine-free palladium catalyst. ${ }^{11}$ Based on these results, for this study DMA was initially chosen as the solvent and KOAc as the base. The reactions were performed at $150{ }^{\circ} \mathrm{C}$ under argon in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst. Using only $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, the reaction of 3 equiv. of 4 bromochlorobenzene with 1 equiv. of 1 -methylimidazole affords the mono- and di-arylation products 1a:1b in a 73:27 ratio and the target product $\mathbf{1 b}$ was isolated in a low yield of 18% (Table 1, entry 1). Then, we examined the influence of the amount of catalyst and base for this reaction (Scheme 2, Table 1, entries 2-5). A larger excess (4 equiv.) of KOAc base affords the products $\mathbf{1 a}: \mathbf{1 b}$ in a $68: 32$ ratio. In the presence of 1 or $2 \mathrm{~mol}-\% \mathrm{Pd}(\mathrm{OAc})_{2}$ instead of $0.5 \mathrm{~mol} \%$, an almost equimolar mixture of 1a:1b was obtained. A longer reaction time (48 h instead on 20 h) led to products $\mathbf{1 a}: \mathbf{1 b}$ in 23:77 ratio and $\mathbf{1 b}$ was isolated in 62% yield (Table 1, entry 5). An important effect of the acetate anion was observed. The use of CsOAc instead of KOAc in the presence of $2 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ gave 1a:1b in 12:88 ratio and $\mathbf{1 b}$ in 70% yield; whereas, NaOAc (2 equiv.) led to products 1a:1b in 89:11 ratio and allowed to isolate $\mathbf{1 a}$ in 64% yield (Table 1, entries 8 and 10). A lower reaction temperature $\left(120^{\circ} \mathrm{C}\right)$ affords products 1a:1b in 92:8 ratio (Table 1, entry 9).

Scheme 2.
Table 1. Influence of the reaction conditions for palladium catalysed arylation of 1-methylimidazole with 4bromochlorobenzene (Scheme 2)

Entry	Catalyst (mol\%)	Base (equiv.)	Time (h)	Ratio 1a:1b	Yield in 1b (\%)
1	0.5	KOAc (3)	20	73:27	18
2	0.5	KOAc (4)	20	68:32	
3	1	KOAc (4)	20	52:48	
4	2	KOAc (4)	20	52:48	
5	1	KOAc (4)	48	23:77	62
6	1	KOAc (3) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3)	20	44:56	
7	1	CsOAc (4)	48	15:85	
8	2	CsOAc (4)	48	12:88	70
9	2	CsOAc (4)	48	$92: 8^{\text {a }}$	
10	0.5	NaOAc (2)	20	89:11 ${ }^{\text {b }}$	64

[^1]Then, using the most effective reaction conditions (DMA, CsOAc, $\left.\mathrm{Pd}(\mathrm{OAc})_{2}, 150^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ we explored the scope of this reaction using para-, meta- and ortho-substituted aryl bromides and also some heteroaryl bromides employing 1-methylimidazole as the coupling partner (Scheme 3, Table 2).
First, we investigated the reaction of 1-methylimidazole with several para-substituted aryl bromides (Scheme 3, Table 2). In most cases, the reaction proceeds very smoothly in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst. With electron deficient aryl bromides such as 4 bromoacetophenone, 4-bromopropiophenone, ethyl 4bromopropionate, 4-bromobenzaldehyde or 4bromobenzonitrile, yields of $55-65 \%$ in 2-6 were obtained (Table 2, entries 1-5). We also obtained satisfactory results using 4-fluorobromobenzene, bromobenzene or even the electron-rich 4-bromotoluene and 4-bromoanisole to afford $\mathbf{8 - 1 1}$ in $78-81 \%$ yields (Table 1, entries 7 and 10). On the other hand, the use of 4-bromonitrobenzene affords the diarylated imidazole 7 in only 32% yield due to the formation of a large amount of mono-arylated 1-methylimidazole (Table 2, entry 6). The general pattern revealed by these results shows that the electron-withdrawing substituents are slightly less favourable to obtaining the desired 2,5-diarylimidazoles. The presence of an electron-deficient aryl group at C5 of imidazole appears to disfavour the second arylation at carbon C2.

The influence of the presence of meta-substituents on the aryl bromide is also reported in the Table 2. As expected, relatively similar yields than in the presence of
the para-substituted substrates were obtained for the reactions performed with 3-bromobenzonitrile, 3(trifluoromethyl)bromobenzene or 3-bromotoluene using again $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst (Table 2, entries 12-14). 3-Bromonitrobenzene, affords $\mathbf{1 2}$ in higher yield than the reaction performed with 4-bromonitrobenzene (Table 2, entry 11). Surprisingly, with 3,5bis(trifluoromethyl)bromobenzene, a mixture of di- and tri-arylation products 16a and 16b was obtained in a 57:43 ratio (Table 2, entry 15).

Then, we examined the reactivity of 1-methylimidazole with a set of ortho-substituted aryl bromides. Orthosubstituents on the aryl bromides generally have an important effect on the reaction rates of palladiumcatalysed reactions due to their steric and/or coordination properties. The expected 2,5-diaryl-1-methylimidazoles 17-19 were obtained in moderate to good yields. In some cases, similar yields than in the presence of the para-substituted aryl bromides were obtained. For example, the coupling of 2-bromobenzonitrile or 2 fluorobromobenzene proceeds nicely to afford 17 and $\mathbf{1 8}$ in 78% and 59% yields, respectively (Table 4, entries 16 and 17). Heteroaryl bromide, 3-bromopyridine was also found to be a suitable reactant, as $\mathbf{2 0}$ was obtained in 72% yield (Table 2 , entry 19).

Scheme 3.

Table 2. Palladium catalysed diarylation of 1-methylimidazole with aryl bromides (Scheme 3)
Entry

4

7

8

9

10

11

12

13

14

15

16

17

18

19

Tetrahedron

Conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.02 equiv.), ArBr (3 equiv.), 1-methylimidazole (1 equiv.), CsOAc (4 equiv.), DMA, $150{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$, isolated yields. ${ }^{\text {a }}$ The formation of a large amount of tri-arylation product $\mathbf{1 6 b}$ was observed (ratio 16a:16b $57: 43$).

With 1-n-butylimidazole, using similar reaction conditions, low yields of the desired 2,5-diarylation products 21b-23b were obtained (Scheme 4). Surprisingly, with this imidazole derivative the formation of very large amounts of mono-arylation products was observed. With 4bromochlorobenzene or 4-bromotoluene, mono-arylation products 21a and 23a and di-arylation products 21b and 23b were formed in 71:29 and 69:31 ratios, respectively. These results reveal that, unexpectedly the presence of a n butyl substituent instead of a methyl substituent at position 1 of an imidazole dramatically decreases its reactivity for the second arylation at C 2 .

*: 2,4,5-Triarylation product 22 c also obtained in 43% selectivity and 33% yield

Scheme 4.

In order to gain more insight into the lower reactivity of 1-n-butylimidazole vs 1 -methylimidazole, a competition reaction to probe the substituent preference of this catalyst system for such couplings was performed (Scheme 5). From an equimolar mixture of 1-methylimidazole and 1-nbutylimidazole using 6 equiv. of 4-bromochlorobenzene as the coupling partner, in the presence of $2 \mathrm{~mol}-\% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, the formation of a mixture of $\mathbf{1 a}: \mathbf{1 b}: \mathbf{2 1 a}: \mathbf{2 1 b}$ in a 27:27:43:3 ratio was observed. This result confirms that a n-butyl substituent at position 1 of imidazole is strongly deactivating for the second arylation.

Scheme 5.
The influence of an aryl group at position 1 on imidazole was also investigated (Scheme 6). This copper and phosphine-free procedure was found to afford selectively in all cases the mono C5-arylated products 24a-27a. The presence of a para-methoxy or a para-formyl substituent on the 1 -arylimidazole has a minor influence on the selectivity and yield of the reaction. Again, the presence of trifluoromethyl substituents on bromobenzene favours the formation of 2,5-diarylated products 25b and 27b although in very low yields.

We then turned our attention to the reactivity of 1 benzylimidazole for the Pd-catalysed 2,5-diarylations, as the deprotection of imidazoles bearing benzyl substituents is easier than the corresponding 1 -methylimidazoles (Scheme 7). We selected our previous best reaction conditions, i.e, $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in the presence of 4 equiv. of CsOAc as base in DMA at $150^{\circ} \mathrm{C}$. In the presence of 4-bromobenzonitrile, only the formation of the mono-5-arylated imidazole 28a, without cleavage of the benzyl group, was observed. On the other hand, the reaction with 3,5-bis(trifluoromethyl)bromobenzene affords a mixture of the mono- di- and tri-arylation products 29a,

29b and 29c in a 15:40:45 ratio. From 4chlorobromobenzene and 4-bromotoluene, mixtures of mono- and di-arylation products were obtained. These selectivities are very similar to those observed in the course of the coupling with 1-n-butylimidazole (Scheme 2). Therefore, for the access to N-benzyl substituted 2,5diarylimizazoles, the sequential arylation procedure reported by Bellina, Rossi et al. using $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ associated to 2 equiv. of CuI for the second arylation at C 2 should be preferred. ${ }^{10 a}$

Scheme 7.
In conclusion, we report here for the first time a simple one-pot catalytic method leading to the direct synthesis of 2,5 -diarylimidazoles in good yields. We have established that, a phosphine-free and copper-free procedure using $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, CsOAc as base in the presence of aryl bromides as coupling partners promotes the 2,5-diarylation of 1-methylimidazole. A wide range of functions such as fluoro, acetyl, formyl, propionyl, carboxylate, nitrile or nitro on the aryl bromide are tolerated. Some sterically hindered aryl bromides and heteroaromatic substrate 3bromopyridines have also been employed successfully. The substituents at position 1 on imidazole were found to exhibit a very important influence on the products distribution. It should be noted that, despite their interest, most of the products prepared by this method are new, indicating a relatively limited access to such compounds using more traditional cross-coupling procedures. This procedure employs a commercially available, phosphinefree and air stable palladium source. Therefore, there is no need to eliminate phosphine derivatives at the end of the reaction. Moreover, a very wide variety of aryl bromides are commercially available. These are practical advantages of this reaction.

3. Experimental

General Remarks: All reactions were run under argon in Schlenk tubes using vacuum lines. DMA analytical grade was not distilled before use. CsOAc (99\%) was used. Commercial aryl bromides and imidazoles were used without purification. The reactions were followed by GC and NMR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded with a Bruker 400 MHz spectrometer in CDCl_{3} solutions. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left(7.25\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 for ${ }^{13} \mathrm{C}$ NMR). Flash chromatography was performed on silica gel (230-400 mesh).

Acknowledgments

We thank the Centre National de la Recherche Scientifique, "Rennes Metropole", the Université Mohamed Premier and "Faculté des Sciences d'Oujda" for providing financial support.

Experimental section

General procedure

In a typical experiment, the aryl bromide (3 mmol), imidazole derivative (1 mmol), $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, were dissolved in DMA (5 mL) under an argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 48 h . After evaporation of the solvent, the product was purified by silica gel column chromatography.

5-(4-Chlorophenyl)-1-methylimidazole (1a) ${ }^{8 \mathrm{c}}$

From 4-bromochlorobenzene ($0.230 \mathrm{~g}, 1.2 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{NaOAc}(0.164 \mathrm{~g}, 2$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, product 1a was obtained in $64 \%(0.123 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$.

2,5-Bis(4-chlorophenyl)-1-methylimidazole (1b)

From 4-bromochlorobenzene ($0.574 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product $\mathbf{1 b}$ was obtained in $70 \%(0.212 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ $(\mathrm{s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $148.2,135.3,134.6,134.4,130.1,129.9,129.2,129.0$, 128.5, 128.2, 127.1, 33.9. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ (303.19): Calcd C 63.38, H 3.99, N 9.24; Found C 63.55, H 4.09, N 9.14.

1,1'-(4,4'-(1-methylimidazole-2,5-diyl)bis(4,1-

 phenylene))diethanone (2) ${ }^{7 \mathrm{~b}}$From 4-bromoacetophenone ($0.597 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 2 was obtained in $59 \%(0.187 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ $(\mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$.

1,1'-(4,4'-(1-Methylimidazole-2,5-diyl)bis(4,1-phenylene))dipropan-1-one (3)

From 4-bromopropiophenone ($0.639 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 3 was obtained in $65 \%(0.225 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ $(\mathrm{s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.15(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1,200.0$, $149.0,136.9,136.2,135.3,134.1,133.9,128.9,128.6$, $128.4,128.3,34.4,32.0,31.9,8.3,8.2$. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ (346.42): Calcd C 76.28, H 6.40, N 8.09; Found C 76.08, H 6.21, N 7.88 .

Diethyl 4,4'-(1-methylimidazole-2,5-diyl)dibenzoate (4)

From ethyl 4-bromobenzoate ($0.687 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 4 was obtained in $55 \%(0.208 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{DMSO}_{6}\right) \delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $(\mathrm{s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO} d_{6}$) $\delta 165.9$, $165.8,149.0,135.3,135.2,134.6,130.1,130.0,129.8$, $129.5,129.2,129.1,128.5,61.4,61.3,34.8,14.6$. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ (378.42): Calcd C 69.83, H 5.86, N 7.40; Found C 69.71, H 5.70, N 7.55.

4,4'-(1-Methylimidazole-2,5-diyl)dibenzaldehyde (5)

From 4-bromobenzaldehyde ($0.555 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 5 was obtained in $62 \%(0.180 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.6,191.4,149.3,136.2,135.9$, 135.6, 131.5, 130.3, 130.0, 129.8, 129.2, 128.7, 127.5, 34.4. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (290.32): Calcd C 74.47, H 4.86, N 9.65; Found C 74.55, H 4.99, N 9.47.

4,4'-(1-Methylimidazole-2,5-diyl)dibenzonitrile (6)

From 4-bromobenzonitrile (0.546 g, 3 mmol), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 6 was obtained in $60 \%(0.170 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.6,134.9,134.1,133.9$, $132.8,132.6,129.5,129.3,128.8,118.4,118.3,112.9$, 112.0, 34.4. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4}$ (284.31): Calcd C 76.04, H 4.25, N 19.71; Found C 76.18, H 4.08, N 19.99.

1-Methyl-2,5-bis(4-nitrophenyl)-imidazole (7)

From 4-bromonitrobenzene ($0.606 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 7 was obtained in $32 \%(0.104 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{DMSO}_{6}\right) \delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ $(\mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta$ 148.7, 147.6, 147.0, 136.8, 136.4, 135.1, 130.9, 130.0, 129.3, 124.6, 124.3, 35.0. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ (324.29): Calcd C 59.26, H 3.73, N 17.28; Found C 59.04, H 3.49, N 17.38.

2,5-Bis(4-fluorophenyl)-1-methylimidazole (8)

From 4-bromofluorobenzene ($0.525 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 8 was obtained in $78 \%(0.210 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.00$ $(\mathrm{m}, 5 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 148.4$, $134.4,130.7(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 127.4$, $126.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=$ 17.3 Hz), $115.7(\mathrm{~d}, ~ J=17.3 \mathrm{~Hz})$, 33.6. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2}$ (270.28): Calcd C 71.10, H 4.48, N 10.36; Found C 71.02, H 4.34, N 10.17.

1-Methyl-2,5-diphenylimidazole (9) ${ }^{9 b}$

From 4-bromobenzene (0.471 g, 3 mmol$)$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 9 was obtained in $80 \%(0.187 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.14$ $(\mathrm{s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$.

1-Methyl-2,5-dip-tolylimidazole (10)

From 4-bromotoluene $(0.513 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product $\mathbf{1 0}$ was obtained in $81 \%(0.212 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $148.9,139.0,138.0,135.3,129.5,129.3,128.8,128.7$, 127.4, 127.1, 126.2, 33.8, 21.4, 21.3. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$ (262.35): Calcd C 82.41, H 6.92, N 10.68; Found C 82.50, H 6.98, N 10.89 .

2,5-Bis(4-methoxyphenyl)-1-methylimidazole (11) ${ }^{8 \mathrm{c}}$

From 4-bromoanisole $(0.561 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product $\mathbf{1 1}$ was obtained in $78 \%(0.229 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H})$.

1-Methyl-2,5-bis(3-nitrophenyl)-imidazole (12)

From 3-bromonitrobenzene $(0.606 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and CsOAc ($1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 12 was obtained in $62 \%(0.201 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.15(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.6, 148.4, 147.9, 134.7, $134.3,134.0,131.9,131.3,130.1,130.0,129.4,123.8$, 123.4, 123.1, 123.0, 34.0. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ (324.29): Calcd C 59.26, H 3.73, N 17.28; Found C 59.40, H 3.61, N 17.10.

3,3'-(1-Methylimidazole-2,5-diyl)dibenzonitrile (13)

From 3-bromobenzonitrile $(0.546 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 13 was obtained in $60 \%(0.170 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.65$ $(\mathrm{m}, 4 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.8,134.1,133.4,133.2,133.1,132.4,132.3,132.1$, $130.2,130.1,130.0,118.0,117.9,113.6,113.3,34.2$. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4}$ (284.31): Calcd C 76.04, H 4.25, N 19.71; Found C 76.29, H 4.22, N 19.50.

1-Methyl-2,5-bis(3-(trifluoromethyl)phenyl)-imidazole (14)

From 3-bromobenzotrifluoride ($0.675 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 14 was obtained in $59 \%(0.218 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.50$ $(\mathrm{m}, 6 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.5,134.5,131.9,131.8,131.5(\mathrm{q}, J=20.4$ Hz), $131.4,131.1(\mathrm{q}, ~ J=20.4 \mathrm{~Hz}), 130.7,129.4,129.2$, $128.6,125.7$, (q, $J=3.7 \mathrm{~Hz}), 125.6(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.3$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 122.5,33.8$. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$ (370.29): Calcd C 58.38, H 3.27, N 7.57; Found C 58.47, H 3.45, N 7.42.

1-Methyl-2,5-dim-tolylimidazole (15)

From 3-bromotoluene $(0.513 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product $\mathbf{1 5}$ was obtained in $79 \%(0.207 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 5 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,149.1,138.5,138.4,135.5,130.3$, $130.0,129.7,129.5,128.8,128.7,128.4,126.7,125.8$,
125.7, 33.8, 21.5, 21.4. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$ (262.35): Calcd C 82.41, H 6.92, N 10.68; Found C 82.27, H 6.90, N 10.51 .

2,5-bis(3,5-bis(trifluoromethyl)phenyl)-1methylimidazole (16a)

From 3,5-bis(trifluoromethyl)bromobenzene (0.879 g, 3 mmol), 1-methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and CsOAc $(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 16a was obtained in $48 \%(0.243 \mathrm{~g})$ yield. The 2,4,5-triarylated imidazole 16b was also isolated in 30% $(0.215 \mathrm{~g})$ yield. 16a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13$ $(\mathrm{s}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,133.8,132.7$ $(\mathrm{q}, J=26.2 \mathrm{~Hz}), 132.1(\mathrm{q}, J=26.2 \mathrm{~Hz}), 131.5,129.6$, 128.5, 128.4, 124.3, 122.8 (quint., $J=3.6 \mathrm{~Hz}$), 122.1 (quint., $J=3.6 \mathrm{~Hz}$), 121.6, 118.9, 33.9. $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{~N}_{2}$ (506.29): Calcd C 47.45, H 1.99, N 5.53; Found C 47.40, H 2.09, N 5.36. 16b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18$ (s, $2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 4 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7,136.4$, $134.0,132.3(\mathrm{q}, J=34.8 \mathrm{~Hz}), 131.5(\mathrm{q}, J=34.8 \mathrm{~Hz}), 130.9$ (q, $J=34.8 \mathrm{~Hz}$), 130.7, 130.6, 129.6 (m), 128.6, $128.0(\mathrm{~m})$, $122.4(\mathrm{~m}), 122.2(\mathrm{~m}), 120.0(\mathrm{~m}), 121.7(\mathrm{q}, J=270.0 \mathrm{~Hz})$, $121.6(\mathrm{q}, J=270.0 \mathrm{~Hz}), 121.5(\mathrm{q}, J=270.0 \mathrm{~Hz}), 32.6$. $\mathrm{C}_{28} \mathrm{H}_{12} \mathrm{~F}_{18} \mathrm{~N}_{2}$ (718.38): Calcd C 46.81, H 1.68, N 3.90; Found C 46.99, H 1.88, N 3.99.

2,2'-(1-Methylimidazole-2,5-diyl)dibenzonitrile (17)

From 2-bromobenzonitrile $(0.546 \mathrm{~g}, 3 \mathrm{mmol})$, 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 17 was obtained in $78 \%(0.221 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 3 \mathrm{H})$, 7.58-7.45 (m, 3H), $7.38(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,134.1,133.7,133.6,133.2$, 133.0, 132.9, 131.7, 131.6, 131.3, 130.5, 129.7, 129.0, 117.9, 117.8, 113.1, 33.3. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4}$ (284.31): Calcd C 76.04, H 4.25, N 19.71; Found C 76.09, H 4.31, N 19.57.

2,5-Bis(2-fluorophenyl)-1-methylimidazole (18)

From 2-bromofluorobenzene ($0.525 \mathrm{~g}, 3 \mathrm{mmol}$), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product $\mathbf{1 8}$ was obtained in $59 \%(0.159 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.08(\mathrm{~m}, 5 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 160.0 (dd, $J=249.2,7.4 \mathrm{~Hz}), 144.7,132.4(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $131.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}), 129.3,124.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $119.1(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=$ 13.2 Hz), $115.9(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 32.4 . \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2}$ (270.28): Calcd C 71.10, H 4.48, N 10.36; Found C 71.27, H 4.55, N 10.51 .

1-Methyl-2,5-dio-tolylimidazole (19)

From 2-bromotoluene ($0.513 \mathrm{~g}, \quad 3 \mathrm{mmol})$, 1methylimidazole ($0.082 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 19 was obtained in $54 \%(0.141 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.38-7.15 (m, 8H), $7.03(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.7, 138.2, 132.4, 131.3, 130.6, 130.5, 130.4, 130.3, 129.7, 129.4, 129.0, 126.7, 125.9, 125.8, 31.5, 20.0, 19.7. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$ (262.35): Calcd C 82.41, H 6.92, N 10.68 ; Found C 82.50, H 6.98, N 10.40.

3,3'-(1-Methylimidazole-2,5-diyl)dipyridine (20)

From 3-bromopyridine (0.474 g, 3 mmol), 1methylimidazole $(0.082 \mathrm{~g}, 1 \mathrm{mmol})$ and CsOAc ($1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 20 was obtained in $72 \%(0.170 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.66$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,149.4$, $149.3,149.2,147.1,136.3,135.9,132.6,128.9,126.6$, 125.9, 123.7, 123.6, 33.7. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4}$ (236.27): Calcd C 71.17, H 5.12, N 23.71; Found C 71.08, H 5.20, N 23.49.

1-n-Butyl-2,5-bis(4-chlorophenyl)-imidazole (21b)

From 4-bromochlorobenzene ($0.574 \mathrm{~g}, 3 \mathrm{mmol}$), 1butylimidazole $(0.124 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 21b was obtained in $24 \%(0.083 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $(\mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.90-$ $0.83(\mathrm{~m}, 2 \mathrm{H}), 0.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,135.0,134.2,133.6,130.2,130.1$, 129.9, 129.1, 128.9, 128.5, 44.9, 32.4, 19.3, 13.3. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ (345.27): Calcd C 66.09, H 5.25, N 8.11; Found C 66.14, H 5.08, N 7.89. The mono-arylation product 21a was also isolated in 45% yield $(0.105 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.53 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.16 (sext., $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.3,134.0,131.7,130.0,129.0,128.7,128.3$, 45.1, 32.9, 19.6, 13.4.

2,5-Bis(3,5-bis(trifluoromethyl)phenyl)-1butylimidazole (22b)

From 3,5-bis(trifluoromethyl)bromobenzene (0.879 g, 3 mmol), 1-butylimidazole ($0.124 \mathrm{~g}, 1 \mathrm{mmol}$) and CsOAc $(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 22b was obtained in 35% (0.192 g) yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}$, $1 \mathrm{H}), 7.84(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.60(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,133.0-131.5$
(m), 130.4, 128.8, 128.6, 127.1, 124.4, $122.8(\mathrm{q}, \mathrm{J}=J=3.7$ $\mathrm{Hz}), 122.1(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 121.6,118.9,45.4,32.6,19.2$, 13.0. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{~N}_{2}$ (548.37): Calcd C 50.38, H 2.94, N 5.11; Found C 50.19, H 2.78, N 4.83. The 2,4,5-triarylation product 22 c was also isolated in 33% yield (0.251 g): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~s}$, $1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $3.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.90(\mathrm{~m}$, $2 \mathrm{H}), 0.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

1-n-Butyl-2,5-dip-tolylimidazole (23b)

From 4-bromotoluene ($0.513 \mathrm{~g}, 3 \mathrm{mmol}$), 1-butylimidazole $(0.124 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 23b was obtained in $25 \%(0.076 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H})$, $1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,138.5,137.8$, 134.3, 129.4, 129.2, 128.8, 128.7, 128.0, 127.7, 44.7, 32.3, 21.4, 21.3, 19.3, 13.3. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2}$ (304.43): Calcd C 82.85, H 7.95, N 9.20; Found C 82.67, H 8.14, N 9.02. The mono-arylation product 23a was also isolated in 31% yield $(0.066 \mathrm{~g}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.20-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.8$, $132.9,129.4,128.7,127.9,127.3,45.0,32.9,21.2,19.7$, 13.5 .

5-(4-Chlorophenyl)-1-(4-methoxyphenyl)-imidazole (24a)

From 4-bromochlorobenzene ($0.574 \mathrm{~g}, 3 \mathrm{mmol}$), 1-(4-methoxyphenyl)-imidazole ($0.174 \mathrm{~g}, 1 \mathrm{mmol}$) and CsOAc $(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 25 a was obtained in $62 \%(0.176 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13 (s, 1H), 7.02 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,139.4,133.4,132.1,129.3,129.2$, $128.8,128.7,128.0,127.0,114.7$, 55.5. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$ (284.74): Calcd C 67.49 , H 4.60, N 9.84; Found C 67.28 , H 4.37, N 10.08.

5-(3,5-Bis(trifluoromethyl)phenyl)-1-(4-methoxyphenyl)-imidazole (25a)

From 3,5-bis(trifluoromethyl)bromobenzene (0.879 g, 3 mmol), 1-(4-methoxyphenyl)-imidazole ($0.174 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02$ mmol), product 25a was obtained in $75 \%(0.289 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 160.0,140.4,131.7$ (q, $J=34.0 \mathrm{~Hz}), 130.4,130.1,128.4$, 127.3 (m), 127.1, 123.0 ($\mathrm{q}, J=272.7 \mathrm{~Hz}$), 120.6 (m), 115.0,
55.6. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}$ (386.29): Calcd C 55.97, H 3.13, N 7.25; Found C 55.79, H 3.20, N 7.41. The di-arylation product $\mathbf{2 5 b}$ was also isolated in low yield: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.50(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.

4-(5-(4-Chlorophenyl)-imidazol-1-yl)benzaldehyde (26a)

From 4-bromochlorobenzene ($0.574 \mathrm{~g}, 3 \mathrm{mmol}$), 4-(1-imidazol-1-yl)benzaldehyde ($0.172 \mathrm{~g}, 1 \mathrm{mmol}$) and CsOAc $(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 26a was obtained in $53 \%(0.149 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.7,141.1,135.6,134.0,131.0,130.0$, 129.4, 129.0, 127.4, 125.7. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$ (282.72): Calcd C 67.97, H 3.92, N 9.91; Found C 67.75, H 3.97, N 9.72.

4-(5-(3,5-Bis(trifluoromethyl)phenyl)-imidazol-1-
 yl)benzaldehyde (27a)

From 3,5-bis(trifluoromethyl)bromobenzene (0.879 g, 3 mmol), 4-(1-imidazol-1-yl)benzaldehyde ($0.172 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02$ mmol), product 27 a was obtained in $52 \%(0.200 \mathrm{~g})$ yield. Trace of diarylation product were observed by GC/MS analysis of the crude mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.70$ $(\mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,140.4,139.9,136.1$, $132.2(\mathrm{q}, J=34.0 \mathrm{~Hz}), 131.4,131.2,131.1,127.7(\mathrm{~m})$, 126.0, 122.4 (q, $J=272.7 \mathrm{~Hz}$), 121.3 (m). $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}$ (384.28): Calcd C 56.26, H 2.62, N 7.29; Found C 56.41, H 2.47, N 7.48 .

4-(1-Benzylimidazol-5-yl)benzonitrile (28a)

From 4-bromobenzonitrile (0.546 g, 3 mmol), 1benzylimidazole $(0.158 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 28a was obtained in $41 \%(0.106 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ 8.4 Hz, 2H), $5.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $140.2,136.1,134.3,132.5,131.7,130.0,129.1,128.8$, 128.3, 126.4, 118.5, 111.5, 49.1. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$ (259.31): Calcd C 78.74, H 5.05, N 16.20; Found C 78.40, H 4.99, N 15.91.

1-Benzyl-2,5-bis(3,5-bis(trifluoromethyl)phenyl)imidazole (29b)

From 3,5-bis(trifluoromethyl)bromobenzene (0.879 g, 3 mmol), 1-benzylimidazole ($0.158 \mathrm{~g}, 1 \mathrm{mmol}$) and CsOAc $(1.303 \mathrm{~g}, 4 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 29b was obtained in $32 \%(0.186 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}$,
$1 \mathrm{H}), 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7,135.8,133.5,132.4(\mathrm{q}, J=34.0 \mathrm{~Hz}), 132.3(\mathrm{q}, J=$ $34.0 \mathrm{~Hz}), 132.2,131.6,130.4,129.4,128.7$ (m), 128.5, $125.4,122.9(\mathrm{q}, J=272.7 \mathrm{~Hz}), 122.8(\mathrm{~m}), 122.7(\mathrm{q}, J=$ 272.7 Hz), $122.0(\mathrm{~m}), 49.3 . \mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{~N}_{2}$ (582.38): Calcd C 53.62, H 2.42, N 4.81; Found C 53.60, H 2.54, N 4.88. The 2,4,5-tri-arylation product 30c was also isolated in 34% yield $(0.269 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}$, $2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $7.59(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.736 .81(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.9$, $137.7,135.2,134.9,133.1(\mathrm{q}, J=34.0 \mathrm{~Hz}), 132.5(\mathrm{q}, J=$ $34.0 \mathrm{~Hz}), 131.1,131.7,131.6,130.8(\mathrm{~m}), 129.4,129.0(\mathrm{~m})$, $128.7,126.5(\mathrm{~m}), 125.6,123.3(\mathrm{~m}), 122.9(\mathrm{q}, J=272.7 \mathrm{~Hz})$, $122.7(\mathrm{q}, J=272.7 \mathrm{~Hz}), 122.5(\mathrm{q}, J=272.7 \mathrm{~Hz}), 120.9(\mathrm{~m})$, 49.4

1-Benzyl-5-(4-chlorophenyl)-imidazole (30a) ${ }^{10 a}$

From 4-bromochlorobenzene ($0.574 \mathrm{~g}, 3 \mathrm{mmol})$, 1benzylimidazole $(0.158 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 30a was obtained in $44 \%(0.118 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,136.5,134.2$, $132.3,130.1,129.0,128.9,128.6,128.2,128.1,126.5,48.8$. The di-arylation product 30b was also isolated: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$.

1-Benzyl-5-p-tolylimidazole (31a) ${ }^{10 a}$

From 4-bromotoluene $(0.513 \mathrm{~g}, \quad 3 \mathrm{mmol})$, 1benzylimidazole $(0.158 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CsOAc}(1.303 \mathrm{~g}, 4$ $\mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, product 31a was obtained in $31 \%(0.077 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 4 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4,138.0,136.9$, $133.5,129.4,128.9,128.8,128.0,127.9,126.8,126.7,48.7$, 21.2. The di-arylation product $\mathbf{3 1 b}$ was also isolated: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-$ $7.00(\mathrm{~m}, 10 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.26$ $(\mathrm{s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.7, 138.0, 137.9, 134.9, 129.3, 129.2, 128.9, 128.7, $128.6,128.2,127.9,127.3,125.8,48.4,21.3,21.2$.

References

1. (a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry, Pergamon: Amsterdam, 2000; (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283-3307.
2. Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1990, 31, 1951-1958.
3. For reviews on Pd-catalysed $\mathrm{C}-\mathrm{H}$ functionalisations: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174-238; (b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200-205; (c) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949-957; (d) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269-10310; (e) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949-957; (f) Ackermann, L.; Vincente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792-9826; (g) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2, 2040; (h) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller M. Angew. Chem. Int. Ed. 2010, 49, 7316-7319; (i) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236-10254; (j) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960-9009; (k) Wencel-Delord, J.; Glorius, F. Nature Chem. 2013, 5, 369-375; (1) Kuzhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci. Technol. 2013, 3, 562-571; (m) Yuan, K.; Doucet H. ChemCatChem 2013, 5, 3495-3496; (n) Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C. Adv. Synth. Catal. 2014, 356, 17-117; (o) He, M.; Soulé, J. F.; Doucet, H. ChemCatChem 2014, 6, 1824-1859.
4. Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Miyafuji, A.; Kunoh, J.; Honma, R. Akita, Y.; Ohta, A. Heterocycles 1992, 33, 257-272.
5. For examples of intermolecular direct 5-arylation of imidazole derivatives: (a) Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett. 2000, 2, 3111-3113; (b) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. J. Org. Chem. 2005, 70, 3997-4005; (c) Toure, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979-1982; (d) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449-1451; (e) Liégaut, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826-1834; (f) Skogh, A.; Fransson, R.; Skoeld, C.; Larhed, M.; Sandstroem, A. J. Org. Chem. 2013, 78, 12251-12256; (g) Bellina, F.; Lessi, M.; Manzini C. Eur. J. Org. Chem. 2013, 5621-5630.
6. For selected examples of direct 2-arylation of imidazole derivatives: (a) Gracias, V.; Gasiecki, A. F.; Pagano, T. G.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8873-8876; (b) Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379-1382; (c) Cerna, I.; Pohl, R.; Klepetarova, B.; Hocek, M. Org. Lett. 2006, 8, 5389-5392; (d) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970-1980; (e) Bellina, F.; Cauteruccio, S.; Rossi, R. J. Org. Chem. 2007, 72, 8543-8546; (f) Majumdar, K. C.; Debnath, P.; Taher, A.; Pal, A. K. Can. J. Chem. 2008, 86, 325-332; (g) Sahnoun, S.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2008, 49, 7279-7283; (h) Lee, H. S.; Kim, S. H.; Gowrisankar, S.; Kim, J. N. Tetrahedron 2008, 64, 7183-7190; (i) Storr, T. E.; Firth, A. G.; Wilson, K.; Darley, K.; Baumann, C. G.; Fairlamb, I. J. S. Tetrahedron 2008, 64, 6125-6137; (k) Zhao, D.; Wang, W.; Lian, S.; Yang, F.; Lan, J.; You, J. Chem. Eur. J. 2009, 15, 1337-1340.
7. For examples of Pd-catalysed intermolecular direct 5arylations of imidazole derivatives with formation of 2,5diarylated imidazole in low yield: (a) Arai, N.; Takahashi, M.; Mitani, M.; Mori, A. Synlett 2006, 3170-3172; (b) Kumar, P. V.; Lin, W.-S.; Shen, J.-S.; Nandi, D.; Lee, H. M. Organometallics 2011, 30, 5160-5169.
8. For Pd-catalysed direct 2,5-diarylations of imidazoles in the presence of CuI: (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467473; (b) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. Eur. J. Org. Chem. 2006, 693-703; (c) Bellina, F.; Cauteruccio, S.; Di Flore, A.; Rossi, R. Eur. J. Org. Chem. 2008, 5436-5445.
9. For Pd-catalysed direct 2,5-diarylations of imidazoles: (a) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471-2473; (b) Shibahara, F.; Yamaguchi, E.; Murai, T. J. Org. Chem. 2011, 76, 2680-2693.
10. For sequential direct 2,5-diarylation of imidazoles: (a) Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Marchetti, C.; Rossi, R. Tetrahedron 2008, 64, 6060-6072; (b) Joo, J. M.; Toure, B. B.; Sames, D. J. Org. Chem. 2010, 75, 4911-4920; (c) Shibahara, F.; Yamauchi, T.; Yamaguchi, E.; Murai, T. J. Org. Chem. 2012, 77, 8815-8820.
11. Roger, J.; Doucet H. Tetrahedron 2009, 65, 9772-9781.

Keywords: palladiun, catalysis, C-H bond activation, imidazoles, direct arylation, aryl halides

[^0]: * Corresponding author. Tel.: 00-33-2-23-23-63-84; fax: 00-33-2-23-23-69-39; e-mail: henri.doucet@univ-rennes1.fr

[^1]: Conditions: $\mathrm{Pd}(\mathrm{OAc})_{2} 0.5-2 \mathrm{~mol} \%$, 4-bromochlorobenzene (3 equiv.), 1-methylimidazole (1 equiv.), DMA, $150{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$, isolated yields. ${ }^{\mathrm{a}} 120^{\circ} \mathrm{C} .{ }^{\mathrm{b}} 4-$ Bromochlorobenzene (1.2 equiv.), 1-methylimidazole (1 equiv.), yield in $\mathbf{1 a}$.

