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Abstract

Ecological studies need accurate environmental datdh as vegetation characterization,
landscape structure and organization, to predict arplain the spatial distribution of

biodiversity. Few ecological studies use remotessgndata to assess the biophysical or
structural properties of vegetation to understapdcies distribution. To date, Synthetic
Aperture Radar (SAR) data have seldom been use@duological applications. However,

these sensors provide data allowing access tatter structure of vegetation which is a key
information in ecology. The objective of this altids to compare the predictive power of
ecological habitat structure variables derived flomerraSAR-X image, an aerial photograph
and a SPOT-5 image for species distribution. Tlséweas run with a hedgerow network in
Brittany and assessed the spatial distributionhef forest ground carabid beetles which
inhabit these hedgerows. The results confirmed thadar and optical images can be
indifferently used to extract hedgerow network afetived landscape metrics (hedgerow
density, network grain) useful to explain the saladiistribution of forest carabid beetles. In
comparison with passive optical remotely sensed,d4tHISR SAR images provide new data
to characterize vegetation structure and more queatily hedgerow canopy cover, a variable
known to explain the spatial distribution of caxhlieetles in an agricultural landscape, but

not yet quantified at a fine scale. The hedgeromops cover derived from the SAR image is



a strong predictor of the abundance of forest ¢dradetles at two scales i.e. a local scale and

a landscape scale.
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1. Introduction

Ecological studies aiming to explain and prediccsgs distribution or spatial variability of
species richness over landscapes need accuratefatatguantifying the structure and
organization of habitats (St-Louis et al., 2009hderstanding spatial species distribution is
directly linked to the ability to characterize teavironmental conditions that drive species
distribution. Remotely sensed data offer a uniqpeootunity to provide environmental
information with complete coverage, at differenatsg and temporal resolutions and extents,
such as land cover classification (Kerr and Oskpv2003) and vegetation biophysical
properties (Turner et al. 2003; Jacquemoud et @DIP or structural properties (Lee and
Pottier, 2009; Imhoff et al., 1997).

The use of remotely sensed data for ecologicaliegipns has increased in recent years, for
instance to predict species richness (Kerr ando@sitlyy, 2003; Levanoni et al. 2011), or map
plant assemblages (Betbeder et al. 2014a; Pu Z0ak et al. 2005). Most of the time, the
imagery used in ecology is optical remotely senseagery (Kerr and Ostrovsky 2003), for
instance the Normalized Difference Vegetation IngeVI) is used for many ecological
applications (Pettorelli et al., 2014). NDVI proegl information on vegetation distribution
and dynamics and can be used to predict animalliigon, abundance etc. (Pettorelli et al.,
2005). Other remote sensing data, such as SARK{8yntAperture Radar) and LIDAR (Light
Detection And Ranging) images, offer new opporiasito characterize vegetation structure
over a whole landscape. Indeed, LIDAR remote segnsias the ability to acquire three
dimensional measurements of the landscape surfeecstady site at a fine spatial resolution,
which is useful for estimating a variety of vegetatfeatures (such as tree height, volume,
biomass) (Heinzel and Koch 2011; Miller and BragdD9). However, LIDAR is costly
meaning that regular time-series monitoring is apenally constrained. Synthetic Aperture
Radar (SAR) data are easier to acquire and praviddiable alternative to optical images,



because they are not sensitive to visibility candg and they can be acquired by day or night
(Ulaby, 1990). As radar sensors with very high ispaesolution (VHSR) are all weather
instruments, they increase the possibility of frgjudata collection allowing inter and intra
annual monitoring at fine scales. Moreover, thelpvalaccess to the inner structure of
vegetation (Betbeder et al. 2014b). Images acquyetthese sensors should allow an increase
in the amount and accuracy of ecological informmatextracted from remote sensing data
(Kasischke et al., 1997) and improve their utilityecological studies.

The objective of this article is to test the infatmon provided by SAR imagery as compared
to aerial photographs and SPOT-5 imagery for eccdb@pplications and more specifically
to explain species abundance. We ran the testavitadgerow network in Brittany, France.
Hedgerows fulfill ecological, social and economimdétions such as control of soil erosion,
landscape beautification, wood production, microeliic effects, water quality and
conservation of biodiversity (Baudry et al. 200Bedgerow networks play a key role in
habitat connectivity for some species and thusuérfte the degree of fragmentation of the
landscape (Petit and Burel 1998). Furthermore, é&exdg structure (tree and shrub cover,
width) is a major variable to determine habitatlgydor plants and animals (Le Cceur et al.,
2002). A recurrent question in landscape ecolodgy tetermine the "forest” character of such
hedgerow network landscapes (Forman and Baudry4)198edgerows where shade and
humidity are permanent because of the vegetatiosityecan be forest-like habitats for small,
less mobile species. This can be reinforced by |#melscape structure as in fine grain
landscapes wind speed is lower, therefore evapsgnation is also lower. This fosters the
ability of hedgerows to harbor species thrivingsimdy, cool habitats (Burel 1989). Most
studies therefore use maps of networks and a oquaidn of hedgerow structure. Hedgerow
structure is mostly described for small areas ffighd measurements. Because this process is
too time-consuming, hedgerow structure is estimategt landscapes in a semi-quantitative
manner (e.g. Defra 2007). The estimation of treesity, cover, shrub cover in the field is
subject to the observers' bias. Furthermore,gerformed on segments of hedgerow networks
corresponding to a "hedgerow" defined as eitheisggment between two connections or the
segment along a field defined by its land coveru@g et al. 2000). So these segments are of
different sizes and the parameters used to destitdra are estimated at a scale that is not
always relevant to the study species that inh&leint Therefore the internal homogeneity or
heterogeneity of hedgerows is not assessed. Mareame many ecological studies,
information on the fragmentation of hedgerow ne&soand canopy cover is often retrieved



in the field using accurate ground surveys (Bauelryal. 2000). Therefore, this type of
landscape is a good candidate to run our testrastwral patterns at different scales from the

individual hedgerow to the network drive speciesiposition.

Most of the time, wooded hedgerows are digitizedhaynd from conventional airborne
photographs (Burel and Baudry 1990) over small ystsites, which is a time-consuming
approach. Some studies dealing with the mappirigrafscape features from remote sensing
data have shown that VHSR satellite images aralseitfor automatic hedgerow mapping
(Vannier and Hubert-Moy 2010; Aksoy et al. 2008rdgal 2013). Vannier et al. (2011) i)
show the influence of spatial and spectral resohsti of optical images for hedgerow
extraction and ii) explore how predictions of sgscdistributions might be affected by the

information derived from the extractions realizethvdifferent remotely sensed data.

Betbeder et al. 2014b show the potential of TekRX imagery to i) detect
hedgerow networks and ii) quantify the hedgerow opgncover. They established a
relationship between a polarimetric indicator, ded from the SAR data, i.e. the Shannon
entropy, and hedgerow canopy cover. This study lmgmformation about the possibilities
for the determination of ecological metrics basedremote sensing data. We hypothesized
that TerraSAR-X imagery would provide more valuabtormation than that of aerial
photographs or SPOT-5 images as it explores betimtier structure of the hedgerow and the
network structure. As a biological model, we chfisest carabid beetles as their ecology is
well known (Thiele, 1977; Burel, 1989; Aviron et &005), along with their relations with
the hedgerow network landscape structure. Grourmdidse (Coleoptera, Carabidae) are an
appropriate group to select as indicators of emvirental quality or change (Kromp, 1999;
Pearson, 1994).

2. Materials and methods

2.1 Study site

The investigated area is a Long Term EcologicakeBReh site named ‘Pleine Fougéres’ (130
km?), located in the southern part of the Bay @& fhont-Saint-Michel, France (Fig. 1). The
area has a temperate oceanic climate with an avgragipitation of around 600 mm/year.
This study focuses on a hedgerow network whichrsfi@ntrasted structures related to
management structures (Baudry and Jouin 2003) d&mchvis dominated b astanea sativa



andQuercus robur in generally planted on an earthern bank. The hedgaetwork’s density
is about 74 m/ha (Vannier et al. 2011).
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Figure 1. Location of the study site focusing on a sub-nekwanere biological data sampling has
been performed. This sub-network presents diffexanbpy structures (a) (c), with (a) or without (b)
(c) underlying shrubs and pruned trees.

2.3. Remote sensing data

Three types of remotely sensed data were acqurelSAR TerraSAR-X image, one optical
SPOT-5 image and aerial photographs. Their chaisiits are summarized in Table 1.
Remotely sensed data were acquired over two y2ai® and 2013. We made the assumption
that only small changes occurred in the hedgerawar& during this time period. The SAR
image was acquired during the leaf-off period (February) to assess the inner structure of
the canopy (Betbeder et al., 2014b)



Table 1.Characteristics of remote sensing data

TerraSAR X SPOT-5 Aerial photographs
Dates 02/16/2013 09/30/2012 07/14/2013
Spatial resolution (m) 1.5 (High resolution spotlight) 2.5 0.5
Band Band X (3.1 cm, 9.65 GHz) B1 (green): 0.5-0.59 um  Panchromatic

B2 (red): 0.61-0.68 pm
B3 (NIR): 0.78-0.89 um

B4 (MIR):1.58-1.75 pm

Polarization Dual polarization (HH/VV)
Incidence angle 37° (Right Ascending) 8.5° Nadir
Type of map Raster (1.5 m resolution) withRaster (2.5 m resolution)First a vector map

hedgerows as objects withwith hedgerows as with hedgerows as

canopy cover measured by thomogeneous objects polylines, then,
Shannon entropy polarimetric rasterization at 5 m
indicator resolution

2.4. Carabid surveys

The sampling was conducted in 45 hedgerows fronil ApSeptember 2013. The hedgerows
were chosen to maximize the diversity of the heolgezanopy cover sampled. The hedgerow
canopy cover was quantified using SAR images (Bktbet al. 2014b). Indeed, Betbeder et
al., 2014 b showed that the Shannon entropy (SEexinlerived from SAR images is directly
related to the canopy cover, high values of SEespwnding to high canopy cover ande-
versa. Betbeder et al., 2014 b studied a landscape asirtol the landscape in this study. It
presented different hedgerow canopy cover (coeélatith SE values comprised between -2
and 2). Figure 2 presents the different valuesamiopy covers of the hedgerow network on
the study site and those of the sampled hedgerswietacted by SAR images. The histogram
(Figure 2. b) of the SE values computadthe hedgerows sampled shows that the values of
SE are quite heterogeneous (ranging from -2 torthgse values are representative of the

canopy cover types present in the whole hedgerdwark of the study site (Betbeder et al.,



2014 b) , which ShE values range from -5 to 3 vaitimajority of values being comprised
between -2 and 1, Figure 2. a). Adult carabid lesettere caught with pitfall traps filled with
monopropylene glycol solution. In each hedgerow setup one sampling station made up of
three pitfall traps set 4 m apart, located at the d¢f earthen banks and collected every 2

weeks, during 24 weeks, thus for a total of 12 dangperiod.

a) Shannon entropy histogram

b) Shannon entropy histogram
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Figure 2. Hedgerow canopy cover detected by SAR images (Smeantropy (ShE) values for all
hedgerow pixels) over the entire study site (a) lreatherow canopy cover detected by SAR images in
sampled hedgerows for carabid surveys (Shannoopntalues for all pixels of sampled hedgerows)

(b).

The mean Euclidian distance between sampling pouais on average 60 m (min: 35
m and max: 230 m), much greater than the possiblement of ground beetles: Loreau and
Nolf (1993) report that a non-flying beetle suchAdmsx parallelepipedus, one of the most
abundant forest speciesan travel about 1.8 m per day. Loreau and Nol§318stimate that
their home range in a forest is about 660 m?, 2ZZ6Xn. Charrier et al., 1997 found similar
results for woods and a range of 15 to 20 m in bBeulgs. The species has a maximum

activity-density in spring and autumn.

2.4. Hedgerow network extraction

The first part of the methodology consists of etireg the hedgerow network using satellite
and airborne remote sensing data (Fig. 3) (aehatqgraphs). Once the data had been pre-

processed in order to correct any distortion duéhéocharacteristics of the imaging sensor



and imaging conditions, various parameters were/elérfrom the images to be used in the

classification process to extract the hedgerow agtw

| TerraSAR-X data |

| Spot 5 data |

Preprocessing

C2 and T2 matrix extraction, speckle filter,

geometric correction

Preprocessing
Atmospheric and geometric
correction

| Aerial photographs |

Preprocessing
Geometric correction and
mosaicking

i

Shannon | Single Bounce " Double Bounce | Ground | NDVI I
entropy reflectance
\ / (G,R,NIR)
Processing Processing Processing
Object oriented classification Object oriented classification Photo-interpretation
Hedgerows Hedgerows Hedgerows
network network network
[ Validation ] [ Validation Validation

Figure 3. Workflow of pre-processing and processing of imdgeshedgerow network extraction.

2.4.1 Pre-processing of remote sensing data

Polarimetric images are sensitive to object oakoh and scattering properties. In

synthetic aperture radar (SAR) polarimetry, thetdiand received states of polarization

change during data collection (HH, HV, VH and V\f fall polarimetric data), providing the

phase and magnitude of the backscattered signahvibirelated to the material properties of

the studied object (roughness, orientation, strect). Although three major scattering

mechanisms can be studied (Fig. 4), in our caseomlg investigated single and double

bounce scattering mechanisms because the TerraSARtX only contained HH and VV

information (and not HV used to study volume scaitg.



Figure 4. The three major scattering mechanisms studied potarimetric data: (1) Single bounce
from a flat surface backscattered towards the ra@rDouble bounce from a flat surface that is
horizontal with an adjacent vertical surface (fostance the ground and a trunk) and (3) Volume
scattering from randomly oriented objects (for amste the canopy trees).

A 2x2 covariance (§ matrix was firstly extracted from the SAR scatigrmatrix
(Fig. 3) image using PolSARpro v4.0 software (Holetric SAR Data Processing and
Educational Toolbox) (Pottier and Ferro-Famil 2012)Lee refined filter (Lee, 1981) was
then applied to this image using a window of 3*Xegis to reduce speckle noise. The
geocoding process was in this case directly appiig¢de elements of the 2x2 @atrix which
were independent of the polarimetric absolute plase and Pottier 2009). From the
covariance matrix we measured the Shannon entrSp¥)( (Lee and Pottier 2009). ShE
values were transformed usingatural logarithm. This corresponds to the random scattering
of a pixel which can be due to the variation of ks@attering power or the variation of
backscattering polarization. According to Betbegtesl. (2014b) this polarimetric indicator is
directly linked to the canopy cover. In parallel242 coherency (4) matrix was extracted
from the scattering matrix S using the Pauli sgementskr (Lee and Pottier 2009). The
first element of the diagonifss + Swl* and the seconlfus — Swv* were used to study the
single bounce and double bounce mechanisms regggcti

Concerning the SPOT-5 image, radiometric and gbmesc corrections were
performed by applying the 5S model (Tanré et é#90), and geometric correction was
undertaken (Fig. 3) using ArcGIS 10.0 (Esri In&l.the data were georeferenced based on
the Lambert 93 conformal conic system, and the Rdean Square Error was less than 1
pixel. One vegetation index, the Normalized Diffeze Vegetation Index (NDVI) which
detects live green plant canopies, was calculatadker, 1979).

The aerial photographs, acquired by an Ultra LMbtorized (ULM) summer flight in
2013, were georeferenced and mosaicked.
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2.4.2 Processing of remote sensing data for hedgextraction

An object-oriented approach was usedlassify the SPOT-5 and TerraSAR-X
images to extract wooded hedgerows (Benz et d@4)20sing eCognition software (Definiens
Imaging) (Fig. 3). The object-oriented approachsists in classifying homogeneous groups
of pixels using spatial and contextual informat{Braschke and Strobl 2001).

The rule set developed to classify the radar imaggd the multi-threshold segmentation
algorithm that segments the image into objectsdasea threshold value that splits the image
object domain and classifies the resulting imaggatb based on a defined pixel value
threshold. This threshold can be user-defined,ddigi the selected set of pixels into two
subsets so that spectral heterogeneity betweerctsbige increased to a maximum. The
Shannon entropy image was used to eliminate grasslad crops and the single bounce to
eliminate bare soils in order to identify hedgero{@&etbeder et al. 2014b). Indeed, the
Shannon entropy presents higher values for grassad crops than for bare soils because
the number of backscattering mechanisms that doctivese two land use classes is higher
than that for bare soils. Single bounce was usedlitoinate bare soils because it is the

dominant backscattering mechanism for this typlamd surface.

Concerning the SPOT-5 optical image, we appliedudi-threshold segmentation that
generates objects, based on scale, shape andtaeflecvalues. Then, a threshold for the
Normalized Difference Vegetation Index (NDVI) bamds defined to extract hedgerows.
Indeed, hedgerows present higher NDVI values ththerdand cover types (i.e. grasslands,

crops and bare soils).

The hedgerow network map derived from the aehaltggraphs was produced from a
manual digitization using ArcGIS 10.0 software. thre resulting map, each hedgerow is
represented by a polyline, the common way to remtesedgerows (Forman and Baudry
1984). In this case, only the location of hedgerdsvavailable, but there is no information
concerning the tree canopy width or its internedlcture. The map was rasterized with a 5 m

resolution for subsequent analysis.

In conclusion, we obtained a map of the networkhvhiédgerows represented by lines from
the aerial photographs; a map of the network afatnmation on the tree canopy width from

the SPOT-5 image and a map of the network withrmégion on the tree canopy width and a
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characterization of the internal structure of hedges (Shannon entropy (ShE)) from the
TerraSAR-X image (Table 1).

Thirty points in hedgerows and 30 points in agtial plots were taken in the field using a
DGPS (Trimble, accuracy 0.10 m). The accuracy ef dfassification was defined using a

precision index (percentage of correctly classiffecels) since we considered only 2 classes.

2.5 Global evaluation of the relationship betweeneamote sensing data and the
distribution of carabid beetles

The second part of the methodology consisted iftuatiag landscape metrics and variables
derived from remote sensing data to explain theiapdistribution of forest carabid beetles
(Fig. 5). We calculated landscape metrics charaatgrthe hedgerow network using optical
satellite images and aerial photographs. In pdyatg only the same landscape metrics were
derived from the SAR data but also variables charaing the hedgerow canopy cover
(Betbeder et al., 2014 b).

Foresl carabid beetle
abundance

Best model from TerraSAR-X
data Lo explain forest carabid
beetle distribution

Hedgerow Density at 3 scales
(150 m, 250 m, 350 m)

Multiscale
characterization of
Hedgerow network

Hedgerow
network from
TerraSAR-X data

Landscape Grzin at 3 scales
(150 m, 250 m, 350 m)

Best statistical
modelselection

Forest Distance

— e = =

§ [T ———— - -
1 Multiscale characterization of Hedgerow canopy cover at5 |
hedgerow canopy cover :\I scales (15 m, 50 m, 150 m, 250
o ____ g et
Hedgerow Density at 3 scales
( ) (150 m, 250 m, 350 m)
Hedgerow Multiscale L Best model from TerraSAR-X
network from > characterization of Landscape Grain at 3 scales Best statistical data Lo explain forest carabid
SPOT 5 data Hedgerow network (150 m, 250 m, 350 m) model selection beetle distribution
\ - Forest Distance
Hedgerow Density at 3 scales
( ) (150 m, 250 m, 350 m)
Hedgerow .
network from Multiscale
Aerial Photograph — characterization of La?dscape Grain at 3 scales Best statistical dBest mode‘ f.ro;n TerraSAﬂRt;);
data Hedgerow network (150m, 250 m, 350 m) model selection ata to explain forest carabi
e \ ) beetle distribution

Forest Distance

Figure 5. Workflow of the global evaluation of the relationslbetween remote sensing data and the
spatial distribution of carabid beetles

2.5.1 Multiscale characterization of hedgerow rogknstructure

We characterized the hedgerow network structurbk thi¢ three maps derived from the three

sensors using two landscape metrics: hedgerowtgiearsd landscape grain at different scales
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using different windows sizes (150 m, 250 m, 350nndiameter). The hedgerow density
corresponds to the area covered by hedgerows idiffieeent windows. The landscape grain
is the size of the mesh of the network, rangingifraany small elements (fine grain) to larger
ones (coarse grain) (as defined by Forman and Gpd&86, adapted by Vannier et al. 2011
for hedgerow networks). Hedgerow networks have nthsgontinuities and, therefore, do not
comprise "closed meshes”, i.e. the space betwedgehaws. The size of these meshes
controls the local climate by reducing, wind spaed capturing the energy from the sun. We
use "grain" as a surrogate of these meshes toatbdar® the more or less open character of
the landscape. Hedgerow density alone is not seifiicas for similar densities the spatial
distribution of hedgerows, thence the landscapeéngraay be different. In practice, every
pixel of the raster map was classified accordingtdadistance from the closest hedgerow.
Four distance classes were used to classify exel fi) hedgerows (2) less than 50 m, (3)
proportional to hedgerow length, 50-100 m and (4)yerthan 100 m. Between 50 and 100 m
the influence of hedgerows decreases rapidly amddistances greater than 100 m, the
influence of hedgerows (10 times their height) &gligible (Caborn, 1955). We then
computed the number of pixels of the different laiseé classes centered on carabid sampling
sites in different sizes of windows (150 m, 250380 m). The following formula, which was
used to measure the landscape grain, is an adaptdtihe methods developed in Vannier et
al. (2011).

class (3) + class(4)
class(2) + class(3)

Landscape grain =

This means that when the number of pixels locateer ®0 m from hedgerows in the
landscape is high, the landscape is coarse-graamedywhen it is small (minimum 0) the grain

is fine.

2.5.2 Multiscale characterization of hedgerow ggncovers

Betbeder et al. (2014b) established a relationlsatpreen the Shannon entropy (ShE) derived
from the TerraSAR-X image and the hedgerow canamerc As explained in the material
section, this metric has high values for high canopver (when the density of branches is
high and they are interwoven). Conversely, a singplecture of straight branches with low

canopy cover, for example, yields a low value a$ tmetric. The aim of this section is to
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identify the range of ShE values that representhtb@ggerow canopy cover present on the

study site that best explain the forest carabatlbalistribution.
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ShE values
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Figure 6. Examples of maps produced from ShE (TerraSAR-)XgehaEach one shows a different
range of hedgerow canopy cover.

Different maps were produced presenting differamges of ShE values, and thus different
hedgerow canopy cover (Fig. 6). ShE varied betweamd -5 nat for hedgerow objects on
our study site. 5 represents the highest leveanbpy cover and -5 the lowest level of canopy
cover (e.g. trimmed hedges). We know that foresalid beetles are sensitive to internal
hedgerow structure (Burel, 1987). Starting from thmaximum ShE values (i.e. 5),
representing the highest level of canopy coverspiéa the range of values by adding 0.1 to
the highest value for each new map. For instameeyalues in the first range were comprised
between 5 and 4.9, in the second between 5 andn4ii& third between 5 and 4.7, etc, until
the largest range possible comprised between 5&anehs reached (Fig. 6). The Shannon
entropy values of the sampled hedgerows encounterexir study site were comprised
between -2 and 2 (Fig. 2). Betbeder et al.,, 208hdwed that variations in canopy cover
appeared mainly at break values of 0.5. An inteofd).1 was chosen to be fine enough to
detect changes in canopy cover. In other words;reated different maps presenting different
hedgerow canopy cover from the highest range obmartover on our study site, adding
increasing variability of hedgerow canopy covertdtal, 150 maps were produced. Each map
represents different hedgerow canopy structures ttee highest canopy cover for high ShE
values to more heterogeneous canopy covers for hgldium and low ShE values (Fig. 6).
For each of the 150 maps presenting the hedgerowpgacover, we measured the area
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covered by these structures for 5 window sizesnf150 m, 150 m, 250 m, 350 m) centered
on the carabid beetle samples. Statistical anal®es conducted in order to find the ShE
“value range” that best explains the spatial distion of carabid beetles and thus to create
the hedgerow canopy cover metric. Following Legeraitd Legendre (2012), carabid beetle
abundance was cubic root transformed to assessahdrstribution. Generalized linear mixed
models (GLMM) were then built to evaluate the effe€ hedgerow canopy cover on the
abundance of forest carabid beetles. Model fitsewestimated using the coefficient of
determination (R-squared) and p-values in ordedeatify the hedgerow canopy structures
that best explained the abundance of forest catadmtles. We used a significance threshold
of p < 0.05.

2.5.3 Relationship between metrics derived fromttitee sensors and the distribution
of abundance of forest carabid beetles

We tested the different landscape metrics and Masaderived from the remotely sensed data
that best explained the spatial distribution ofe&trcarabid beetles for each type of remote

sensing data. A summary of the explanatory varsatasted is presented in Table 2.

Table 2.Explanatory quantitative variables tested on tisériution of the abundance of
forest carabid beetles

Aerial photographs SPOT-5 TerraSAR-X
Hedgerow density Hedgerow density Hedgerow density
(150 m, 250 m, 350 m) (150 m, 250 m, 350 m) (150 m, 250 m, 350 m)
Explanatory | Landcape grain Landcape grain Landcape grain

variables (150 m, 250 m, 350 m) (150 m, 250 m, 350 m) (150 m, 250 m, 350 m)
Hedgerow canopy cover
(15 m, 50 m, 150 m, 250 m, 350 m)

Generalized linear mixed models (GLMM) were buit assess the effect of the
hedgerow network structure from the aerial photplgssand SPOT-5 image, and to assess the
effect of the hedgerow network structure and healgeranopy cover from the TerraSAR-X
image on the abundance of forest carabid beetlesp&formed a model selection based on

the comparison of the values of the corrected Akaiformation criterion (AlICc) (Burnham
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et al. 2011) and adjusted r-squared to test thectsffof hedgerow network structure and
internal hedgerow structure at different scalescarabid beetle abundance. All possible
models containing any subset of explanatory fadtmreach sensor were fitted to the data and
ranked according to their AICc values from the maoui¢h the lowest AICc and the highest
adjusted r-squared (Burnham and Anderson 2002)u¥éd a significance threshold of p <
0.05. We also conducted test to determine whetherntodel residuals displayed spatial
autocorrelation using an I-Moran test (Carsteralgt2007; Legendre and Legendre, 2012).
The correlation between the different explanatoayiables (for each sensor), measured at
different scales, always yielded an r-squared bé&laginfor similar variables (density or grain).
For the two types of variables, density and grée maximum r-squared value was 0.5
(Appendix A).

Finally, to quantify the predictive power of thesbenodel, a cross-validation was performed
using the “leave-one-out” method (Hastier et alQ92). In this method all but one sampling
surveys of carabid beetle abundance were usedtainaiultiple regression parameters. The
sampling survey which was left out was then eseadpredicted value) using the regression
model and the predicted abundance value was cochpéthk the observed sample carabid
abundance (using sampling points). The processremsated 45 times (as many times as
there is sample carabid abundance). Thus, modebstoéss was assessed by calculating the r-
squared and Root Mean Square Error (RMSE) measusied) the leave-one-out method
(differences between the predicted values of thendénce of forest carabid beetles and the
real abundance of carabid beetles measured indlas)t All analyses were performed in the
R 2.9.0 software package (R core Development G t2010) and MuMIn 1.7.11 and qcc
packages.

3. Results

3.1 Carabid beetles

We captured 9786 individuals belonging to 71 speci&72 individuals belonging to nine
forest carabid beetle species were fourdthax parallelepipedus, Carabus granulatus,
Carabus intricatus, Carabus nemoralis, Carabus problematicus, Pterostichus nigrita,
Pterostichus niger, Elaphrus Riparius, Pristonychus terricola. Individuals of Abax
parallelepipedus represented 78 % of the total. Forest carabid® vieund at 39 of the 45

sampling points, with an average of 30 individysds sampling point.
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3.2 Hedgerow extraction

The accuracy of the hedgerow network classificatvas high, with an overall match of 92 %
and 90 % for SPOT-5 and TerraSAR-X respectivel\b(@#&). Any errors were mainly due to
an underestimation of trimmed hedgerows, becausashtial resolution of SPOT-5 (2.5 m)

and TerraSAR-X (1.5 m) is too coarse to detect them

Table 3.Hedgerow classification accuracy

Sensor Percentage of correctly Percentage of over- Percentage of
detected pixels estimated pixels under-estimated
pixels
SPOT-5 92% 0% 8%
TerraSAR-X 90% 0% 10%

We note that hedgerow discontinuity detected bySAR image (Fig. 7) was mainly due to
the presence of gaps in hedgerows (as shown ipichee in Figure 1) (Betbeder et al., 2014
b). These gaps are due to agricultural practicetoqpeed on hedgerows. This point is
interesting, because compared to optical data gnestfjuired in summer during cloudless
periods when trees have leaves that hide gapsdigenews, radar data better detect hedgerow
discontinuities, which constitutes a reliable seunt information to study species distribution
patterns (Burel & Baudry, 1990).



17

Hedgerow map Hedgerow map Hedgerow map
from aerial photographs from SPOT-5 from TerraSAR-X

Figure 7.Hedgerow map classifications from the aerial phaphs, SPOT-5 and TerraSAR-X
images

Linear regressions between the same landscapecmextracted from the three sensors were
tested (Appendix B). Landscape metrics derived featellite imagery are highly correlated,

especially for hedgerow density, and less corrdl&ie landscape grain. Correlations between
landscape metrics derived from the aerial photdggaand landscape metrics derived from

satellite data are lower, comprised between 0.40a8dAppendix B).

3.3 Relationships between forest carabid beetles @metrics characterizing the
hedgerow network structure and hedgerow canopy covet multiple scales

We first determined the range of Shannon entropyesathat represent the hedgerow canopy
cover, derived from the TerraSAR-X image, which whas best predictor of the abundance of
forest carabids. We then looked, independently ach sensor, for the combination of

variables that best explained the distributionocoé$t carabids.
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3.3.1 Range of “hedgerow canopy cover” that beptagms spatial distribution of forest
carabid beetles

0.7

0.6 -

Scale=350m

N

Scale=150m

0.3 Scale=50m

the TerraSAR-X image

0.2 Scale=15m

Best value range
\y : 2 comprises between 5
014 = = ¢ and 0.5

Correlation coefficient (R?) between the distribution of
forest carabid beetles and the canopy cover derived from

Range values of Shannon entropy (derived from the TerraSAR-X image) presenting
different canopy cover

Figure 8. Results of linear regressions between ShE-derivaggsrand abundance of carabid beetles

Figure 8 shows the evolution of the correlationftoent (R?) between the repartition of
forest carabid beetles and different range of carmvers derived from the TerraSAR-X
image (ShE) in buffers of different sizes (i.e.feufsizes of 15 m, 50 m, 150 m, 250 m, 350
m). We can observe (Figure 8) that at all scalessilue range of ShE that best explained the
spatial distribution of carabid beetles was congutibetween 5 and 0.5 values (r-squared
around 0.6). In other words, whatever the scale,range of ShE values (from 0.5 to 5) that
corresponds to high canopy cover (Betbeder eR@ll4 b) best explains the distribution of
forest carabid beetles in the studied landscapes Tetric (area covered by pixels
corresponding to high canopy cover, at differemless) was included into the SAR model as
an explanatory variable in addition to the metradsaracterizing the hedgerow network

structure.

3.3.2 Global evaluation of the relationship betwssmotely sensed data and the distribution
of forest carabid beetles
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We firstly evaluated the predictive power of thetrits characterizing the hedgerow
network structure (i.e. hedgerow density and laagscgrain at 3 scales) derived from the
SPOT-5 optical image and from the aerial photogrepkxplain the spatial distribution of
forest carabid beetles. According to the AICc amelddjusted r-squared from the models, the
most informative levels of the hedgerow networkusture, derived from the aerial
photographs or SPOT-5 images, for explaining thendbnce of carabid beetles were both the
distance from the forest and the landscape gram stale of 250 m. These models had the
smallest AICc and the highest r-squared (AlCc=148 & adjusted= 0.55 for SPOT-5 and
AICc=116 and r2 adjusted= 0.55 for aerial photoggpWe can thus conclude that the best
explanatory variables were the same for these yest of remote sensing data. Indeed, all
the explanatory variables derived from aerial pgaphs, SPOT-5 and TerraSAR-X images
were highly correlated (Appendix B).

Secondly we evaluated the predictive power of thetrics derived from the
TerraSAR-X image that best explained the spat&tibution of forest carabid beetles. These
metrics characterize i) the hedgerow network stmecti.e. hedgerow density and landscape
grain at 3 scales) and ii) the canopy cover (ieminer of ShE pixels comprised between 0.5
and 5highlighting areas with dense canopy cover at 3 scales). Tharmetel shows that the
abundance of carabid beetles is explained by startie from the forest and the area of dense
canopy cover at two scales: a local scale (i.en)land a landscape scale (i.e. 350 m) (AICc=
91 and adjusted r-squared =0.81). The best modelddérraSAR-X, SPOT-5 and aerial
photographs are presented in Appendix C. Modelg wensidered different only if the AICc
difference was greater than four (Burnham and Asaler2002).

The ‘leave-one-out’ method was thus applied to fihal TerraSAR-X model (i.e.
carabid abundance = “area of dense canopy covis at” + “area of dense canopy cover at
350 m” + “distance from the forest”). The resull®w a very high goodness-of-fit between
the predicted values and the observed values @rsdu= 0.8) and a RMSE of 0.0006 (Figure
9).



20

B

o

ol ©w

H < o

e Q

B — w0 o

T o o

Q5

52 ° °

= E A Q

S °

2 n oy -

1]

@ 2

E =

58 ]

g 2

r_:': @ -

S 2

°

g oA

5 T T T T T T T

Q

= 0 1 2 3 4 5 6

Observed value of the abundance of carabid R*=0.8

RMSE = 0.006

beetles (from the samples])

Figure 9. Result of the “leave-one out” method applied to est TerraSAR-X model for carabid
beetle abundance prediction

4. Discussion

Internal hedgerow structure is of utmost imporéafar many species only thriving in
dense hedgerows. Charrier et al. (1997) show that hedgerow vegetation density in
agricultural landscapes is an important variablergter to explain forest species survival, and
hedgerow quality influences its efficiency for sigscdiffusion. In contrast, dense hedgerows
can be a barrier for butterflies (Mauremooto etE995). Burel (1987) shows that the internal
hedgerow structure interacts with the corridor fiorc of hedgerows to control the presence
and abundance of forest carabid species. Hedgenathisonly a few trees and almost bare
soil do not harbor forest carabid beetles. This f@ylue to a source/sink effect e.g. woods
acting as a continuous source of carabids for hesdgenetworks. Nevertheless, most
ecological studies rely on landscape structurexfbain the spatial distribution of hedgerow
species, leaving hedgerow structure out (Le Féah. &013; Billeter et al, 2008). This could
be mainly due to the difficulty in evaluating inndredgerow structures from field
observations. Therefore, it is very important teelep methods using remote sensing images
such as TerraSAR-X radar images, which can be wsetbnitor hedgerow canopy cover and

to detect gaps in hedgerow network structures @ktb et al. 2014b). Our approach, by
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analyzing the combination of satellite imagery émaogical data, is a step forward in the use
of remote sensing data for ecological applicatiassadvocated by Pettorelli et al. (2014). We
established a strong correlation between hedgeamopy cover and the abundance of forest
carabid beetles at two scales: i.e. a local saatkaalandscape scale. The originality of our
approach lies in the fact that: 1) we used radagis for ecological applications and 2) we
did not use ama priori segmentation of the map into classes, but loolwdtlie best

segmentation according to biological data. This liegpthat the segmentation may be
different for another group of species. Radar irsgg®vide quantitative maps while almost
all maps used in landscape ecology are categorilcatefore not suitable for the same

segmentation process.

Concerning the extraction of the hedgerow netwthrik, study confirms that radar and passive
optical images can be used indifferently. The amcyirof the classification we applied to
SPOT-5 and TerraSAR-X images using an object-atkrpproach is high (percentage of
correctly detected pixels = 92% for the optical gmand 90% for the SAR image). These
results are comparable to those from similar stdigat aim to develop methods to
automatically extract linear landscape featured ag hedgerows from VHSR (Very High
Spatial Resolution) optical data (Wiseman et a0 zerepowicz et al. 2012; Tansey et al.
2009) or VHSR radar data (Bargiel et al. 2013; Bdty et al. 2014b). Therefore, the
landscape metrics defined in order to charactdreziyerow network structure can be derived
from classifications based on either image. Ingdeeeltrics derived from radar and passive
optical images are highly correlated and providailar information to explain the spatial

distribution of forest carabid beetles.

However, hedgerow canopy cover cannot be assestledassive optical remotely sensed
data. Although many models have been developedsoritbe canopy structure using VIS-
NIR imagery, varied vegetation types such as geasteubs and trees reflect in a similar way
and cannot be distinguished (Jacquemoud et al9)200

Among active remotely sensed data, LIDAR and radséa have already shown their potential
to assess the internal tree structure (Kugler.ef@ll4; Heinzel and Koch 2011; Popescu and
Zhao 2008; Treuhaft and Siqueira, 2000). While rimfation derived from LIDAR data has
been successfully used to predict forest beetlenalslages in mountainous forests (Mdiller
and Brandl 2009), the evaluation of information idedl from SAR data has not been
investigated until now. This study is the first,dar knowledge, to explore the potential of
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SAR images and more particularly of one polarineeimdicator (ShE) to explain the spatial
distribution of carabid beetles. Indeed, Betbedenrle (2014b) show a strong correlation
between the Shannon entropy signal derived fronraB&R-X imagery and hedgerow
canopy cover assessed from the ground. This méasShE can be used as a metric of
hedgerow structure. In comparison to other remaselysed data, in our case SPOT-5 and
aerial photographs, the TerraSAR-X image has prowethis study, its ability to improve
models that aim to explain the spatial distributafncarabid beetles. The results show that
areas with dense canopy cover (ShE values compesteeeen 0.5 and 5) at different scales is
a strong predictor of the spatial distribution @rabid beetles in landscapes (adjusted r-
squared = 0.81 and RMSE = 0.006). Indeed, thisakbei better explains the spatial
distribution of the species (AICc = 87 and r-sqda®81) than models only using hedgerow
network structures e.g. “hedgerow density” or “lscape grain” (AlCc=116 and r-
squared=0.55 for the aerial photographs and AIC6=iid r-squared=0.55 for SPOT-5). The
models using metrics derived from the SPOT-5 imaupek aerial photographs showed that the
landscape grain at 250 m and the distance fronfottest are the most significant variables.
All these results on the effect of network struetare consistent with previous knowledge of
the strong dependency of forest carabid beetlafeose vegetation (Vannier et al. 2011; Petit
and Burel 1998). Hedgerow canopy cover and hedgeretwork structures derived from
SAR imagery explained the distribution of forestadad beetles at local and landscape scales.
The local scale (i.e. 15 m) corresponds to faverdalbitat of populations in hedgerows. It is
close to the diameter of their home range in a éexig. The landscape scale (i.e. 350 m)
represents the distribution of “good quality” hediyes in a landscape and could be the scale
of meta-populations. It is also the scale of micliocrate regulation (Cleugh and Hughes
2002). These results are consistent with the thitystates that processes at multiple scales
drive biodiversity (Levin, 1992). A noticeable réisis that the optimum ShE value is the
same for all scales of analysis, from a 15 m segroérmedgerow to a 12.25 ha area of
landscape encompassing several hedgerows. Thisroerthat both the habitat structure and

the landscape structure controlling the microclertzdve synergistic effects.

In all models, we note that the ‘distance from ftbeest’ variable is also important in
explaining the carabid beetle distribution. Thisuié is in accordance with previous studies
that showed that distance from the forest is aromant ecological variable in explaining the

spatial distribution of carabid beetles (Burel 1289
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Our results open new avenues for a better undelisiof the role of hedgerow and network
structures and dynamics as drivers of biodiverSiyecies distribution is more often driven
by the spatio-temporal structure rather than timeldaape structure at a given time (Burel,
1993). SAR images can be used to monitor the spatnporal dynamics of hedgerow
network structures. This would be useful to addgssstions on extinction or colonization
debts, i.e. the fact that landscapes and specstsbdtions do not change at the same rate
(Vellend et al., 2006).

In rural areas, ecological processes are increlgsiaken into consideration in public policies
and landscape management, especially for the nmainée or restoration of ecosystem
services (Lant et al. 2008). For instance ecoldgmiworks are part of most planning
schemes (Opdam et al. 2006). Hedgerow network®faee a reference in these schemes.
Hedgerow structures are mainly determined by afju@l practices (Lotfi et al., 2010).
Radar imagery could guide planners in land planniygidentifying hedgerows with a dense
and complex vegetation structure that should bsgoved in order to enhance the survival of
forest carabid beetles (Charrier et al. 1997). Mwvee, this kind of quantitative data set could
help ecological scientists to establish their spe@ampling, i.e. in order to control certain
structural hedgerow variables without performingndgiconsuming field inventories.
Hedgerow structure derived from TerraSAR-X imagesia also help hydrological scientists
in studying the role of hedgerows as a trap falates, as more trees means more water with

its nutrients absorbed.

For further work it would be interesting to studyhav is the "functional” value of the
Shannon entropy that best explains the distributibmther species such as birds (Arnold
1983; Hinsley and Bellamy 2000) or micro-mammalsc{M| et al., 2007). It would also be
interesting to take into account the phenology wir@inding crops and the agricultural
practices applied to hedgerows, such as the ugesticides, to improve the model developed
in this study (Aude et al., 2004).

Several authors have pointed out that the spataés provided by remote sensing systems
and those used in ecological studies do not matameér et al. 2003; Kerr and Ostrovsky
2003). This paper is an example of how interdistpity between remote sensing and
landscape ecology can enhance our understandiagotdgical patterns. Upcoming sensors,
such as Sentinel 1 and Sentinel 2, will have nesp@rties in order to study other aspects of
land cover and land use which could be very usafahany ecological applications. Sentinel
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1 and Sentinel 2 (respectively SAR and optical sgnasill be able to acquire high spatial and
temporal (5 day revisit time) resolution images dhnds will be able to precisely monitor

vegetation phenology.

5. Conclusion

The purpose of this paper was not to obtain beéktenwledge of the ecology of forest
carabids, but to test the ability of different ramaensing data to monitor the state of
vegetation structure and organization at multigdeales. This complements the work by
Vannier et al (2011) in which the relationshipswestn optical images at different spatial
resolutions and carabid distribution were testectreld we tested metrics which are
inaccessible using ground-based methods alone. VBAR images provide new data to
characterize vegetation structure and more paatituhedgerow canopy cover, a variable
known to explain the spatial distribution of caxhlbeetles in an agricultural landscape, but
not yet quantified at a fine scale. Thus, this gtsidows the high potential of remotely sensed
data for modeling biodiversity in hedgerow netwtakdscapes at a broad scale. SAR images
provide interesting information about vegetatiomuature and spatial distribution that could
enable biologists and ecologists to evaluate hisbdeer large areas in order to understand
species distribution and thus to understand andactexize their environment. It opens new
avenues for further tests with other groups of Egeto address two main questions: 1) how
different are the optima for the different groupgla?) for a given group, are the optima

similar at all scales.
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APPENDIX A. Correlation matrix of the landscape metrics derifrech the aerial photographs (A-
P), SPOT-5 and TerraSAR-X (TSX) at multiple scalssed in the different models. Values are
coefficients of determination (r?). HD = hedgeroendity; LG = landscape grain, CS = canopy

structure

Aerial Photograph

HD A-P HD A-P HD A-P LG A-P LG A-P LG A-P

(150 m) (250 m) (350 m) (150 m) (250 m) (350 m)
HD A-P 1 0.65 0.65 0.25 0.3 0.3
(150 m)
HD A-P 1 0.65 0.3 0.4 0.45
(250 m)
HD A-P 1 0.3 0.4 0.5
(350 m)
LG A-P 1 0.6 0.45
(150 m)
LG A-P 1 0.6
(250 m)
LG A-P 1
(350 m)

SPOT-5

HD SPOT-5 | HD SPOT-5| HD SPOT-5| LG SPOT-5 | LG SPOT-5 | LG SPOT-5

(150 m) (250 m) (350 m) (150 m) (250 m) (350 m)
HD SPOT-5 1 0.65 0.6 0.4 0.5 0.3
(150 m)
HD SPOT-5 1 0.6 0.3 0.4 0.4
(250 m)
HD SPOT-5 1 0.3 0.4 0.45
(350 m)
LG SPOT-5 1 0.6 0.4
(150 m)
LG SPOT-5 1 0.6
(250 m)
LG SPOT-5 1
(350 m)
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APPENDIX B. Correlation matrix of the landscape metrics dadifrom the aerial photographs (A-
P), SPOT-5 and TerraSAR-X (TSX) at multiple scalésues are coefficients of determination (r2).

R? Scale =150 m
HD A-P HD SPOT- HD TSX LG A-P LG SPOT-5 LG TSX
5
HD 150 m 1 0.55 0.52
A-P
HD 150 m 1 0.8
SPOT-5
LG 150 m 1 0.8 0.6
Ortho
LG 150 m 1 0.67
SPOT-5
Scale =250 m
HD A-P HD SPOT- HD TSX LG A-P LG SPOT-5 LG TSX
5
HD 250 m 1 0.73 0.69
A-P
HD 250 m 1 0.95
SPOT-5
LG 250 m 1 0.5 0.55
A-P
LG 250 m 1 0.6
SPOT-5
Scale =350 m
HD A-P HD SPOT- HD TSX LG A-P LG SPOT-5 LG TSX
5
HD 350 m 1 0.55 0.50
A-P
HD 350 m 1 0.90
SPOT-5
LG 350 m 1 0.45 0.4
A-P
LG 350 m 1 0.6
SPOT-5
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APPENDIX C. Best models establishing relationships betweerallumdance of forest carabid beetles and the mekeitged from TerraSAR-
X (TSX); Aerial photographs (A-P) and SPOT-5 imagest models were selected using the AICc and tafjussquaredHD = hedgerow
density; LG = landscape Grain, CS = canopy strectur

HD HD HD LG LG LG FD CSTSX | CSTSX | CSTSX | CSTSX | CSTSX | AlCc r-adjusted
TSX TSX TSX TSX TSX TSX (15m) | (50m) | (150 m) | (250 m) | (350 m)
(150 m) | (250 m) | (350 m) | (150 m) | (250 m) | (350 m)
Abundance X X X 91 0.81
Abundance X X X X 93.4 0.79
Abundance X X X X 93.6 0.78
Abundance X X X X 93.7 0.76
Abundance X X X X 93.7 0.76
Abundance X X X X 93.9 0.78
Abundance | X X X X 94.0 0.78
Abundance X X X X 94.1 0.78
Abundance X X X X 94.1 0.78
Abundance X X X X X 94.9 0.79
HD A-P | HD A-P | HD A-P | LG A-P | LG A-P | LG A-P | FD | AICc r-adjusted
(150m) | (250m) | (350m) | (150 m) | (250 m) | (350 m)
Abundance X X 116.2 0.56
Abundance X X X 118.1 0.55
Abundance X X X 118.2 0.55
Abundance X X 118.5 0.54
Abundance X X X 118.6 0.54
Abundance X X X 118.7 0.55
Abundance X X X X 120.1 0.55
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HD HD HD LG LG LG FD AlCc r-adjusted

SPOT-5 | SPOT-5 | SPOT-5 | SPOT-5 | SPOT-5 | SPOT-5

(150m) | (250 m) | (350 m) | (150 m) | (250 m) | (350 m)
Abundance X X 115 0.55
Abundance | X X X 116 0.56
Abundance | X X X 117 0.52
Abundance X X X 117.9 0.53
Abundance X X X 117.9 0.53
Abundance X X X X 118 0.56
Abundance X X X X 118.3 0.57
Abundance X X X X 118.4 0.58
Abundance | X X X X 118.5 0.58
Abundance X X X X 118.6 0.58




