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SUPPORTING INFORMATION AVAILABLE: Primers used for site-directed 

mutagenesis are listed in Tables TS1 and TS2. Fifteen electropherograms obtained for 

GalGal-pNP synthesis study of the best variant (N334T) are presented in Figures S1 to S15. 

Kinetic behaviors of mutants W336F and C526A are presented in Figure S16. Kinetic 
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behaviors of mutants W411F and D367N are presented in Figure S17. (Supplementary Data).  
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ABSTRACT : A large number of retaining glycosidases catalyze both hydrolysis and 

transglycosylation reactions. In order to use them as catalysts for oligosaccharide synthesis, 

the balance between these two competing reactions has to be shifted towards 

transglycosylation. We previously designed a semi-rational approach to convert the Thermus 

thermophilus β-glycosidase into transglycosidases by mutating highly conserved residues 

located around the -1 subsite. In an attempt to verify that this strategy could be a generic 

approach to turn glycosidases into transglycosidases, Geobacillus stearothermophilus α-

galactosidase (AgaB) was selected in order to obtain α-transgalactosidases. This is of 

particular interest as, to date, there are no efficient α-galactosynthases, despite the 

considerable importance of α-galactooligosaccharides. Thus, by site-directed mutagenesis on 

14 AgaB residues, 26 single mutants and 22 double mutants were created and screened, of 

which 11 single mutants and 6 double mutants exhibited improved synthetic activity, 

producing 4-nitrophenyl α-D-galactopyranosyl-(1,6)-α-D-galactopyranoside (GalGal-pNP) in 

26 to 57% yields against only 22% when native AgaB was used. It is interesting to note that 

the best variant was obtained by mutating a second-shell residue, with no direct interaction 

with the substrate or a catalytic amino acid. As this approach has proved to be efficient with 

both α- and β-glycosidases, it is a promising route to convert retaining glycosidases into 

transglycosidases. 
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INTRODUCTION  

Carbohydrates play major roles in most biological processes such as inflammation 

reactions, cell death, cellular interactions, stabilization of proteins, adhesion of pathogenic 

microorganisms and binding of toxins (Hart and Copeland 2010; Lichtenstein and Rabinovich 

2013; Ghazarian, Idoni, and Oppenheimer 2011). In particular, most naturally-occurring 

human antibodies recognize a carbohydrate, the α-gal epitope (Macher and Galili 2008), and 

α-galactosyl residues are present in glycan antigens targeted by carbohydrate vaccines against 

various pathogens such as Neisseria meningitidis, Shigella dysenteriae and Leishmania spp. 

(Astronomo and Burton 2010). Furthermore, α-1,6 linked galactooligosaccharides have been 

recognized for their prebiotic properties (Andersen et al. 2013; Cervera-Tison et al. 2012; 

Hachem et al. 2012; Nakai et al. 2010; Wang et al. 2014). However, their use is hindered by 

their poor availability: unlike for proteins and nucleic acids, there is no general synthetic route 

for oligosaccharides and, despite the considerable development of efficient methods in this 

field (Wang et al. 2007; Zhu and Schmidt 2009), the assembly of oligosaccharides remains a 

substantial challenge. Consequently, alternative synthetic strategies have been explored, 

particularly those based on enzymatic processes.  

The enzymatic synthesis of glycosidic bonds can be performed by glycosyltransferases or 

transglycosidases. The former can catalyze the formation of glycosidic bonds with both high 

yield and selectivity, but their use is limited in the large-scale production of oligosaccharides 

by the difficulty in accessing activated sugar donors (sugar nucleotides for Leloir-type 

transferases or phosphate sugars for non-Leloir types) (Lairson et al. 2008), even though a 

recent approach seems promising (Gantt et al. 2013; Zhang et al. 2006). As an alternative, 

engineered retaining glycosidases have provided an efficient approach for the synthesis of 
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oligosaccharides. A first methodology was based on the substitution of the catalytic 

nucleophile by a neutral amino acid and the use of activated donors with an anomeric 

configuration opposite to that of the original substrate (such as α-glycosyl fluorides), which 

yielded new enzymes called glycosynthases (Wang et al. 1994; Mackenzie et al. 1998; Malet 

and Planas 1998; Cobucci-Ponzano et al. 2012). However, although these glycosynthases 

have been very efficient for the synthesis of β-glycosidic bonds, the results are disappointing 

when they are applied to α-galactosidases, despite recent advances (Cobucci-Ponzano et al. 

2010). A second methodology based on the Hehre-resynthesis hydrolysis properties of 

inverting glycosidases (Hehre et al. 1979) has been proposed. Mutating residues involved in 

the hydrolysis reaction but not in the Hehre-resynthesis reaction yield variants that efficiently 

catalyze the synthesis β-linkages (Honda and Kitaoka 2006; Honda et al. 2008). This 

methodology was also extended to the synthesis of α-linkages (Wada et al. 2008), but with 

less efficiency.  

As an alternative, natural α-transglucosidases, such as amylosucrase and dextransucrase, 

have been identified in CAZy (Cantarel et al. 2009) families GH13 and GH70 that can 

efficiently catalyze the formation of α-glucosidic bonds using sucrose as a natural activated 

donor (Irague et al. 2011; Champion et al. 2009; Pizzut-Serin et al. 2005; Plou, Segura, and 

Ballesteros 2007). These examples of natural transglycosidases suggested that directed 

evolution of glycosidases into transglycosidases could be possible and this strategy was 

validated in our laboratory on both α- and β-glycosidases (Feng et al. 2005; Osanjo et al. 

2007; Koné et al. 2009). Although molecular modeling and structural analysis were 

tentatively applied to explain why these evolved mutants present improved transglycosidase 

activities (Teze et al. 2014; Osanjo et al. 2007; Feng et al. 2005; Teze et al. 2013b), the 

molecular events leading to an improved transglycosylation over hydrolysis ratio have not yet 

been determined precisely, even for natural transglycosidases such as cyclodextrin 
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glycosyltransferases (Leemhuis et al. 2002; Kelly et al. 2008). However, the data led us to 

propose the working hypothesis that mutating conserved residues within the donor subsite of 

Thermus thermophilus β-glycosidase would enable the creation of transglycosidases and 

indeed four new β-transglycosidases were obtained (Teze et al. 2014).  

Therefore, the aim of this study was to investigate whether this approach could also 

enable the rapid creation of efficient α-transgalactosidases. AgaB was chosen as a model 

system as this enzyme, which belongs to the CAZy family 36 (Lombard et al. 2014), 

subgroup I (Fredslund et al. 2011; Hachem et al. 2012), has shown interesting 

transgalactosylation properties. It was shown to catalyze the synthesis of 4-nitrophenyl α-D-

galactopyranosyl-(1,6)-α-D-galactopyranoside (GalGal-pNP) with yields up to 53% when 

high substrate concentration were used (100 mM) (Spangenberg et al. 2000). Higher yields of 

this disaccharide (74% with 40 mM of substrate) have been obtained with the α-galactosidase 

from Aspergillus nidulans, which belongs to the same subgroup and shares 39% identity with 

AgaB (Nakai et al. 2010). We also previously showed that the regioselectivity of the enzyme 

could be modulated by mutagenesis (Dion et al. 2001a, b). In addition, its crystallographic 

structure has recently been published (Merceron et al. 2012). Recently, the first reported α-

galactosynthase was created from a GH36 enzyme, the Thermotoga maritima α-galactosidase 

(TmαGal, subgroup III) (Cobucci-Ponzano et al. 2010) and moderate improvement of the 

transglycosylation catalyzed by the same enzyme has been reported (Bobrov et al. 2013). 

Interestingly, the GH36 family also contains pure transgalactosidases, such as stachyose and 

verbascose synthases, which are important for carbon storage in seeds (Peterbaueret al. 2002a, 

b; Peterbauer et al. 2003). However, these plant enzymes, which belong to the GH36 

subgroup II (Fredslund et al. 2011), are difficult to produce and their structure is not known. 

Their sequences present less than 15% identity with AgaB, preventing reliable sequence 

alignments, not to mention homology modeling. Nevertheless, their existence suggests that 
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glycoside hydrolases from this family could be evolved to pure transglycosidases, with little 

or no hydrolysis activity, while keeping their original double-displacement mechanism.  

The present work describes a semi-rational approach to convert the Geobacillus 

stearothermophilus α-galactosidase (AgaB) into transglycosidases by mutating highly 

conserved residues located around the -1 donor subsite. An initial Ala scanning allowed 

identifying critical positions that affect the hydrolysis/tranglycosylation ratio, and the most 

effective positions were then mutated into a more conservative amino acid. We found that 

50% of the mutated positions led to an improvement of the transglycosidase activity, 

suggesting that targeting the -1 site of glycosidases could significantly decrease the screening 

effort to evolve glycosidases into tranglycosidases.   

 

RESULTS  

Amino acid conservation within the GH36 family 

To study the effect of mutations on conserved residues within the donor subsite of the 

enzyme, the conservation of all AgaB amino acids was investigated. Thus, using the AgaB 

sequence as the query, 205 sequences from the GH36 subgroup I were obtained that shared 

between 25 and 95% of sequence identity between all pairs of sequences and between 25 and 

66% with the query sequence. The average conservation was 54.4%, with 5.2% of amino 

acids (38 AAs) at least 99.5% conserved (Fig. 1A). Given the AgaB structure (PDB code 

4FNQ) and the very homologous AgaA structure (97% identity) in complex with stachyose 

(PDB code 4FNU) (Merceron et al. 2012), an α-Gal residue was added to the AgaB structure 

by superimposition (RMSD=0.5 Å). The minimal distance between one of the non-hydrogen 

atoms of the aforementioned conserved residues and one of the glycosyl non-hydrogen atoms 

was measured (Fig. 1B). It is particularly interesting to note that 10 residues have a minimal 
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distance less than 3.5 Å from the glycosyl, and that no other residues have a minimal distance 

less than 4.5 Å. These 10 residues constitute the first shell, directly involved in catalytic 

activity (D478 and D548) or in substrate binding (D366, D367, W411, K476, N480, C526, 

G529 and W545; Fig. 2A). Six of these highly conserved residues are located from 4.5 to 6.1 

Å away from the glycosyl, interacting with first-shell residues and thus constituting the 

conserved residues of the second interaction shell (N334, W336, R373, E413, R443 and S547; 

Fig. 2B). These 16 residues located at less than 6.1 Å from the glycosyl are likely to be 

involved in the enzyme function and their impact on the transglycosylation is worth 

exploring. Then, the next conserved residue is the G368 at 7 Å, which might be involved in 

protein folding. 

Ala-scanning  

Among the 16 conserved AAs close to the donor subsite, two are the catalytic residues 

(D478 and D548) and the remaining 14 were individually mutated into alanine to assess if 

these residues have an influence on the transglycosylation yields. The resulting mutants were 

produced and their kinetic parameters kcat/KM as well as their ability to catalyze GalGal-pNP 

synthesis are summarized in Table I . 

Most of the mutants, except for the E413A and W411A variants,  display a non-Michaelian 

behavior as they do not present any saturation at high substrate concentration, thus catalytic 

constants, KM and kcat , could not be individually determined and only the apparent second-

order rate constant kcat/KM (“catalytic efficiency”) is presented (Table I). The WT enzyme and 

the G529A showed a slight substrate inhibition. Examples of these non-classical behaviors are 

presented in Figures S16 and S17 (Supplementary data). 

Of the 14 mutants produced, only 6 displayed sufficient activity to measure their yield of 

GalGal-pNP synthesis when used with α-Gal-pNP 10 mM as a substrate (Table I ). This Ala-

scanning was successful for rapidly obtaining transglycosidases, with three variants 
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presenting transglycosylation yields in the range of 31 to 38% against 22% with the WT. 

However, the kinetic parameter kcat/KM of these six mutants dropped dramatically by two to 

three orders of magnitude. It should be noted that in three (G529A, C526A and S547A) of 

these six variants, Ala mutation resulted in low steric change and that two of these three 

presented the highest activities among all variants. While Ala-scanning was performed to 

analyze the effect of each conserved residue substitution in a similar fashion, it appeared that 

minimizing the steric difference between the variant and the native enzyme was needed in 

order to avoid drastic loss of activity. Thus, a second round of mutagenesis featuring 

“conservative mutations”, i.e. mutations closest in structure to the wild-type enzyme, was 

performed. 

Conservative mutations 

Of the 14 chosen positions, 10 were selected for a second round of mutagenesis in which the 

novel amino acid replaced the original one in a more isosteric way. G529, C526 and S547 

were excluded as Ala is already a good replacement choice and mutating R373 was excluded 

as it seemed to engender a strong deleterious effect on the transglycosylation yield, with a 

drastic drop from 22 to 2% (Table I ). As the N334A mutant was the best variant selected by 

Ala-scanning, more substitutions on this specific position were added. The kinetic parameters 

kcat/KM as well as GalGal-pNP synthesis yields of the resulting mutants are summarized in 

Table II . 

In the set of variants obtained by “conservative mutations”, only three mutants were 

inactive: R443Q, D366N, E413Q, and a 10- to 75-fold increase in kcat/KM was observed on 

four positions with regard to Ala mutants as well as a 15- to 100-fold decrease in the amount 

of enzyme needed to reach reaction completion. Consequently, 8 out of 9 variants were active 

enough to assay GalGal-pNP synthesis and showed improved yields compared to the native 

enzyme (from 26 to 45% against 22% with the WT). Interestingly, none of the newly created 
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variants displayed yields lower than the corresponding Ala variant, which suggest that starting 

directly with a round of conservative mutations is most probably the best approach to create 

new transglycosidases.  

As the resulting mutants after this second round of mutagenesis kept high levels of activity, 

combinations of the most successful mutations were performed. 

Mutant recombination 

After two rounds of mutagenesis, the variants obtained by mutating conserved residues of 7 

out of 14 positions showed an increase in transglycosylation yields, therefore 21 

recombination mutants, resulting from the combination of mutations S547A, N334T, W336F, 

D267N, W411F, K476Q and W545F, were created. The W545F-N334S double mutant was 

added to this set. Kinetic parameters kcat/KM as well as GalGal-pNP synthesis yield of the 

resulting mutants are summarized in Table III . 

Among the 22 newly created double mutants, only 6 were active enough to allow 

quantification of GalGal-pNP synthesis (Table III ), and these 6 mutants always contained 

W545F and/or N334T mutations, which are the least deleterious to the kcat/KM parameter 

among those used for recombination (Tables I  and II ). It can be concluded from these 15 

inactive or low active mutants that there is a strong additivity of the decrease in catalytic 

efficiency, while the beneficial effect on transglycosylation shows a less additive effect: only 

the double mutant N334T-W545F displayed a higher yield than the single mutant N334T or 

W545F, with a 57% yield (against 45% for N334T, 35% for W545F and 22% for the WT).  

For the best variants (N334T, W545F and N334T-W545F), the kinetics of GalGal-pNP 

synthesis were compared with that of the WT (Fig. 3). One of the drawbacks of the use of 

glycosidases for oligosaccharide synthesis is often the secondary hydrolysis of the formed 

products. However, thanks to the use of an activated donor for which AgaB presents a much 

higher specificity than for natural substrates (the kcat/KM towards α-Gal-pNP is 500 times 
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greater than towards raffinose (Merceron et al. 2012)), small amounts of enzyme were used 

and the transglycosylation product was barely hydrolyzed and maximum yields of product 

formation remained for a long time (Fig. 3). Only the N334T variant exhibited a slight 

secondary hydrolysis compared to the other mutants and the native enzyme.  

After these three rounds of mutagenesis, AgaB variants with a strong improvement in their 

synthetic activity towards GalGal-pNP synthesis were obtained. However, as 4-nitrophenyl 

groups are hard to remove without breaking the glycosidic bond, this disaccharide is of little 

interest. Thus, a study of transglycosylation towards an acceptor bearing a thiophenyl group 

instead was undertaken, as this protecting group has proved successful in chemo-enzymatic 

synthesis (D’Almeida et al. 2009; Marton et al. 2008). 

Effect of changes in donors and acceptors on synthetic yields of transglycosylation 

with AgaB variants 

The closest analogue of α-Gal-pNP containing a thiophenyl group is phenyl 1-thio-α-D-

galactopyranoside. However, given the low availability of this compound, the more affordable 

phenyl 1-thio-β-D-galactopyranoside (Gal-S-Ph) was used. Moreover, this compound made it 

possible to assess whether the N334T variant could use acceptors with a β-configuration as 

well as with an α-configuration. The N334T variant was chosen over the N334T-W545F 

double mutant for the sake of enzyme consumption, as it gives the best transglycosylation 

yield after the N334T-W545F variant, but needs 35-fold less enzyme to reach reaction 

completion (Table 4). Transglycosylation yields of phenyl α-D-galactopyranosyl-(1,6)-1-thio-

β-D-galactopyranoside (GalGal-S-Ph) synthesis are given in Table IV . Both native AgaB and 

the N334T variant were able to catalyze the synthesis of GalGal-S-Ph, with a net increase 

from 14 to 33% with the latter, which demonstrates that newly created variants keep the 

promiscuity of the native enzyme towards acceptors. A comparative study with the α-

galactosynthase approach (Cobucci-Ponzano et al. 2010) has been also performed: the D478G 
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AgaB variant (equivalent to the D327G TmαGal glycosynthase variant) was produced and 

tested with β-Gal-N3 as donor. It showed an interesting increase in synthetic yields compared 

to the native enzyme (from 14 to 23%, Table IV ). Nevertheless, the α-transgalactosidase 

N334T variant displayed higher yields (33 against 23%), while consuming 42-fold less 

enzyme. When using Gal-S-Ph instead of α-Gal-pNP as an acceptor, a drop of one-third in 

synthetic yields with both N334T and the native enzyme was observed. This decrease is 

mainly due to competition with the GalGal-pNP synthesis. This competition could be turned 

towards synthesis by adding α-Gal-pNP gradually, which resulted in an increase from 33 to 

54% of GalGal-S-Ph synthesis yield when the N334T variant was used. In order to go further 

in avoiding competition with the GalGal-pNP synthesis, α-Gal-F was used as donor instead of 

α-Gal-pNP (Andre et al. 2001). This resulted in a drastic increase in transglycosylation yields 

from 14 to 37% with the native enzyme and from 33 to 62% with the N334T variant (Table 

IV ).  

 

  

DISCUSSION 

With the best N334T AgaB variant, one-step glycosidic bond formation with high yields 

(from 45 to 62%) with unprotected sugars and moderate enzyme consumption was achieved, 

which makes this variant suitable for bioconversion uses. It also competes favorably with the 

glycosynthase D478G variant as it provides higher transglycosylation yields (62 against 

23%), while using 151-fold less enzyme (Table IV ). Thus, this approach, which targets highly 

conserved amino acids around the active site of AgaB, is very efficient for obtaining 

transglycosidase mutants rapidly and avoiding the tedious screening procedures imposed by 

random evolution approaches (Koné et al. 2009). Furthermore, the initial approach (Teze et al. 

2014) has been improved, as we demonstrate in this work that one round of conservative 
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mutations allowed a fast access to new transglycosidases while avoiding drastic drops in 

activity. It is particularly interesting to note that the best variant, N334T, was obtained by 

mutating a second-shell residue, showing that very slight modifications may provoke strong 

effects on the balance of transglycosylation over hydrolysis. The addition of a second 

mutation induced a strong deleterious effect on the activity of all the 22 double mutants 

produced (Table III ). On the other hand, the effect on transglycosylation yields seems less 

predictable: among the six double mutants that exhibited an activity high enough to study the 

transglycosylation yields, two displayed an interesting increase compared to the single 

mutants (N334T-W545F (+12%) and W411F-W545F (+9%)), two showed slight yield 

modifications (N334S-W545F (+1%) and N334T-W411F (-1%)) and two presented a drastic 

drop in yields (N334T-K476Q (-7%) and W336F-W545F (-9%)) (Table III ).  

Mutants were screened for the best transglycosidase activity by following the GalGal-pNP 

synthesis. As this product is of limited interest as an intermediate in oligosaccharide synthesis, 

we also demonstrated that by switching to other acceptors, mutants kept their improved 

transglycosylation properties since mutations did not affect the +1 and +2 acceptor sites. 

Moreover, by using alternative donors such as α-Gal-F, the transglycosylation yields 

improved due to the absence of the competing GalGal-pNP synthesis. As the α-Gal-F is a 

more activated donor than the α-Gal-pNP, the enzyme consumption was decreased by 3.6 to 

5-fold, which also contribute to the transglycosylation yields increase due to the reduction of 

secondary hydrolysis.  

The spatial arrangement of the mutated residues can be seen in the published structure of 

AgaB (Merceron et al. 2012) (Fig. 2). The N480 residue is located in the neighborhood of the 

acceptor subsite, which may explain the drop in transglycosylation yields obtained with the 

variant N480D as some interactions with an acceptor moiety could be missing. However, all 

the most beneficial mutations for transglycosidase activity are located farther from the 
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catalytic residues, at the bottom of the -1 site cavity (mutations on residues S547, N334, 

W545 and K476 (Fig. 2)). Thus, structural information does not give any clues for 

understanding the effect of mutation on the transglycosylation/hydrolysis ratio. To date, a 

possible explanation is that highly conserved amino acids in the strict vicinity of the glycosyl 

subsite are involved in stabilizing the transition states of the catalyzed reactions, i.e. 

glycosylation, hydrolysis and transglycosylation. Thus, mutating these residues might 

decrease the transition state stabilization of these three reactions (resulting in a drop in kinetic 

parameters), but their contributions to the stabilization of each of these three transition states 

is most probably not identical. Thus, the finely tuned equilibrium between these three 

reactions would be disturbed and it is likely that variants presenting a balance slightly shifted 

towards transglycosylation would be obtained (as well as those with a balance shifted towards 

hydrolysis). Indeed, on 14 mutated positions, the substitution of 4 of them led to variants with 

a decreased synthetic ability, 7 led to an increased ability and 3 gave no quantifiable yields. 

As the rationalization of the results proved unsuccessful, it seems to be essentially 

impossible to identify by rational design the key positions to mutate. However, the 

methodology proposed in this work to create improved transglycosidases is much more rapid 

and efficient than directed evolution, which requires screening procedures on a large library 

of mutants. As it has been proved efficient for creating both α- (this work) and β-

transglycosidases (Teze et al. 2014), it may be a general route to obtain transglycosidases 

rapidly. 

 

MATERIALS AND METHODS  

α-Gal-pNP and β-Gal-S-Ph were purchased from Carbosynth, oligonucleotides from Eurofins, 

and enzymes from Fermentas. Other laboratory reagents were purchased from Sigma-Aldrich 

unless otherwise indicated and used without further purification. 
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Site-directed mutagenesis 

The QuikChange site-directed mutagenesis kit from Stratagene was used to make point 

mutations without any modifications: during PCR, Pfu polymerase extends the primers and 

generates a nicked plasmid with the desired mutation incorporated. Then the product is treated 

with Dpn I endonuclease, which digests the parental DNA. The nicked plasmid can then be 

transformed into XL-1 Blue competent cells. The 1.3-kb DNA fragments encoding the mutant 

AgaB enzymes were sequenced in both forward and reverse directions. Primers used for the 

site-directed mutagenesis are listed in Supplementary Data (Tables TS1, TS2). 

Protein expression and purification 

Recombinant strains expressing AgaB genes were grown in 1 L of LB medium at 37°C 

overnight, centrifuged and resuspended in 35 mL of lysis buffer (0.1 M phosphate, pH 8, 0.5 

M NaCl, 10 mM imidazole, 10 µg.mL-1 DNAse I). After sonication and centrifugation, 6xHis-

tagged proteins were purified by immobilized ion metal-affinity chromatography (IMAC): 

250 µL of Ni-NTA Superflow (Qiagen) was added to the supernatant and stirred for 1 h at 

4°C, then loaded onto a 10 mL column. The column was washed using 25 mL of washing 

buffer (0.1 M phosphate, pH 8, 0.5 M NaCl, 25 mM imidazole), then 5 mL of elution buffer 

was added (0.1 M phosphate, pH 8, 0.5 M NaCl, 250 mM imidazole). Purity of the final 

product was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). Enzyme concentrations were determined by UV absorbance at 280 nm (Abs 0.1% = 

2.18 and 2.07 for the W mutants) using NanoDrop 1000 (Thermo Scientific) 

Bioinformatic analysis  

GH36 sequences were retrieved from the Uniprot database (Apweiler et al. 2004) and 

multiple sequence alignment (MSA) was performed with CLUSTALW (Chenna et al. 2003). 

To assess the degree of amino acid residue conservation, 205 different sequences more than 
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30% identical to AgaB after the MSA were considered. Hereafter, amino acid residues found 

conserved in more than 99.5% of these sequences are termed “highly conserved”.  

Kinetic studies 

All kinetic studies were performed with a TECAN Infinite M1000 spectrophotometer at 

30°C in phosphate buffer 0.1 M, pH 7. Initial reaction rates were calculated from the slope of 

the first-order plot of product concentration (pNP) against reaction time, then initial reaction 

rates were plotted against substrate concentration and the resulting curves were fitted to the 

hyperbolic equation v=Vmax*[S]*[E]/(KM+[S]) using Origin 7.0 (OriginLab) to obtain kcat and 

KM parameters. For most mutants hyperbolic curves were not observed since the kinetic of 

pNP release was the result of both glycosylation, hydrolytic and transglycosylation reactions. 

The kcat/Km parameter was evaluated at low substrate concentrations, when kinetic can be 

approximate to the equation: v=kcat/KM* [E]*[S]. kcat/KM is then an apparent second order rate 

constant (referred as the “catalytic efficiency”), which is determined by the initial slope of the 

curve V/[E] = f([S]). All measurements were made in triplicate with at least 12 different 

substrate concentrations ranging from 9.8 µM to 20 mM.  

Transglysosylation studies 

Screening of the transglycosylation efficiency of AgaB variants was achieved by following 

GalGal-pNP synthesis (Spangenberg et al. 2000). Synthetic yields with 10 mM α-Gal-pNP 

were determined by capillary electrophoresis (Beckman P/ACE System 5000 with an 

uncoated fused silica capillary, 47 cm) as previously described (Teze et al. 2013a; Teze et al. 

2014). 200 µL of media containing 10 mM imidazole (used as an internal standard), 10 mM 

α-Gal-pNP and the enzyme (enzyme concentrations are indicated in Tables II , III , and IV ) 

was incubated at 30°C in phosphate buffer 0.1 M, pH 7, within the capillary electrophoresis 

apparatus and analyzed every 24 min for 2.8 h then each hour for the remaining 7 h. If 

specified, α-galactosyl-fluoride (α-Gal-F) 10 mM or β-galactosyl-azide (β-Gal-N3) 10 mM 
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was used as a donor instead of α-Gal-pNP. If specified, 1-thio-β-D-galactopyranoside (Gal-S-

Ph) 10 mM was used as an acceptor, in which case the given transglycosylation yields refer to 

the synthesis of phenyl-(α-D-galactopyranosyl)-(1,6)-1-thio-β-D-galactopyranoside (GalGal-

S-Ph). Separations were performed at 17 kV with 50 mM Borax, pH 9.5, as running buffer. 

Donors (except α-Gal-F), acceptor and products were detected by UV absorbance at 214 nm 

and quantified by comparison with imidazole. Four experiments with the native enzyme and 

the N334A mutant gave maximum yields within a percent precision. As an example, all 15 

electropherograms obtained for the best variant (N334T) study are presented in Figures S1 to 

S15 (Supplementary Data). Due to its high thermostability, native enzyme and also AgaB 

variants are fully stable in the timescale of experiments.  
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ABBREVIATIONS 

AgaB: Geobacillus stearothermophilus α-galactosidase B; TmαGal: Thermotoga maritima α-

galactosidase; GH36: Glycosyl Hydrolase family 36; WT: wild type; GalGal-pNP: 4-

nitrophenyl-(α-D-galactopyranosyl)-(1,6)-α-D-galactopyranoside; α-Gal-pNP: 4-nitrophenyl-

α-D-galactopyranosyl; α-Gal-F: α-Galactosyl-fluoride; β-Gal-N3: β-galactosyl-azide; Gal-S-

Ph: 1-thio-β-D-galactopyranoside; GalGal-S-Ph: Phenyl-(α-D-galactopyranosyl)-(1,6)-1-thio-

β-D-galactopyranoside.   
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Fig. 1. Amino acid conservation within the GH36 family. (A) Histogram of the population of 

amino acids as a function of their percentage of conservation. Each population 

corresponds to an interval of 0.5% of conservation and the statistics are based on 205 

sequences. (B) Highly conserved amino acid population as a function of the distance 

from the glycosyl, based on the AgaB structure (PDB code 4FNQ).   
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Fig. 2. Localization of highly conserved amino acids within the AgaB active site (PDB code 

4FNQ). Catalytic and galactose carbons are in grey and black, respectively. Left: First-

shell residues (in green). Right: Second-shell residues. Only Second-shell residues (in 

orange) are labeled. This figure was created with PyMol. 
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Fig. 3. Time course of GalGal-pNP synthesis in the presence of α-Gal-pNP 10 mM as 

substrate. Percentages are calculated with reference to initial substrate concentration 

using the following AgaB variants: WT (empty circles); W545F (stars); N334T (filled 

circles); N334T-W545F (plus symbols).  
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Table I. Kinetics and yields of GalGal-pNP synthesis of the AgaB variants obtained by Ala-

scanning. 

Enzyme kcat/KM (s
-1.mM-1) 

GalGal-pNP   

(%) 

Enzyme concentration 

(µg.mL-1)a 

WT 200 ± 4 22 1.0 

G529A 3.06 ± 0.03 21 5.5 

W545A (6 ± 0.3) x 10-2 34 790 

C526A 0.33 ± 0.02 19 34 

S547A 0.70 ± 0.05 31 29 

N334A 0.57 ± 0.02 38 170 

R373A 0.67 ± 0.04 2 11 

W411Ab (1.3 ± 0.1) x 10-2 NDc NDc 

E413Ab (1.2 ± 0.1) x 10-2 NDc NDc 

K476A (3.1 ± 0.1) x 10-3 NDc NDc 

W336A; R443A NDd NDc NDc 

N480A; D366A; D367A NDAe NDc NDc 

aEnzyme concentration necessary to reach the maximum yield of GalGal-pNP formation 
within 4 hours.  
b W411A (kcat= (1.9 ± 0.02) x 10-2 s-1; KM =1.5 ± 0.07 mM) and E413A (kcat= (3.0 ± 0.1) x 10-
2 s-1; KM =2.4 ± 0.2 mM) display a classic Michaelis-Menten behavior.   
cNot Determined. Activities of these enzymes were too low to measure GalGal-pNP 
formation.  
dW336A and R443A presented a detectable activity, but too low to be measured.  
eNo Detectable Activity.  
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Table II.  Kinetics and yields of GalGal-pNP synthesis of AgaB variants presenting 

“conservative mutations”.  

 

Enzyme 
kcat/KM 

(s-1.mM-1) 

GalGal-pNP  

 (%) 

Enzyme       

concentration 

(µg.mL-1)a 

WTb 200 ± 4 22 1.0 

N334D 6.6 ± 0.2 44 3.0 

N334S 2.4 ± 0.02 39 11.5 

N334T 5.4 ± 0.03 45 10.5 

W336F 0.38 ± 0.005 27 205 

D367Nb 0.23 ± 0.005 26 55 

W411Fb 0.75 ± 0.02 27 23 

K476Q (6.7 ± 0.4) x 10-2 36 115 

N480D (7.3 ± 0.3) x 10-2 14 140 

W545Fb 2.7 ± 0.02 35 7.5 

R443Q; D366N; E413Q NDAc NDA NDA 

aEnzyme concentration necessary to reach the maximum amount of GalGal-pNP within 4 
hours.  

bThese AgaB variants present a slight substrate inhibition.  
cNo Detectable Activity. 
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Table III.  Kinetic parameters and yields of GalGal-pNP synthesis of the double mutants 

obtained by recombination.  

 

Enzyme kcat/KM (s
-1.mM-1) 

GalGal-pNP 

(%) 

Enzyme concentration 

(µg.mL-1)a 

WTb 200 ± 4 22 1.0 

N334Tb 5.4 ± 0.03 45 10.5 

W545Fb 2.7 ± 0.02 35 7.5 

N334T-W545F 0.21 ± 0.02 57 360 

W545F-N334S 0.12 ± 0.004 40 425 

W545F-W411F (1.1 ± 0.1) x 10-2 44 1.7 x 103 

N334T-W411F (3.6 ± 0.3) x 10-2 44 280 

W545F-W336F (3.8 ± 0.1) x 10-2 26 1.0 x 103 

N334T-K476Q (1.9 ± 0.2) x 10-2 38 1.4 x 103 

a Enzyme concentration necessary to reach the maximum amount of GalGal-pNP within 4 

hours.  

bWT, N334T and W545F were included as a reminder of the effect of single mutations. 
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Table IV. Yields of GalGal-S-Ph synthesis using AgaB variants with Gal-S-Ph (10 mM) as 

acceptor and various donors (each at 10 mM).  

 

Enzyme Donor GalGal-pNP 

 (%)a 

Transglycosylation 

yield (%) 

Enzyme concentration 

(µg.mL-1)b 

WT α-Gal-pNP 9 14  1.5 

WT α-Gal-F -  37 0.3 

N334T α-Gal-pNP 19 33  18 

N334T α-Gal-pNPc 9 54  27 

N334T α-Gal-F -  62 5.0 

D478G β-Gal-N3 0 23 755 

aYields of GalGal-pNP synthesis, measured at the time of the maximum yield of the 

transglycosylation product.  

bEnzyme concentration necessary to reach the maximum transglycosylation yield within 4 

hours.  

cInstead of having 10 mM of donor at the beginning of the reaction, the same amount of donor 

was reached by 5 additions during the time course of the reaction. 

 


