%0 Journal Article %T Structure vs 119Sn NMR Chemical Shift in Three-Coordinated Tin(II) Complexes: Experimental Data and Predictive DFT Computations %+ Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM) %+ Institut des Sciences Chimiques de Rennes (ISCR) %+ Centre Régional de Mesures Physiques de l'Ouest (CRMPO) %+ Laboratoire de physique et chimie des nano-objets (LPCNO) %A Wang, Lingfang %A Kefalidis, Christos E. %A Roisnel, Thierry %A Sinbandhit, Sourisak %A Maron, Laurent %A Carpentier, Jean-François %A Sarazin, Yann %< avec comité de lecture %@ 0276-7333 %J Organometallics %I American Chemical Society %V 34 %N 11 %P 2139–2150 %8 2015-06-08 %D 2015 %R 10.1021/om5007566 %Z Chemical SciencesJournal articles %X The new amido-/alkoxy-tin complexes [Sn(μ-OSiPh3)(OSiPh3)]2 (4), [Sn(μ-OiPr)(OSiPh3)]2 (5), [Sn(μ-OSiPh3)(Cl)]2 (6), [Sn(μ-OiPr)(Cl)]2 (7), [Sn(OSiPh3)(NMe2)]2 (8), and [Sn(OiPr)(NMe2)]2 (9) have been synthesized. The molecular solid-state structures of 4–7 established by XRD analysis show these complexes to exist as μ-O-bridged dimers with three-coordinated tin(II) atoms. Diffusion-ordered NMR spectroscopy (DOSY) measurements demonstrated that the complexes retain their dimeric structure in solution in aromatic solvents. The 119Sn{1H} NMR data for 4–7 and those of the known dimers [Sn(μ-OiPr)(OiPr)]2 (2), [Sn(μ-NMe2)(NMe2)]2 (3), [Sn(μ-OiPr)(N(SiMe3)2)]2 (10), and Lappert’s [Sn(μ-Cl)(N(SiMe3)2)]2 (11) have been recorded in toluene-d8 (using Sn(N(SiMe3)2)2 (1), δ119Sn = +771 ppm, as a reference compound). The resonances, located in the range +138 to −338 ppm, are increasingly shifted toward high fields with substitution according to NMe2 ∼ N(SiMe3)2 < Cl < OtBu ≤ OiPr < OSiPh3. DFT computations have been performed to model the 119Sn NMR chemical shifts in these tin(II) complexes as well as in 10 other heteroleptic, monometallic phenolate-supported stannylenes featuring three-coordinated metal atoms, taking into account the coordination number of the metal atoms. The applied methodology produces computed data that match those recorded experimentally by 119Sn{1H} NMR spectroscopy, hence providing a convenient tool that complements traditional spectroscopic (119Sn NMR, DOSY NMR) and diffraction methods to predict the structural and spectroscopic features of stannylenes. %G English %L hal-01114324 %U https://univ-rennes.hal.science/hal-01114324 %~ UNIV-TLSE3 %~ UNIV-RENNES1 %~ IRSAMC %~ CNRS %~ INSA-RENNES %~ INSA-TOULOUSE %~ ENSC-MONTPELLIER %~ ENSC-RENNES %~ ICG %~ ISCR %~ SCR-CD %~ SCR_OMC2012 %~ ISCR-OMC %~ STATS-UR1 %~ UR1-SPM %~ ISCR-PRATS %~ INC-CNRS %~ UR1-UFR-SPM %~ UR1-HAL %~ UR1-SDLM %~ UR1-SDLMJONCH %~ CHIMIE %~ UNIV-MONTPELLIER %~ LPCNO %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INSA-GROUPE %~ UR1-MMS %~ TOULOUSE-INP %~ UNIV-UT3 %~ UT3-INP %~ UT3-TOULOUSEINP %~ UM-2015-2021 %~ TEST2-HALCNRS