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Abstract

Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor

microvascular blood flow with high spatial and temporal resolutions. It is used in

many medical fields such as dermatology, vascular medicine, or neurosciences.

However, LSCI leads to a large amount of data: image sampling frequency

is often of several Hz and recordings usually last several minutes. Therefore,

clinicians often perform regions of interest in which a spatial averaging of blood

flow is performed and the result is followed with time. Unfortunately, this leads

to a poor spatial resolution for the analyzed data. At the same time, a higher

spatial resolution for the perfusion maps is wanted. To get over this dilemma

we propose a new post-acquisition visual representation for LSCI perfusion data

using the so-called generalized differences (GD) algorithm. From a stack of
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perfusion images, the procedure leads to a new single image with the same

spatial resolution as the original images and this new image reflects perfusion

changes. The algorithm is herein applied on simulated stacks of images and on

experimental LSCI perfusion data acquired in three different situations with a

commercialized laser speckle contrast imager. The results show that the GD

algorithm provides a new way of visualizing LSCI perfusion data.

Keywords: Medical and biological imaging, Laser speckle, Image analysis,

Blood flow, Microcirculation

1. Introduction

The monitoring of microvascular blood flow can be performed with sev-

eral optical techniques, among which laser Doppler flowmetry (LDF) and laser

speckle contrast imaging (LSCI) are now currently used [1]. In LDF, the tis-

sue under study (skin for example) is illuminated with a low-power laser light.5

The backscattered light is transmitted to a photodetector. LDF relies on the

Doppler frequency shift that appears when light is scattered by moving blood

cells (mainly red blood cells). The LDF perfusion is defined from the first mo-

ment of the power spectrum of the photocurrent fluctuations (see, e.g., [2, 3]).

LDF signals have been the subject of many works (see, e.g., Refs. [4, 5]), but10

one of the major drawbacks of LDF is that it is a single-point measurement

technique. Due to the spatial variations of the microvascular blood flow [6, 7],

the reproducibility of the measure is poor [8, 9]. Laser Doppler imaging (LDI)

has been designed to prevent this drawback [10]. However, for most of imagers,

the image is computed by scanning the area under study which entails long15

recording times and prevents the monitoring of rapid physiological phenomena.

To overcome the latter point, full-field laser Doppler imagers have recently been

proposed [11, 12, 13, 14, 15, 16, 17, 18], but require high-speed cameras.

LSCI is another full-field optical technique for the monitoring of microvas-

cular blood flow. It is a real-time method that does not need any scan and20

uses a normal CCD or CMOS camera [19]. LSCI relies on the following prin-
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Figure 1: Perfusion image (151 rows and 61 columns) from LSCI technique of a zone on the

forearm of a healthy subject.

ciple [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]: when the tissue under study is

illuminated by a laser with an expanded beam, the backscattered light forms

an interference pattern on the detector (a camera). Due to phase difference

involved in the backscattered light, there are constructive and destructive inter-25

ferences. The latter produce a pattern composed of bright and dark areas on

the camera. This pattern is known as a speckle pattern. When particles move

in the tissue under study, the speckle pattern changes. In LSCI, the changing

speckle pattern is recorded with a camera that has an integration time in the

millisecond range. Due to the long integration time compared to the typical30

decorrelation time of the speckle pattern, the speckle pattern is blurred in the

image. The level of blurring is quantified by the speckle contrast K that is

inversely related to blood flow (see an example in Fig. 1). In the laser speckle

contrast imager used in our work, the perfusion is computed from 1/K − 1 [30].

It has been shown that the power spectral density measurements of the light35

fluctuations derived using LSCI and LDF techniques are equivalent [31].

LSCI data have shown to have excellent reproducibility [9, 32, 33, 34]. The

rapid adoption of LSCI in clinical research is also probably due to the relative

ease and low cost of building an instrument, compared to other techniques such40
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as MRI or CT [19, 35]. The developments of the technique are again the subject

of many studies (see, e.g., [36],[37],[38, 39, 40],[41],[42, 43, 44, 45, 46, 47],[48]).

LSCI is now used in many medical fields such as dermatology, cardiology, vascu-

lar medicine, diabetology, neuroscience, ophthalmology [26], among others. In

cardiovascular studies, LSCI can be used to analyze the impairment of tissue45

blood supply provoked by pathologies such as diabetes, Raynaud’s phenomenon,

or peripheral vascular diseases. Monitoring blood flow with LSCI can therefore

allow early diagnoses or an evaluation of the evolution for such diseases. How-

ever, LSCI (as LDF and LDI) gives blood flow values in arbitrary units: no

absolute values as ml.g−1.min−1 tissue are possible [22, 49], as again pointed50

out recently (see, e.g., [29]). Another drawback of the LSCI technique is that

it leads to a large amount of data: the frequency sampling of the images can

be of several Hz (depending on the application) and the recordings usually last

several minutes. In order to monitor the blood flow, the clinicians have there-

fore a stack containing many images (perfusion maps) reflecting the temporal55

evolution of the blood flow on the area under study. To analyze the data easily

and rapidly, one or several regions of interest (ROIs) are often chosen on the

first image of the image stack, and an average of the blood flow is performed

in this ROI. The same ROI is chosen on the other images of the stack and thus

an average of the blood flow can be studied in this ROI in time, at the rate60

of the image frequency acquisition [26, 32]. This leads to a 1D-signal reflecting

the time evolution of the average value for the blood flow in the ROI (see an

example in Fig. 2). In the same time, algorithms or methods to obtain a higher

spatial resolution for the images are still proposed (see, e.g., [50, 51, 52, 53]).

However, this spatial resolution is “lost” by the averaging procedure performed65

in the ROIs, in clinical routine, to evaluate the evolution of the blood flow in a

simple and rapid way. To get over this dilemma we propose herein a new way of

visualizing LSCI perfusion data from commercialized imagers. Our procedure

uses the so-called generalized differences (GD) algorithm. This leads to the

computation of a new single perfusion image reflecting by itself the variations70

of the blood flow on the whole images of the stack. Moreover, this new im-
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Figure 2: Laser speckle contrast signal (perfusion signal) of a zone on the forearm of a healthy

subject, at rest, during vascular occlusion and post-occlusive reactive hyperaemia, computed

from spatial averaging on a region of interest of 7 × 7 pixels2 in laser speckle contrast im-

ages (perfusion images).

age has the advantage of possessing the same spatial resolution as the original

images. Our work therefore corresponds to a post-acquisition perfusion image

processing procedure. Our goal is not to propose an imaging pre-processing

method on raw speckle images. The problem raised by large volumes of data75

when imaging blood flow is of importance. Moreover, the visualization of blood

flow data remains a challenging task (see, e.g., [54, 55]).

Among the algorithms that are often used in the evaluation of the activity

for laser speckle images we find the Fujii’s method [56, 57] and the temporal80

difference method [58]. However, unlike the GD method (see below), the Fu-

jii’s algorithm does not take into account the difference between nonconsecutive

images. This presents a drawback in the case of laser speckle perfusion evalua-

tion as variations of perfusion are slow compared to the frequency of the image

acquisition; the variations are therefore low between two consecutive images.85

Comparisons between perfusion images differing by short times are not reliable

because this prevents a salient analysis of slow phenomena when a relatively

5
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short duration is studied (a few seconds). Moreover, as for the Fujii’s method,

the temporal difference method is not appropriated for microvascular blood flow

characterization with laser speckle perfusion data because the difference between90

nonconsecutive perfusion images are not taken into account. Moreover, the tem-

poral difference method leads to a stack of N − 1 difference images which does

not correspond to our goal to obtain a new single image. These two methods

have therefore been discarded from our work.

95

In what follows, we first present the GD algorithm. Afterwards, the proof

of concept of our work and the measurement procedure used to acquire exper-

imental laser speckle contrast images in different situations are described. The

results obtained on simulated and experimental data with the GD algorithm are

detailed and discussed. Moreover, the results are compared with those given by100

other algorithms.

2. Materials and Methods

2.1. Generalized differences

In the method called generalized differences, a new image PUGD is con-105

structed from a sequence of N (perfusion) images PUk (1 ≤ k ≤ N) as [59]

PUGD(i, j) =

N−1∑

k=1

N∑

l=k+1

|PUk(i, j)− PUl(i, j)|, (1)

where PUk(i, j) is the perfusion value for the pixel situated at the coordinates

(i, j) in the k-th image of the perfusion sequence (a similar notation is used

for PUl(i, j)). In the new image PUGD, regions differing in their activity are

displayed as different gray levels. From Eq. 1, we observe that the GD algorithm110

does not depend on the order of the images. Moreover, the pixel (i, j) in image

PUGD is zero (minimum value) when all the PUk(i, j) values are equal (no

movement at this pixel).

6
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Another variant (denoted as GD*) considers not absolute values but square

values of the difference [60]. The new image PUGD∗ is therefore computed as115

PUGD∗(i, j) =
N−1∑

k=1

N∑

l=k+1

(PUk(i, j)− PUl(i, j))
2. (2)

It has been reported that one drawback of the methods based on GD is

that they require many images and that the investigated phenomenon must be

slow as compared with the sampling frequency [60]. However, for LSCI perfu-

sion data, several seconds and even minutes are commonly recorded to monitor

microvascular blood perfusion. Moreover, the frequency acquisition is usually120

more than 10 Hz and the phenomena of interest are often slow compared to this

frequency acquisition. The above-mentioned drawback for the GD algorithm is

therefore not a problem for studies like ours. Moreover, one of the advantages of

the GD and GD* representations is that a range of times is encoded in a single

frame.125

2.2. Proof of concept

In order to show the proof of the concept used in our work (from a stack of

perfusion images, we want to generate a new single perfusion image with the

same spatial resolution as the original images (perfusion maps) and this new130

image reflects perfusion changes) we apply the GD algorithm on deterministic

examples: we first generated a stack of 15 images, 30 × 30 pixels2 each. On

these 15 images, all the pixel values were identical and equal to 10 (simulating

blood flow with no variations at all, or no blood flow (biological zero)), except

on images 5 to 9 where a square of 6 × 6 pixels2 had higher values, simulating135

a transient increase of blood flow in this region of interest (see Fig. 3): values

of 20, 40, 60, 45, 25 on the square of images 5, 6, 7, 8 and 9 respectively. We

then applied the GD algorithm on the stack of 15 images with the aim to see if

it is able to detect the transient variation of pixel values.

140
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Figure 3: Representation of images 1, 5, 6, 7, 8, and 9 of the simulated images (see text for

details).

.

We then generated another stack of images in order to analyze the influence

of possible experimental noise on the resulting GD image. For LSCI, the exper-

imental noise usually arise from movement. For this purpose, we generated 15

simulated images, 30 × 30 pixels2 each. On these 15 images, all the pixel values

are identical and equal to 10 (simulating blood flow with no variations at all,145

or no blood flow (biological zero)), except on images 5 to 9 where a square of

size 6 × 6 pixels2 had the same values as previously (see Fig. 3), simulating a

transient increase of blood flow in this region of interest. Moreover, on images

4 to 8, three smaller squares (4 × 4 pixels2) of different amplitudes have been

inserted: the first square contains pixels with random amplitudes varying from150

25 to 27. The second square contains pixels with random amplitudes varying

from 45 to 55, whereas the third square contains pixels with random amplitudes

varying from 200 to 220. Different random values were generated for each of

the images 4 to 8. These three “noisy” squares have therefore pixel amplitudes

8
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Figure 4: Representation of images 1, 4, 5, and 9 of the simulated images used to analyze the

influence of movement artefacts (see text for details).

.

varying from half to more than four times larger than the simulated transient155

increase of blood flow, simulating transient increases of pixel amplitude due to

movement artefacts (see Fig. 4).

2.3. Experimental image acquisition

Three kinds of experimental LSCI recordings have been performed to eval-160

uate the performance of the GD algorithm in the visualization of perfusion

changes from real LSCI data. All the image acquisitions have been done in laser

speckle perfusion units (LSPU) with a PeriCam PSI System (Perimed, Sweden)

having a laser wavelength of 785 nm and an exposure time of 6 ms.

The first recording has been performed on the two hemispheres of a mouse,165

recorded through the skull. The experiment has been performed in compliance

with institutional guidelines and international standards on animal welfare and

approved according to local and national regulation for animal care and use

for research purposes [63]. The mouse was anesthetized with isoflurane (2.5%

9
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induction, 1.5-2% during surgery) in 70% N2O and 30% O2. After end of170

preparation isoflurane anesthesia was reduced to 1.1-1.2%. Temperature was

continuously measured and maintained at 37.8◦C by use of an automatic con-

trolled homeothermic blanket system. The mouse was placed in a stereotaxic

frame and the skin was removed above both hemispheres to enable cerebral

blood flow measurements by LSCI. At the parietal bone a small craniotomy175

(∼3 mm lateral from midline/lambda and rostral to the lambdoid suture; diam-

eter: ∼1.2 mm) was made by use of a dental drill (SI-923 implantMED, W&H

Deutschland GmbH, Laufen Germany) for spreading depression induction. The

LSCI recordings have been performed with a sampling frequency of 0.1 Hz and

the distance between the laser head to skull was set at 10.4 cm [64] which gave180

images with a resolution around 0.02 mm. The provocation used to obtain

perfusion variations was a pinprick in one of the hemispheres that induced a

cortical spreading depression/depolarization (CSD). CSD is a self-propagating

wave of depolarization which corresponds to a slow-moving ionic and metabolic

disturbance that propagates in cortical brain tissue [65]. The perfusion map185

stack processed was composed of 10 images.

The second experimental LSCI recordings have been performed on the fore-

arm skin of a healthy subject. The variations of the perfusion have been induced

by a local heating. The latter leads to a vasodilation and therefore to an increase190

of the perfusion values [66, 67, 68]. The recordings have been performed with

a sampling frequency of 5 Hz and the distance between the laser head to skin

was set at 14.7 cm [64] which gave images with a resolution around 0.14 mm.

The perfusion map stack processed was composed of 100 images.

195

The third experimental LSCI recordings have been performed on the forearm

skin of another healthy subject. The variations of the perfusion have been

induced by a local pinching. The latter was manually done and performed on

the ventral face of the forearm. The pinching induced a local and transient

increase of the perfusion. The recordings have been performed with a sampling200

10



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

0

200

400

600

800

1000

1200

1400

1600

Figure 5: Image computed with the generalized differences algorithm from 15 simulated im-

ages (see Fig. 3).

.

frequency of 5 Hz and the distance between the laser head to skin was set at

15.9 cm [64] which gave images with a resolution around 0.15 mm. The perfusion

map stack processed was composed of 100 images.

3. Results and Discussion

3.1. Simulated images205

The result of the GD algorithm for the simulated data shown in Fig. 3 is

represented in Fig. 5. From the latter, we observe that the GD image is zero

everywhere except in the square that was present in images 5 to 9 of the stack.

In the new image PUGD, the pixels are zero (minimum value) when all the pixel

values are equal in the stack (no movement at this pixel) and regions differing210

in their activity are displayed as different gray levels. This result is therefore a

proof of our concept for the use of the GD algorithm to detect perfusion changes

in LSCI data.

11
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Figure 6: Image computed with the generalized differences algorithm from 15 simulated im-

ages (see Fig. 4).

.

The results of the GD algorithm for the stack of 15 images containing move-215

ment artefacts (Fig. 4) is shown in Fig. 6. The results show that the image

generated with the GD algorithm reflects all the variations: all the four squares

are visible in the new image, the one due to the transient increase of blood

flow and the three squares reflecting the movement artefacts. Therefore, the

GD algorithm keeps the transient increase of blood flow visible, but also reflects220

pixel amplitude variations due to movement artefacts. However, LSCI is by

definition very sensitive to movements. That is why LSCI experiments have to

be performed with still subjects to avoid experimental noise.

3.2. Experimental images225

The first perfusion image of the recordings for the three experimental cases

is presented in Figs. 7 to 9. The results of the GD algorithm for the three cases

are shown in Figs. 10 to 12. For each of these latter figures, we can observe

in a single frame where the perfusion has changed (due to the stimulus). For

case 1 (see Fig. 10), we note that the perfusion has mainly changed in the right230

12
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Figure 7: Perfusion map (623 rows and 623 columns) representing the two hemispheres of a

mouse, recorded through the skull [63].

part of the image. For case 2 (see Fig. 11), we observe that the variations of

the perfusion due to the local heating mostly appear in the bottom left part

of the image. Finally, for case 3 (see Fig. 12), the perfusion variations are

globally localized on all the image. As mentioned above, Fig. 10 has been com-

puted from 10 images and Figs. 11 and 12 have been computed from 100 images.235

Due to the spatial heterogeneity of the microcirculation [6, 7] and because

clinical cases require perfusion analyses with a high spatial resolution (see, e.g.,

Ref. [69]), LSCI is an interesting optical technology. However, the visualization

of LSCI perfusion images should be easy and rapid. Due to the high amount of240

images generated by several minutes of recordings, the GD image is an interest-

ing way to visualize the variations of the perfusion (post-acquisition procedure)

with a spatial resolution as high as the original perfusion maps.

As shown in Fig. 6, the GD image reflects perfusion changes but also move-245

ment artefacts. This is also shown in Fig. 13 where the GD image has been

computed from perfusion data recorded on the forearm of a healthy subject

during a local heating while movements were performed by the subject. We

13
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Figure 8: Perfusion map (201 rows and 201 columns) representing the forearm skin at the

very beginning of a local heating.
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Figure 9: Perfusion map (501 rows and 301 columns) representing the forearm skin just after

a local pinching.

note that both perfusion changes and movement artefacts lead to high pixel

values in the GD image. In order to avoid misinterpretation between perfusion250

changes and movement artefacts, the acquisitions have to be performed when

14
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Figure 10: Image (623 rows and 623 columns) computed with the generalized differences

algorithm from 10 perfusion images recorded during a pinprick in one of the hemispheres that

induces a wave of ischemia (see text for details).

the subject is totally still.

We also compared our results given by the GD algorithm on the experimental

LSCI data with the ones given by the GD⋆ algorithm and by the Fujii’s method.255

The results given by the GD⋆ algorithm are shown in Figs. 14 to 16. The ones

given by the Fujii’s method are shown in Figs. 17 to 19. From these figures, we

observe that the perfusion changes (due to the stimulus) are much less visible

than the ones given by the GD algorithm. The GD algorithm therefore appears

as the most interesting. No comparison with the temporal difference method260

is possible because, with the latter method, a sequence of N images leads to a

new sequence of N − 1 difference images, and this does not corresponds to our

goal.

For other dynamic vascular phenomena, it could be possible to compute the265

new GD image on more, or less, images in order to visualize slow or rapid phe-

15
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Figure 11: Image (201 rows and 201 columns) computed with the generalized differences

algorithm from 100 perfusion images recorded during and after a local heating (see text for

details).
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Figure 12: Image (501 rows and 301 columns) computed with the generalized differences

algorithm from 100 perfusion images recorded just after a local pinching (see text for details).
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Figure 13: Image (101 rows and 61 columns) computed with the generalized differences algo-

rithm from 100 perfusion images recorded during and after a local heating, while movements

were performed by the subject (see text for details).

nomena. A normalization could be useful to compare results coming from GD

calculated from different numbers of images.

Moreover, by definition, the GD algorithm loses the time dimension. There-270

fore, it is not directly possible to obtain a GD measure in time. If one wants to

obtain information on the time evolution of the perfusion changes, it could be

possible to split the stack of images under study in several sub-stacks of images

and to compute the GD image for each sub-stack. However, this splitting would

lead to several GD images. Therefore, the number of sub-stacks should not be275

too large as this would lead to many GD images and would prevent an easy and

rapid examination of perfusion changes.

The visualization of perfusion data remains a challenging task and our work

is the first one that proposes a post-acquisition procedure for visualizing LSCI280

17
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Figure 14: Image (623 rows and 623 columns) computed with the modified generalized dif-

ferences algorithm (GD⋆) from 10 perfusion images recorded during a pinprick in one of the

hemispheres that induces a wave of ischemia (see text for details).

perfusion maps coming from commercialized imagers. The GD algorithm ap-

pears as being an interesting tool in the evaluation of blood flow with high

spatial resolution, which is of the utmost interest for clinical cases.
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Charité, Department of Experimental Neurology and Center for Stroke
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� Laser speckle contrast imaging (LSCI) enables to monitor microvascular perfusion 

� Large amount of data are often recorded leading to a long process of analysis 

� Spatial averaging is therefore often performed in regions of interest (ROI) 

� The spatial averaging reduces the spatial resolution of the images 

� We propose a new visual representation of LSCI data using generalized differences 

Highlights


