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Abstract

Median clustering is of great value for partitioning relational data. In this paper, a new prototype-

based clustering method, called Median Evidential C-Means (MECM), which is an extension of

median c-means and median fuzzy c-means on the theoretical framework of belief functions is

proposed. The median variant relaxes the restriction of a metric space embedding for the objects

but constrains the prototypes to be in the original data set. Due to these properties, MECM could

be applied to graph clustering problems. A community detection scheme for social networks based

on MECM is investigated and the obtained credal partitions of graphs, which are more refined than

crisp and fuzzy ones, enable us to have a better understanding of the graph structures. An initial

prototype-selection scheme based on evidential semi-centrality is presented to avoid local premature

convergence and an evidential modularity function is defined to choose the optimal number of

communities. Finally, experiments in synthetic and real data sets illustrate the performance of

MECM and show its difference to other methods.

Keywords: Credal partition, Belief function theory, Median clustering, Community detection,

Imprecise communities

1. Introduction

Cluster analysis or clustering is the task of partitioning a set of n objectsX = {x1,x2, · · · ,xn}
into c small groups Ω = {ω1, ω2, · · · , ωc} in such a way that objects in the same group (called a

cluster) are more similar (in some sense or another, like characteristics or behavior) to each other

than to those in other groups. The clustering can be used in many fields such as privacy preserving

[24] , information retrieval [5], text analysis [47], etc. It can also be used as the first step of

classification problems to identify the distribution of the training set [44]. Among the existing

approaches to clustering, the objective function-driven or prototype-based clustering such as c-

means and Gaussian mixture modeling is one of the most widely applied paradigms in statistical

pattern recognition. These methods are based on a fundamentally very simple, but nevertheless

very effective idea, namely to describe the data under consideration by a set of prototypes. They

capture the characteristics of the data distribution (like location, size, and shape), and classify the

data set based on the similarities (or dissimilarities) of the objects to their prototypes [6].

Generally, a c-partition of n objects in X is a set of n×c values {uij} arrayed as an n×c matrix

U . Each element uij is the membership of xi to cluster j. The classical C-Means (CM) method

aims to partition n observations into c groups in which each observation belongs to the class with
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the nearest mean, serving as a prototype of the cluster. It results in uij is either 0 or 1 depending

whether object i is grouped into cluster j, and thus each data point is assigned to a single cluster

(hard partitions). Fuzzy C-Means (FCM), proposed by Dunn [11] and later improved by Bezdek

[3], is an extension of c-means where each data point can be a member of multiple clusters with

membership values (fuzzy partitions) [25].

Belief functions have already been used to express partial information about data both in

supervised and unsupervised learning [32, 41]. Recently, Masson and Denoeux [32] proposed the

application of evidential c-means (ECM) to get credal partitions [9] for object data. The credal

partition is a general extension of the crisp (hard) and fuzzy ones and it allows the object not only

to belong to single clusters, but also to belong to any subsets of Ω by allocating a mass of belief

for each object in X over the power set 2Ω. The additional flexibility brought by the power set

provides more refined partitioning results than those by the other techniques allowing us to gain a

deeper insight into the data [32].

All of these aforementioned partition approaches are prototype-based. In CM, FCM and ECM,

the prototypes of clusters are the geometric centers of included data points in the corresponding

groups. However, this may be inappropriate as it is the case in community detection problems for

social networks, where the prototype (center) of one group is likely to be one of the persons (i.e.

nodes in the graph) playing the leader role in the community. That is to say, one of the points in

the group is better to be selected as a prototype, rather than the center of all the points. Thus

we should set some constraints for the prototypes, for example, let them be data objects. Actually

this is the basic principle of median clustering methods [16]. These restrictions on prototypes

can relax the assumption of a metric space embedding for the objects to be clustered [16, 18],

and only similarity or dissimilarity between data objects is required. There are some clustering

methods for relational data, such as Relational FCM (RFCM) [20] and Relational ECM (RECM)

[33], but an underlying metric is assumed for the given dissimilarities between objects. However,

in median clustering this restriction is dropped [16]. Cottrell et al. [8] proposed Median C-Means

clustering method (MCM) which is a variant of the classic c-means and proved the convergence

of the algorithm. Geweniger et al. [16] combined MCM with the fuzzy c-means approach and

investigated the behavior of the resulted Median Fuzzy C-means (MFCM) algorithm.

Community detection, which can extract specific structures from complex networks, has at-

tracted considerable attention crossing many areas from physics, biology, and economics to soci-

ology. Recently, significant progress has been achieved in this research field and several popular

algorithms for community detection have been presented. One of the most popular type of classi-

cal methods partitions networks by optimizing some criteria. Newman and Girvan [35] proposed

a network modularity measure (usually denoted by Q) and several algorithms that try to maxi-

mize Q have been designed [4, 7, 10, 42]. But recent researches have found that the modularity

based algorithms could not detect communities smaller than a certain size. This problem is fa-

mously known as the resolution limit [14]. The single optimization criteria i.e. modularity may

not be adequate to represent the structures in complex networks, thus Amiri et al. [1] suggested

a new community detection process as a multi-objective optimization problem. Another family

of approaches considers hierarchical clustering techniques. It merges or splits clusters according

to a topological measure of similarity between the nodes and tries to build a hierarchical tree of

partitions [27, 37, 43]. Also there are some ways, such as spectral methods [40] and signal process

method [23, 26], to map topological relationship of nodes on networks into geometrical structures

of vectors in n-dimensional Euclidian space, where classical clustering methods like CM, FCM and
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ECM could be evoked. However, there must be some loss of accuracy after the mapping process.

As mentioned before, for community detection, the prototypes should be some nodes in the graph.

Besides, usually only dissimilarities between nodes are known to us. Due to the application of the

relaxation on the data objects and the constraints on the prototypes, the median clustering could

be applied to the community detection problem in social networks.

In this paper, we extend the median clustering methods in the framework of belief functions

theory and put forward the Median Evidential C-Means (MECM) algorithm. Moreover, a com-

munity detection scheme based on MECM is also presented. Here, we emphasize two key points

different from those earlier studies. Firstly, the proposed approach could provide credal partitions

for data set with only known dissimilarities. The dissimilarity measure could be neither symmetric

nor fulfilling any metric requirements. It is only required to be of intuitive meaning. Thus it

expands application scope of credal partitions. Secondly, some practical issues about how to apply

the method into community detection problems such as how to determine the initial prototypes

and the optimum community number in the sense of credal partitions are discussed. This makes

the approach appropriate for graph partitions and gives us a better understanding of the analysed

networks, especially for the uncertain and imprecise structures.

The rest of this paper is organized as follows: Section 2 recalls the necessary background

related to this paper. In Section 3, the median c-means algorithm is presented and in section

4, we show how the proposed method could be applied in the community detection problem. In

order to show the effectiveness of our approach, in section 5 we test our algorithm on artificial and

real-world data sets and make comparisons with different methods. The final section makes the

conclusions.

2. Background

2.1. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment frame. The mass

function is defined on the power set 2Ω = {A : A ⊆ Ω}.

Definition 1. The function m : 2Ω → [0, 1] is said to be the Basic Belief Assignment (bba) on 2Ω,
if it satisfies: ∑

A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and plausibility functions
are defined in Eq. (2) and Eq. (3).

Bel(A) =
∑

B⊆A,B ̸=∅

m(B),∀A ⊆ Ω, (2)

Pl(A) =
∑

B∩A̸=∅

m(B),∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) can be interpreted as

the degree to which the evidence fails to support the complement of A. The function pl : Ω→ [0, 1]

such that pl(ωi) = Pl({ωi}) (ωi ∈ Ω) is called the contour function associated with m. A belief

function on the credal level can be transformed into a probability function by Smets method. In

this algorithm, each mass of belief m(A) is equally distributed among the elements of A [39]. This
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leads to the concept of pignistic probability, BetP , defined by

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (4)

where |A| is the number of elements of Ω in A.

Pignistic probabilities, which play the same role as fuzzy membership, can easily help us make

a decision. In fact, belief functions provide us many decision-making techniques not only in the

form of probability measures. For instance, a pessimistic decision can be made by maximizing

the credibility function, while maximizing the plausibility function could provide an optimistic one

[31]. Another criterion [31] considers the plausibility functions and consists in attributing the class

Aj for object i if

Aj = arg max
X⊆Ω
{mb

i (X)Pli(X)}, (5)

where

mb
i (X) = Kb

i λX

(
1

|X|r

)
. (6)

In Eq. (5) mb
i (X) is a weight on Pli(X), and r is a parameter in [0, 1] allowing a decision from a

simple class (r = 1) until the total ignorance Ω (r = 0). The value λX allows the integration of

the lack of knowledge on one of the focal sets X ⊆ Ω, and it can be set to be 1 simply. Coefficient

Kb
i is the normalization factor to constrain the mass to be in the closed world:

Kb
i =

1

1−mi(∅)
. (7)

2.2. Median c-means and median fuzzy c-means

Median c-means is a variant of the traditional c-means method [8, 16]. We assume that n

(p-dimensional) data objects xi = {xi1, xi2, · · · , xip} (i = 1, 2, · · · , n) are given. The object set is

denoted by X = {x1,x2, · · · ,xn}. The objective function of MCM is similar to that in CM:

JMCM =

c∑
j=1

n∑
i=1

uijd
2
ij , (8)

where c is the number of clusters. As MCM is based on crisp partitions, uij is either 0 or 1 depending

whether xi is in cluster j. The value dij is the dissimilarity between xi and the prototype vector

vj of cluster j (i = 1, 2, · · · , n, j = 1, 2, · · · , c), which is not assumed to be fulfilling any metric

properties but should reflect the common sense of dissimilarity. Due to these weak assumptions,

data object xi itself may be a general choice and it does not have to live in a metric space [16].

The main difference between MCM and CM is that the prototypes of MCM are restricted to the

data objects.

Median fuzzy c-means (MFCM) merges MCM and the standard fuzzy c-means (FCM). As

in MCM, it requires the knowledge of the dissimilarity between data objects, and the prototypes

are restricted to the objects themselves [16]. MFCM also performs a two-step iteration scheme to

minimize the cost function

JMFCM =

c∑
j=1

n∑
i=1

uβ
ijd

2
ij , (9)
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subject to the constrains
c∑

k=1

uik = 1,∀i ∈ {1, 2, · · · , n}, (10)

and
n∑

i=1

uik > 0,∀k ∈ {1, 2, · · · , c}, (11)

where each number uik ∈ [0, 1] is interpreted as a degree of membership of object i to cluster k,

and β > 1 is a weighting exponent that controls the fuzziness of the partition. Again, MFCM is

preformed by alternating update steps as for MCM:

• Assignment update:

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik

. (12)

• Prototype update: the new prototype of cluster j is set to be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβ
ijd

2
ij . (13)

2.3. Evidential c-means

Evidential c-means [32] is a direct generalization of FCM in the framework of belief func-

tions, and it is based on the credal partition first proposed by Denœux and Masson [9]. The credal

partition takes advantage of imprecise (meta) classes [30] to express partial knowledge of class mem-

berships. The principle is different from another belief clustering method put forward by Schubert

[38], in which conflict between evidence is utilised to cluster the belief functions related to multiple

events. In ECM, the evidential membership of an object xi = {xi1,xi2, · · · ,xip} is represented

by a bba mi = (mi(Aj) : Aj ⊆ Ω) over the given frame of discernment Ω = {ω1, ω2, · · · , ωc}. The
optimal credal partition is obtained by minimizing the following objective function:

JECM =

n∑
i=1

∑
Aj⊆Ω,Aj ̸=∅

|Aj |αmi(Aj)
βd2ij +

n∑
i=1

δ2mi(∅)β (14)

constrained on ∑
Aj⊆Ω,Aj ̸=∅

mi(Aj) +mi(∅) = 1, (15)

where mi(Aj) , mij is the bba of xi given to the nonempty set Aj , while mi(∅) , mi∅ is the bba of

xi assigned to the emptyset, and | · | is the cardinality of the set. Parameter α is a tuning parameter

allowing to control the degree of penalization for subsets with high cardinality, parameter β is a

weighting exponent and δ is an adjustable threshold for detecting the outliers. It is noted that for

credal partitions, j is not from 1 to c as before, but ranges in [0, f ] with f = 2c. Here dij denotes

the Euclidean distance between xi and the barycenter (i.e. prototype, denoted by vj) associated

with Aj :

d2ij = ∥xi − vj∥2, (16)

where vj is defined mathematically by

vj =
1

|Aj |

c∑
k=1

skjvk, with skj =

1 if ωk ∈ Ak

0 else
. (17)
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The notation ∥ · ∥ denotes the Euclidean norm of a vector, and vk is the geometrical center of all

the points in cluster k. The update for ECM is given by the following two alternating steps and

the update formulas can been obtained by Lagrange multipliers method.

• Assignment update:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak ̸=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

,∀i = 1, 2 · · · , n, ∀j/Aj ⊆ Ω, Aj ̸= ∅ (18)

mi∅ = 1−
∑
Aj ̸=∅

mij ,∀i = 1, 2, · · · , n. (19)

• Prototype update: The prototypes (centers) of the classes are given by the rows of the matrix

vc×p, which is the solution of the following linear system:

HV = B, (20)

where H is a matrix of size (c× c) given by

Hlk =
∑
i

∑
Ajk{ωk,ωl}

|Aj |α−2mβ
ij , k, l = 1, 2, · · · , c, (21)

and B is a matrix of size (c× p) defined by

Blq =

n∑
i=1

xiq

∑
Aj∋ωl

|Aj |α−1mβ
ij , l = 1, 2, · · · , c, q = 1, 2, · · · , p. (22)

2.4. Some concepts for social networks

In this work we will investigate how the proposed clustering algorithm could be applied to

community detection problems in social networks. In this section some concepts related to social

networks will be recalled.

2.4.1. Centrality and dissimilarity

The problem of assigning centrality values to nodes in graphs has been widely investigated

as it is important for identifying influential nodes [48]. Gao et al. [15] put forward Evidential

Semi-local Centrality (ESC) and pointed out that it is more reasonable than the existing centrality

measures such as Degree Centrality (DC), Betweenness Centrality (BC) and Closeness Centrality

(CC). In the application of ESC, the degree and strength of each node are first expressed by bbas,

and then the fused importance is calculated using the combination rule in belief function theory.

The higher the ESC value is, the more important the node is. The detail computation process of

ESC can be found in [15].

The similarity or dissimilarity index signifies to what extent the proximity between two vertices

of a graph is. The dissimilarity measure considered in this paper is the one put forward by Zhou [49].

This index relates a network to a discrete-time Markov chain and utilises the mean first-passage

time to express the distance between two nodes. One can refer to [49] for more details.
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2.4.2. Modularity

Recently, many criteria were proposed for evaluating the partition of a network. A widely

used measure called modularity, or Q was presented by Newman and Girvan [35]. Given a hard

partition with c groups (ω1, ω2, · · · , ωc) U = (uik)n×c, where uik is one if vertex i belongs to the

kth community, 0 otherwise, and let the c crisp subsets of vertices be {V1, V2, · · · , Vc}, then the

modularity can be defined as [13]:

Qh =
1

∥W ∥

c∑
k=1

∑
i,j∈Vk

(
wij −

kikj
∥W ∥

)
, (23)

where ∥W ∥ =
∑n

i,j=1 wij , ki =
∑n

j=1 wij . The node subsets {Vk, k = 1, 2, · · · , c} are determined

by the hard partition Un×c, but the role of U is somewhat obscured by this form of modularity

function. To reveal the role played by the partition U explicitly, Havens et al. [21] rewrote the

equations in the form of U . Let k = (k1, k2, · · · , kn)T , B = W − kTk/ ∥W∥, then

Qh =
1

∥W ∥

c∑
k=1

n∑
i,j=1

(
wij −

kikj
∥W ∥

)
uikujk

=
1

∥W ∥

c∑
k=1

ukBuT
k

= trace
(
UTBU

)
/∥W ∥, (24)

where uk = (u1k, u2k, · · · , unk)
T
.

Havens et al. [21] pointed out that an advantage of Eq. (24) is that it is well defined for any

partition of the nodes not just crisp ones. The fuzzy modularity of U was derived as

Qf = trace
(
UTBU

)
/∥W ∥, (25)

where U is the membership matrix and uik represents the membership of community k for node i.

If uik is restricted in [0, 1], the fuzzy partition degrades to the hard one, and so Qf equals to Qh

at this time.

3. Median Evidential C-Means (MECM) approach

We introduce here median evidential c-means in order to take advantages of both median

clustering and credal partitions. Like all the prototype-based clustering methods, for MECM, an

objective function should first be found to provide an immediate measure of the quality of clustering

results. Our goal then can be characterized as the optimization of the objective function to get

the best credal partition.

3.1. The objective function of MECM

To group n objects in X = {x1,x2, · · · ,xn} into c clusters ω1, ω2, · · · , ωc, the credal partition

M = {m1,m2, · · · ,mn} defined on Ω = {ω1, ω2, · · · , ωc} is used to represent the class membership

of the objects, as in [9, 32]. The quantities mij = mi(Aj) (Aj ̸= ∅, Aj ⊆ Ω) are determined by the

dissimilarity between object xi and focal set Aj which has to be defined first.

Let the prototype set of specific (singleton) cluster be V = {v1,v2, · · · ,vc}, where vi is the

prototype vector of cluster ωi (i = 1, 2, · · · , c) and it must be one of the n objects. If |Aj | = 1, i.e.,
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Aj is associated with one of the singleton clusters in Ω (suppose to be ωj with prototype vector

vj), then the dissimilarity between xi and Aj is defined by

d
2

ij = d2(xi,vj), (26)

where d(xi,xj) represents the known dissimilarity between object xi and xj . When |Aj | > 1,

it represents an imprecise (meta) cluster. If object xi is to be partitioned into a meta cluster,

two conditions should be satisfied. One is the dissimilarity values between xi and the included

singleton classes’ prototypes are similar. The other is the object should be close to the prototypes

of all these specific clusters. The former measures the degree of uncertainty, while the latter is to

avoid the pitfall of partitioning two data objects irrelevant to any included specific clusters into

the corresponding imprecise classes. Let the prototype vector of the imprecise cluster associated

with Aj be vj , then the dissimilarity between xi and Aj can be defined as:

d
2

ij =

γ 1
|Aj |

∑
ωk∈Aj

d2(xi,vk) + ρij min{d(xi,vk) : ωk ∈ Aj}

γ + 1
, (27)

with

ρij =

∑
ωx,ωy∈Aj

√
(d (xi,vx)− d(xi,vy))

2

η
∑

ωx,ωy∈Aj

d(vx,vy)
. (28)

In Eq. (27) γ weights the contribution of the dissimilarity of the objects from the consisted specific

clusters and it can be tuned according to the applications. If γ = 0, the imprecise clusters only con-

sider our uncertainty. Discounting factor ρij reflects the degree of uncertainty. If ρij = 0, it means

that all the dissimilarity values between xi and the included specific classes in Aj are equal, and we

are absolutely uncertain about which cluster object xi is actually in. Parameter η (∈ [0, 1]) can be

tuned to control of the discounting degree. In credal partitions, we can distinguish between “equal

evidence” (uncertainty) and “ignorance”. The ignorance reflects the indistinguishability among the

clusters. In fact, imprecise classes take both uncertainty and ignorance into consideration, and we

can balance the two types of imprecise information by adjusting γ. Therefore, the dissimilarity

between xi and Aj(Aj ̸= ∅, Aj ⊆ Ω), dij , can be calculated by

d
2

ij =


d2(xi,vj) |Aj | = 1,
γ 1

|Aj |
∑

ωk∈Aj

d2(xi,vk)+ρij min{d(xi,vk):ωk∈Aj}

γ+1 |Aj | > 1

. (29)

Like ECM, we propose to look for the credal partition M = {m1,m2, · · · ,mn} ∈ Rn×2c and

the prototype set V = {v1,v2, · · · ,vc} of specific (singleton) clusters by minimizing the objective

function:

JMECM(M ,V ) =

n∑
i=1

∑
Aj⊆Ω,Aj ̸=∅

|Aj |αmβ
ijd

2

ij +

n∑
i=1

δ2mβ
i∅, (30)

constrained on ∑
Aj⊆Ω,Aj ̸=∅

mij +mi∅ = 1, (31)

where mij , mi(Aj) is the bba of ni given to the nonempty set Aj , mi∅ , mi(∅) is the bba of

ni assigned to the empty set, and dij is the dissimilarity between xi and focal set Aj . Parameters
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α, β, δ are adjustable with the same meanings as those in ECM. Note that JMECM depends on the

credal partition M and the set V of all prototypes.

3.2. The optimization

To minimize JMECM, an optimization scheme via an Expectation-Maximization (EM) algo-

rithm as in MCM [8] and MFCM [16] can be designed, and the alternate update steps are as

follows:

Step 1. Credal partition (M) update.

• ∀Aj ⊆ Ω, Aj ̸= ∅,

mij =
|Aj |−α/(β−1)d

−2/(β−1)

ij∑
Ak ̸=∅

|Ak|−α/(β−1)d
−2/(β−1)

ik + δ−2/(β−1)
(32)

• if Aj = ∅,
mi∅ = 1−

∑
Aj ̸=∅

mij (33)

Step 2. Prototype (V ) update.

The prototype vi of a specific (singleton) cluster ωi (i = 1, 2, · · · , c) can be updated first

and then the dissimilarity between the object and the prototype of each imprecise (meta) clusters

associated with subset Aj ⊆ Ω can be obtained by Eq. (29). For singleton clusters ωk (k =

1, 2, · · · , c), the corresponding new prototypes vk (k = 1, 2, · · · , c) are set to be sample xl orderly,

with

xl = argmin
v
′
k

L(v
′

k) ,
n∑

i=1

∑
ωk∈Aj

|Aj |αmβ
ijd

2

ij(v
′

k),v
′

k ∈ {x1,x2, · · · ,xn}

 , (34)

The dissimilarity between xi and Aj , d
2

ij , is a function of v
′

k, which is the prototype of ωk(∈ Aj),

and it should be one of the n objects in X = {x1,x2, · · · ,xn}.

The bbas of the objects’ class membership are updated identically to ECM [32], but it is worth

noting that dij has different meanings and less constraints as explained before. For the prototype

updating process the fact that the prototypes are assumed to be one of the data objects is taken

into account. Therefore, when the credal partition matrix M is fixed, the new prototypes of the

clusters can be obtained in a simpler manner than in the case of ECM application. The MECM

algorithm is summarized as Algorithm 1.

The convergence of MECM algorithm can be proved in the following lemma, similar to the

proof of median neural gas [8] and MFCM [16].

Lemma 1. The MECM algorithm (Algorithm 1) converges in a finite number of steps.

Proof: Suppose θ(t) = (Mt,Vt) and θ(t+1) = (Mt+1,Vt+1) are the parameters from two successive

iterations of MECM. We will first prove that

JMECM (θ(t)) ≥ JMECM (θ(t+1)), (35)
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Algorithm 1 : Median evidential c-means algorithm

Input dissimilarity matrix D , [d(xi, xj)]n×n for the n objects {x1,x2, · · · ,xn}
Parameters c: number clusters 1 < c < n

α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the emptyset
γ > 0: weight of dissimilarity between data and prototype vectors
η ∈ [0, 1]: control of the discounting degree

Initialization Choose randomly c initial cluster prototypes from the objects
Loop t← 0

Repeat
(1). t← t+ 1
(2). Compute Mt using Eq. (32), Eq. (33) and Vt−1

(3). Compute the new prototype set Vt using Eq. (34)
Until the prototypes remain unchanged

which shows MECM always monotonically decreases the objective function. Let

J
(t)
MECM =

n∑
i=1

∑
Aj⊆Ω,Aj ̸=∅

|Aj |α(m(t)
ij )

β(d
(t)

ij )
2 +

n∑
i=1

δ2(m
(t)
i∅ )

β

,
∑
i

∑
j

f1(Mt)f2(Vt) +
∑
i

f3(Mt), (36)

where f1(Mt) = |Aj |α(m(t)
ij )

β, f2(Vt) = (d
(t)
ij )

2, and f3(Mt) = δ2(m
(t)
i∅ )

β. Mt+1 is then obtained

by maximizing the right hand side of the equation above. Thus,

J
(t)
MECM ≥

∑
i

∑
j

f1(Mt+1)f2(Vt) +
∑
i

f3(Mt+1) (37)

≥
∑
i

∑
j

f1(Mt+1)f2(Vt+1) +
∑
i

f3(Mt+1) (38)

= J
(t+1)
MECM . (39)

This inequality (37) comes from the fact Mt+1 is determined by differentiating of the respective

Lagrangian of the cost function with respect to Mt. To get Eq. (38), we could use the fact that

every prototype vk (k = 1, 2, · · · , c) in Vt+1 is orderly chosen explicitly to be

argmin
v
′
k

L(v
′

k) ,
n∑

i=1

∑
ωk∈Aj

|Aj |αmβ
ijd

2

ij(v
′

k),v
′

k ∈ {x1,x2, · · · ,xn}

 ,

and thus this formula evaluated at Vt+1 must be equal to or less than the same formula evaluated

at Vt.

Hence MECM causes the objective function to converge monotonically. Moreover, the bba M

is a function of the prototypes V and for given V the assignment M is unique. Because MECM

assumes that the prototypes are original object data in X, so there is a finite number of different

prototype vectors V and so is the number of corresponding credal partitions M . Consequently we

can get the conclusion that the MECM algorithm converges in a finite number of steps.

10



Remark 1. Although the objective function of MECM takes the same form as that in ECM

[32], we should note that in MECM, it is no longer assumed that there is an underlying Euclidean

distance. Thus the dissimilarity measure dij has few restrictions such as the triangle inequality

or the symmetry. This freedom distinguishes the MECM from ECM and RECM, and it leads to

the constraint for the prototypes to be data objects themselves. The distinct difference in the

process of minimization between MECM and ECM lies in the prototype-update step. The purpose

of updating the prototypes is to make sure that the cost function would decrease. In ECM the

Lagrange multiplier optimization is evoked directly while in MECM a search method is applied.

As a result, the objective function may decline more quickly in ECM as the optimization process

has few constraints. However, when the centers of clusters in the data set are more likely to be the

data object, MECM may converge with few steps.

Remark 2. Although both MECM and MFCM can be applied to the same type of data

set, they are very different. This is due to the fact that they are founded on different models of

partitioning. MFCM provides fuzzy partition. In contrast, MECM gives credal partitions. We

emphasize that MECM is in line with MCM and MFCM: each class is represented by a prototype

which is restricted to the data objects and the dissimilarities are not assumed to be fulfilling any

metric properties. MECM is an extension of MCM and MFCM in the framework of belief functions.

3.3. The parameters of the algorithm

As in ECM, before running MECM, the values of the parameters have to be set. Parameters

α, β and δ have the same meanings as those in ECM, and γ weighs the contribution of uncertainty

to the dissimilarity between nodes and imprecise clusters. The value β can be set to be β = 2 in

all experiments for which it is a usual choice. The parameter α aims to penalize the subsets with

high cardinality and control the amount of points assigned to imprecise clusters in both ECM and

MECM. As the measures for the dissimilarity between nodes and meta classes are different, thus

different values of α should be taken even for the same data set. But both in ECM and MECM,

the higher α is, the less mass belief is assigned to the meta clusters and the less imprecise will be

the resulting partition. However, the decrease of imprecision may result in high risk of errors. For

instance, in the case of hard partitions, the clustering results are completely precise but there is

much more intendancy to partition an object to an unrelated group. As suggested in [32], a value

can be used as a starting default one but it can be modified according to what is expected from

the user. The choice δ is more difficult and is strongly data dependent [32].

For determining the number of clusters, the validity index of a credal partition defined by

Masson and Denoeux [32] could be utilised:

N∗(c) , 1

n log2(c)
×

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 , (40)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get the optimal number of clusters. When

MECM is applied to community detection, a different index is defined to determine the number of

communities. We will describe it in the next section.

4. Application and evaluation issues

In this section, we will discuss how to apply MECM to community detection problems in social

networks and how to evaluate credal partitions.

11



4.1. Evidential modular function

Assume the obtained credal partition of the graph is

M = [m1,m2, · · · ,mn]
T
,

where mi = (mi1,mi2, · · · ,mic)
T. Similarly to the fuzzy modularity by Havens et al. [21], here we

introduce an evidential modularity [50]:

Qe =
1

∥W ∥

c∑
k=1

n∑
i,j=1

(
wij −

kikj
∥W ∥

)
plikpljk, (41)

where pli = (pli1, pli2, · · · , plic)T is the contour function associated with mi, which describes the

upper value of our belief to the proposition that the ith node belongs to the kth community.

Let PL = (plik)n×c, then Eq. (41) can be rewritten as:

Qe =
trace(PLT B PL)

∥W ∥
. (42)

Qe is a directly extension of the crisp and fuzzy modularity functions in Eq. (24). When the credal

partition degrades into the hard and fuzzy ones, Qe is equal to Qh and Qf respectively.

4.2. The initial prototypes for communities

Generally speaking, the person who is the center in the community in a social network has the

following characteristics: he has relation with all the members of the group and their relationship

is stronger than usual; he may directly contact with other persons who also play an important role

in their own community. For instance, in Twitter network, all the members in the community of

the fans of Real Madrid football Club (RMC) are following the official account of the team, and

RMC must be the center of this community. RMC follows the famous football player in the club,

who is sure to be the center of the community of his fans. In fact, RMC has 10382777 followers

and 30 followings (the data on March 16, 2014). Most of the followings have more than 500000

followers. Therefore, the centers of the community can be set to the ones not only with high degree

and strength, but also with neighbours who also have high degree and strength. Thanks to the

theory of belief functions, the evidential semi-local centrality ranks the nodes considering all these

measures. Therefore the initial c prototypes of each community can be set to the nodes with largest

ESC values.

Note that there is usually more than one center in one community. Take Twitter network

for example again, the fans of RMC who follow the club official account may also pay attention

to Cristiano Ronaldo, the most popular player in the team, who could be another center of the

community of RMC’s fans to a great extent. These two centers (the accounts of the club and

Ronaldo) both have large ESC values but they are near to each other. This situation violates the

rule which requires the chosen seeds as far away from each other as possible [2, 26].

The dissimilarity between the nodes could be utilised to solve this problem. Suppose the

ranking order of the nodes with respect to their ESCs is n1 ≥ n2 ≥ · · · ≥ nn. In the beginning n1

is set to be the first prototype as it has the largest ESC, and then node n2 is considered. If d(n1, n2)

(the dissimilarity between node 1 and 2) is larger than a threshold µ, it is chosen to be the second

prototype. Otherwise, we abandon n2 and turn to check n3. The process continues until all the c

prototypes are found. If there are not enough prototypes after checking all the nodes, we should
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decrease µ moderately and restart the search from n1. In this paper we test the approach with the

dissimilarity measure proposed in [49]. Based on our experiments, [0.7, 1] is a better experiential

range of the threshold µ. This seed choosing strategy is similar to that in [26].

4.3. The community detection algorithm based on MECM

The whole community detection algorithm in social networks based on MECM is summarized

in Algorithm 2.

Algorithm 2 : Community detection algorithm based on MECM

Input: A, the adjacency matrix; W , the weight matrix (if any); µ, the threshold controlling
the dissimilarity between the prototypes; cmin, the minimal number of communities; cmax, the
maximal of communities; the required parameters in original MECM algorithm
Initialization: Calculate the dissimilarity matrix of the nodes in the graph.
repeat
(1). Set the cluster number c in MECM be c = cmin.
(2). Choose the initial c prototypes using the strategy proposed in section 4.2.
(3). Run MECM with the corresponding parameters and the initial prototypes got in (2).
(4). Calculate the evidential modularity using Eq. (42).
(5). Let c = c+ 1.

until c reaches at cmax.
Output: Choose the number of communities at around which the modular function peaks, and
output the corresponding credal partition of the graph.

In the algorithm, cmin and cmax can be determined based on the original graph. Note that

cmin ≥ 2. It is an empirical range of the community number of the network. If c is given, we can

get a credal partition based on MECM and then the evidential modularity can be derived. As we

can see, the modularity is a function of c and it should peak at around the optimal value of c for

the given network.

4.4. Performance evaluation

The objective of the clustering problem is to partition a similar data pair to the same group.

There are two types of correct decisions by the clustering result: a true positive (TP) decision

assigns two similar objects to the same cluster, while a true negative (TN) decision assigns two

dissimilar objects to different clusters. Correspondingly, there are two types of errors we can

commit: a false positive (FP) decision assigns two dissimilar objects to the same cluster, while a

false negative (FN) decision assigns two similar objects to different clusters. Let a (respectively, b)

be the number of pairs of objects simultaneously assigned to identical classes (respectively, different

classes) by the stand reference partition and the obtained one. Actually a (respectively, b) is the

number of TP (respectively, TN) decisions. Similarly, let c and d be the numbers of FP and FN

decisions respectively. Two popular measures that are typically used to evaluate the performance

of hard clusterings are precision and recall. Precision (P) is the fraction of relevant instances (pairs

in identical groups in the clustering benchmark) out of those retrieved instances (pairs in identical

groups of the discovered clusters), while recall (R) is the fraction of relevant instances that are

retrieved. Then precision and recall can be calculated by

P =
a

a+ c
and R =

a

a+ d
(43)
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respectively. The Rand index (RI) measures the percentage of correct decisions and it can be

defined as

RI =
2(a+ b)

n(n− 1)
, (44)

where n is the number of data objects. In fact, precision measures the rate of the first type of

errors (FP), recall (R) measures another type (FN), while RI measures both.

For fuzzy and evidential clusterings, objects may be partitioned into multiple clusters with

different degrees. In such cases precision would be consequently low [34]. Usually the fuzzy and

evidential clusters are made crisp before calculating the measures, using for instance the maximum

membership criterion [34] and pignistic probabilities [32]. Thus in the work presented in this paper,

we have hardened the fuzzy and credal clusters by maximizing the corresponding membership and

pignistic probabilities and calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk to group a data into a specific class

without strong belief. In other words, a data pair can be clustered into the same specific group

only when we are quite confident and thus the misclassification rate will be reduced. However,

partitioning too many data into imprecise clusters may cause that many objects are not identified

for their precise groups. In order to show the effectiveness of the proposed method in these aspects,

we use the evidential precision (EP) and evidential recall (ER):

EP =
ner

Ne
, ER =

ner

Nr
. (45)

In Eq. (45), the notation Ne denotes the number of pairs partitioned into the same specific group

by evidential clusterings, and ner is the number of relevant instance pairs out of these specifically

clustered pairs. The value Nr denotes the number of pairs in the same group of the clustering

benchmark, and ER is the fraction of specifically retrieved instances (grouped into an identical

specific cluster) out of these relevant pairs. When the partition degrades to a crisp one, EP and

ER equal to the classical precision and recall measures respectively. EP and ER reflect the accuracy

of the credal partition from different points of view, but we could not evaluate the clusterings from

one single term. For example, if all the objects are partitioned into imprecise clusters except two

relevant data object grouped into a specific class, EP = 1 in this case. But we could not say this

is a good partition since it does not provide us with any information of great value. In this case

ER ≈ 0. Thus ER could be used to express the efficiency of the method for providing valuable

partitions. Certainly we can combine EP and ER like RI to get the evidential rank index (ERI)

describing the accuracy:

ERI =
2(a∗ + b∗)

n(n− 1)
, (46)

where a∗ (respectively, b∗) is the number of pairs of objects simultaneously clustered to the same

specific class (i.e., singleton class, respectively, different classes) by the stand reference partition

and the obtained credal one. Note that for evidential clusterings, precision, recall and RI measures

are calculated after the corresponding hard partitions are got, while EP, ER and ERI are based on

hard credal partitions [32].

Example 1. In order to show the significance of the above performance measures, an example

containing only ten objects from two groups is presented here. The three partitions are given in

Fig. 1-b – 1-d. The values of the six evidential indices (P,R,RI,EP,ER,ERI) are listed in Tab. 1.

14



ω1 

ω2 

ω1 

ω2 

a. Original data sets. b. Partition 1.

ω1 

ω2 

ω12 

ω1 

ω2 

ω12 

c. Partition 2. d. Partition 3.

Figure 1: An small data set with imprecise classes.

Table 1: Evaluation Indices of the partitions.

EP ER ERI P R RI
Partition 1 0.6190 0.6190 0.6444 0.6190 0.6190 0.6444
Partition 2 1.0000 0.6190 0.8222 – – –
Partition 3 1.0000 0.0476 0.5556 – – –

We can see that if we simply partition the nodes in the overlapped area, the risk of misclassification

is high in terms of precision. The introduced imprecise cluster ω12 , {ω1, ω2} could enable us to

make soft decisions, as a result the accuracy of the specific partitions is high. However, if too many

objects are clustered into imprecise classes, which is the case of partition 3, it is pointless although

EP is high. Generally, EP denotes the accuracy of the specific decisions, while ER represents the

efficiency of the approach. We remark that the evidential indices degrade to the corresponding

classical indices (e.g, evidential precision degrades to precision) when the partition is crisp.

5. Experiments

In this section a number of experiments are performed on classical data sets in the distance

space and on graph data for which only the dissimilarities between nodes are known. The obtained

credal partitions are compared with hard and fuzzy ones using the evaluation indices proposed in

Section 4.4 to show the merits of MECM.

5.1. Overlapped data set

Clustering approaches to detect overlap objects which leads to recent attentions are still in-

efficiently processed. Due to the introduction of imprecise classes, MECM has the advantage to

detect overlapped clusters. In the first example, we will use overlapped data sets to illustrate the

behavior of the proposed algorithm.

We start by generating 2× 100 points uniformly distributed in two overlapped circles with a

same radius R = 30 but with different centers. The coordinates of the first circle’s center are (0, 0)

while the coordinates of the other circle’s center are (30, 30). The data set is displayed in Fig. 2-a.

15



−20 0 20 40 60

−
4
0

−
2
0

0
2
0

4
0

6
0

ω1

ω2

−20 0 20 40 60

−
4
0

−
2
0

0
2
0

4
0

6
0

ω1

ω2

ω12

centers

a. Overlapped data b. Clustering result of MECM

Figure 2: Clustering of overlapped data set

In order to show the influence of parameters in MECM and ECM, different values of γ, α, η

and δ have been tested for this data set. The figure Fig. 3-a displays the three evidential indices

varying with γ (α is fixed to be 2) by MECM, while Fig. 3-b depicts the results of MECM with

different α but a fixed γ = 0.4 (η and δ are set 0.7 and 50, respectively, in the tests). For fixed

α and γ, the results with different η and δ are shown in Fig. 3-c. The effect of α and δ on the

clusterings of ECM is illustrated in Fig. 3-e. As we can see, for both MECM and ECM, if we want

to make more imprecise decisions to improve ER, parameter α can be decreased. In MECM, we

can also reduce the value of parameter γ to accomplish the same purpose. Although both α and

γ have effect on imprecise clusters in MECM, the mechanisms they work are different. Parameter

α tries to adjust the penalty degree to control the imprecise rates of the results. However, for γ,

the same aim could be got by regulating the uncertainty degree of imprecise classes. It can be

seen from the figures, the effect of γ is more conspicuous than α. Moreover, although α may be

set too high to obtain good clusterings, “good” partitions can also be got by adjusting γ in this

case. For both MECM and ECM, the stable limiting values of evidential measures are around 0.7

and 0.8. Such values suggest the equivalence of the two methods to a certain extent. Parameter

η is used for discounting the distance between uncertain objects and specific clusters. As pointed

out in Fig. 3-c, if γ and α are well set, it has little effect on the final clusterings. The same is true

in the case of δ which is applied to detect outliers. The effect of the different values of parameter

β is illustrated in Fig. 3-d. We can see that it has little influence on the final results as long as

it is larger than 1. As in FCM and ECM, for which it is a usual choice, we use β = 2 in all the

following experiments.

The improvement of precision will bring about the decline of recall, as more data could not

be clustered into specific classes. What we should do is to set parameters based on our own

requirement to make a tradeoff between precision and recall. For instance, if we want to make a

cautious decision in which EP is relatively high, we can reduce γ and α. Values of these parameters

can be also learned from historical data if such data are available.

For the objects in the overlapped area, it is difficult to make a hard decision i.e. to decide

about their specific groups. Thanks to the imprecise clusters, we can make a soft decision. As

analysed before, the soft decision will improve the precision of total results and reduce the risk of

misclassifications caused by simply partitioning the overlapped objects into specific class. However,

too many imprecise decisions will decrease the recall value. Therefore, the ideal partition should
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make a compromise between the two measures. Set α = 1.8, γ = 0.2, η = 0.7 and δ = 50, the

“best” (with relatively high values on both precision and recall) clustering result by MECM is

shown in Fig. 2-b. As we can see, most of the data in the overlapped area are partitioned into

imprecise cluster ω12 , {ω1, ω2} by the application of MECM. We adjust the coordinates of the

center of the second circle to get overlapped data with different proportions (overlap rates), and

the validity indices of the clustering results by different methods are illustrated in Fig. 4. For

the application of MECM, MCM and MFCM, each algorithm is evoked 20 times with randomly

selected initial prototypes for the same data set and the mean values of the evaluating indices are

reported. The figure Fig. 4-d shows the average values of the indices by MECM (plus and minus

one standard deviation) for 20 repeated experiments as a function of the overlap rates. As we can

see the initial prototypes indeed have effects on the final results, especially when the overlap rates

are high. Certainly, we can avoid the influence by repeating the algorithm many times. But this

is too expensive for MECM. Therefore, we suggest to use the prototypes obtained in MFCM or

MCM as the initial. In the following experiments, we will set the initial prototypes to be the ones

got by MFCM.

As it can be seen, for different overlap rates, the classical measures such as precision, recall,

and RI are almost the same for all the methods. This reflects that pignistic probabilities play a

similar role as fuzzy membership. But we can see that for MECM, EP is significantly high, and the

increasing of overlap rates has least effects on it compared with the other methods. Such effect can

be attributed to the introduced imprecise clusters which enable us to make a compromise decision

between hard ones. But as many points are clustered into imprecise classes, the evidential recall

value is low.

Overall, this example reflects one of the superiority of MECM that it can detect overlapped

clusters. The objects in the overlapped area could be clustered into imprecise classes by this

approach. Other possible available information or special techniques could be utilised for these

imprecise data when we have to make hard decisions. Moreover, partitions with different degree of

imprecision can be got by adjusting the parameters of the algorithm based on our own requirement.

5.2. Classical data sets from Gaussian mixture model

In the second experiment, we test on a data set consisting of 3× 50 + 2× 5 points generated

from different Gaussian distributions. The first 3 × 50 points are from Gaussian distributions

G(µk,Σk)(k = 1, 2, 3) with

µ1 =(0, 0)T,µ2 = (40, 40)T,µ3 = (80, 80)T (47)

Σ1 = Σ2 = Σ3 =

(
120 0

0 120

)
,

and the last 2× 10 data are noisy points follow G(µk,Σk)(k = 4, 5) with

µ4 =(−50, 90)T,µ5 = (−10, 130)T (48)

Σ4 = Σ5 =

(
80 0

0 80

)
.

MECM is applied with the following settings: α = 1, δ = 100, η = 0.7, while ECM has been

tested using α = 1.7, δ = 100 (The appropriate parameters can be determined similarly as in the
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first example). One can see from Figs. 5-b and 5-c , MCM and MFCM can partition most of the

regular data in ω1, ω2 and ω3 into their correct clusters, but they could not detect the noisy points

correctly. These noisy data are simply grouped into a specific cluster by both approaches. As can

be seen from Fig. 5-d, for the points located in the middle part of ω2, ECM could not find their

exact group and misclassify them into imprecise cluster ω13 . In the figures ωij , {ωi, ωj} denotes
imprecise clusters.

As mentioned before, imprecise classes in MECM can measure ignorance and uncertainty at

the same time, and the degree of ignorance in meta clusters can be adjusted by γ. We can see that

MECM does not detect many points in the overlapped area between two groups if γ is set to 0.6. In

such a case the test objects are partitioned into imprecise clusters mainly because of our ignorance

about their specific classes. These objects attributed to meta classes mainly belong to noisy data

in ω4 and ω5. The distance of these points to the prototypes of specific clusters is large (but not too

large or they could be regarded to be in the emptyset, see Fig. 5-e). Thus the distance between the

prototype vectors is relatively small so that these specific clusters are indistinguishable. Decreasing

γ to be 0.2 would make imprecise class denoting more uncertainty, as it can be seen from Fig. 5-f,

where many points located in the margin of each group are clustered into imprecise classes. In

such a case, meta classes rather reflect our uncertainty on the data objects’ specific cluster.

The table Tab. 2 lists the indices for evaluating the different methods. Bold entries in each

column of this table (and also other tables in the following) indicate that the results are significant

as the top performing algorithm(s) in terms of the corresponding evaluation index. We can see

that the precision, recall and RI values for all approaches are similar except from those obtained

for ECM which are significantly lower. As these classical measures are based on the associated

pignistic probabilities for evidential clusterings, it seems that credal partitions can provide the same

information as crisp and fuzzy ones. But from the same table, we can also see that the evidential

measures EP and ERI obtained for MECM are higher (for hard partitions, the values of evidential

measures equal to the corresponding classical ones) than the ones obtained for other methods. This

fact confirms the accuracy of the specific decisions i.e. decisions clustering the objects into specific

classes. The advantage can be attributed to the introduction of imprecise clusters, with which we

do not have to partition the uncertain or unknown objects into a specific cluster. Consequently,

it could reduce the risk of misclassification. However, although ECM also deals with imprecise

clusters, the accuracy is not improved as much as in the case of applying MECM. As illustrated

before in the case of ECM application, many objects of a specific cluster are partitioned into an

irrelevant imprecise class and, as a result, the evidential precision value and ERI decrease as well.

Table 2: The clustering results for gaussian points by different methods. For each method, we generate 20 data sets
with the same parameters and report the mean values of the evaluation indices for all the data sets.

Precision Recall RI EP ER ERI
MCM 0.7802 0.9570 0.9002 0.7802 0.9570 0.9002

MFCM 0.8616 0.9797 0.9484 0.8616 0.9797 0.9484
FCM 0.8644 0.9820 0.9500 0.8644 0.9820 0.9500
ECM 0.8215 0.9353 0.9222 0.9069 0.8436 0.9294

MECM (γ = 0.2) 0.8674 0.9855 0.9520 0.9993 0.7721 0.9336
MECM (γ = 0.6) 0.8662 0.9851 0.9515 0.9958 0.9586 0.9868

We also test on “Iris flower”, “cat cortex” and “protein” data sets [12, 17, 22]. The first is

object data while the other two are relational data sets. Thus we compare our method with FCM
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and ECM for the Iris data set, and with RECM and NRFCM (Non-Euclidean Relational Fuzzy

Clustering Method [19]) for the last two data sets. The results are displayed in Fig. 6.

Presented results allow us to sum up the characteristics of MECM. Firstly, one can see that

the behavior of MECM is similar to ECM for traditional data. Besides, credal partitions provided

by MECM allow to recover the information of crisp and fuzzy partitions. Moreover, we are able to

balance influence of our uncertainty and ignorance according to the actual needs. The examples

utilised before deal with classical data sets. But the superiority of MECM makes it applicable in

the case of data sets for which only dissimilarity measures are known e.g. social networks. Thus in

the following experiments, we will use some graph data to illustrate the behaviour of the proposed

method on the community detection problem in social networks. The dissimilarity index used here

is the one brought forward by Zhou [49]. To have a fair comparison, in the following experiments,

we also compare with three classical algorithms for community detection i.e. BGLL [4], LPA

[36] and ZFCM (a fuzzy c-means based approach proposed by Zhang et al. [46]). The obtained

community structures are compared with known performance measures, i.e., NMI (Normalized

Mutual Information), VI (Variation of Information) and Modularity.

5.3. Artificial graphs and generated benchmarks

To show the performance of the algorithm in detecting communities in networks, we first apply

the method to a sample network generated from Gaussian mixture model. This model has been

used for testing community detection approaches by Liu and Liu [29].

The artificial graph is composed of 3 × 50 nodes, n1, n2, · · · , n150, which are represented by

150 sample points, x1,x2, · · · ,x150, in two-dimensional Euclidean space. There are 3× 50 points

generated from Gaussian distributions G(µk,Σk)(k = 1, 2, 3) with

µ1 = (1.0,4.0)T,µ2 = (2.5, 5.5)T,µ3 = (0.5, 6.0)T (49)

Σ1 = Σ2 = Σ3 =

(
0.25 0

0 0.25

)
.

Then, the edges of the graph are generated by the following thresholding strategy: if |xi−xj | ≤ dist,

we set an edge between node i and node j; Otherwise the two nodes are not directly connected. The

graph is shown in Fig. 7-a (with dist = 0.8) and the dissimilarity matrix of the nodes is displayed

in Fig. 7-b. From the figures we can see that there are three significant communities in the graph,

and some nodes in the bordering of their groups seem to be in overlapped classes as they contact

with members in different communities simultaneously.

The table Tab. 3 lists the indices for evaluating the results. It shows that MECM performs

well as the evidential precision resulting from its application is high. MECM utilization also results

in decreasing the probabilities of clustering failure thanks to the introduction of imprecise clusters.

This makes the decision-making process more cautious and reasonable.

The algorithms are also compared by means of Lancichinetti et al. [28] benchmark (LFR)

networks. The results of different methods in two kinds of LFR networks with 500 and 1000 nodes

are displayed in Figs. 8–9 respectively. The parameter µ showed in the x-axis in the figures identifies

whether the network has clear communities. When µ is small, the graph has well community

structure. In such a case, almost all the methods perform well. But we can see that when µ is
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Table 3: The results for Gaussian graph by different methods

Precision Recall RI EP ER ERI NMI VI Modularity

MCM 0.9049 0.9110 0.9392 0.9049 0.9110 0.9392 0.8282 0.3769 0.6100
MFCM 0.9067 0.9099 0.9396 0.9067 0.9099 0.9396 0.8172 0.4013 0.6115
ZFCM 0.9202 0.9224 0.9482 0.9202 0.9224 0.9482 0.8386 0.3545 0.6118
MECM 0.9470 0.9472 0.9652 0.9789 0.6060 0.8661 0.8895 0.2428 0.6072
BGLL 0.9329 0.9347 0.9564 0.9329 0.9347 0.9564 0.8597 0.3081 0.6119
LPA 0.3289 1.0000 0.3289 0.3289 1.0000 0.3289 0.0000 1.0986 0.0000

large, the results by MECM have the largest values of precision. It means that the decisions which

partition the nodes into a specific cluster are of great confidence. In terms of NMI, the results are

similar to those by BGLL and LPA, but better than those of MCM and MFCM. This fact well

explains that the hard or fuzzy partitions could be recovered when necessary.

5.4. Some real-world networks

A. Zachary’s karate club. The Zachary’s Karate Club data [45] is an undirected graph

which consists of 34 vertices and 78 edges. The original graph and the dissimilarity of the nodes

are shown in Fig. 10-a and 10-b respectively.

Let the parameters of MECM be α = 1.5, δ = 100, η = 0.9, γ = 0.6. The modularity functions

by MECM, MCM, MFCM and ZFCM (Fig. 12-a) peak around c = 2 and c = 3. Let c = 2, all the

methods can detect the two communities exactly. If we set c = 3, a small community, which can

also be found in the dissimilarity matrix (Fig. 10-b), is separated from ω1 by all the approaches

(see Fig. 11). But ZFCM assigns the maximum membership to ω1 for node 9, which is actually in

ω2. It seems that the loss of accuracy in the mapping process may cause such results.

MECM does not find imprecise groups when γ = 0.6 as the network has apparent community

structure, and this reflects the fact that the communities are distinguishable for all the nodes.

But there may be some overlap between two communities. The nodes in the overlapped cluster

can be detected by decreasing γ (increasing the uncertainty for imprecise communities). As is

displayed in Fig. 11-c and d, by declining γ to 0.1 and 0.05 respectively (the other parameters

remain unchanged), nodes 3 and 9 are clustered into both ω1 and ω2 (ω12) one after another.

From the results we can see that MECM takes both the ignorance and the uncertainty into

consideration while introducing imprecise communities. The degree of ignorance and uncertainty

could be balanced through adjusting γ. The analysis shows that there appears only uncertainty

without ignorance in the original club network. In order to show the performance of MECM when

there are noisy conditions such that some communities are indistinguishable, two noisy nodes are

added to the original graph in the next experiment.

B. Karate club network with some added noisy nodes. In this test, two noisy nodes

are added to the original karate club network (see Fig.13-a). The first one is node 35, which is

directly connected with nodes 18 and 27. The other one is 36, which is connected to nodes 1 and

33. It can be seen from the dissimilarity matrix that node 36 has stronger relationships with both

communities than node 35. This is due to the fact that the nodes connected to node 36 play leader

roles in their own group, but node 35 contacts with two marginal nodes with“small”or insignificant

roles in their own group only.

The results obtained by the application of different methods are shown in Fig. 14. The MECM

parameters are set as follows: α = 1.5, δ = 100, η = 0.9 and γ is tuned according to the the extent

that the imprecise communities reflect our ignorance. As we can see, MCM, MFCM and ZFCM

simply group the two noisy nodes into ω1. With γ = 0.4 MECM regards node 36 as a member of
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ω1 while node 35 is grouped into imprecise community ω12. And ω12 mainly reflects our ignorance

rather than uncertainty on the actual community of node 36. This is why node 36 is not clustered

into ω12 since ω1 and ω2 are distinguishable for him but we are just not sure for the final decision.

The increase in the extent of uncertainty in imprecise communities results from the decrease of γ

value. We can see that more nodes (including nodes 36,9,1,12,27, see Figs. 14-e and f) are clustered

into ω12 or ω13 due to uncertainty. The imprecise communities consider both ignorance (node 35)

and uncertainty (other nodes).

These results reflect the difference between ignorance and uncertainty. As node 35 is only

related to one outward node of each community, thus we are ignorant about which community it

really belongs to. On the contrary, node 36 connects with the key members (playing an important

role in the community), and in this case the dissimilarity between the prototypes of ω1 and ω2 is

relatively large so they are distinguishable. Thus there is uncertainty rather than ignorance about

which community node 36 is in. In this network, node 36 is a“good”member for both communities,

whereas node 35 is a “poor” member. It can be seen from Fig. 15-a that the fuzzy partition by

MFCM also gives large similar membership values to ω1 and ω2 for node 35, just like in the case

of such good members as node 36 and 9. The obtained results show the problem of distinguishing

between ignorance and the “equal evidence” (uncertainty) for fuzzy partitions. But Fig. 15-b shows

that the credal partition by MECM assigns small mass belief to ω1 and ω2 for node 35, indicating

our ignorance on its situation.

We also test our method on four other real-world graphs: American football network, Dolphins

network, Lesmis network and Political books network1. The measures applied to evaluate the

performance of different methods are listed in Tab. 4–7. It can been seen from the tables, for

all the graphs MECM application results in a community structure with high evidential precision

level. The precision results from a cautious decision making process which clusters the noisy

nodes into imprecise communities. In terms of classical performance measures like NMI, VI and

modularity, MECM slightly outperforms the other algorithms. Note that these classical measures

for hard partitions are calculated by the pignistic probabilities associated with the credal partitions

provided by MECM. Therefore, we can also see the possibility to recover the hard decisions here

when using the proposed evidential detection approach.

Table 4: The results for American football network by different methods

Precision Recall RI EP ER ERI NMI VI Modularity

MCM 0.7416 0.8834 0.9661 0.7416 0.8834 0.9661 0.8637 0.6467 0.5862
MFCM 0.7583 0.8757 0.9678 0.7583 0.8757 0.9678 0.8715 0.6160 0.5745
ZFCM 0.8176 0.9082 0.9765 0.8176 0.9082 0.9765 0.9035 0.4653 0.6022
MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 0.9042 0.4625 0.5995
BGLL 0.7512 0.9120 0.9689 0.7512 0.9120 0.9689 0.8903 0.5195 0.6046
LPA 0.6698 0.8298 0.9538 0.6698 0.8298 0.9538 0.8623 0.6580 0.5757

5.5. Discussion

We will discuss for which application MECM is designed here. As analysed before, for MECM

only dissimilarities between objects are required and only the intuitive assumptions need to be

satisfied for the dissimilarity measure. Therefore, the algorithm could be appropriate for many

clustering tasks for non-metric data objects. This type of data is very common in social sciences,

1These data sets can be found in http://networkdata.ics.uci.edu/index.php
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Table 5: The results for Dolphins network by different methods

Precision Recall RI EP ER ERI NMI VI Modularity

MCM 1 1 1 1 1 1 1 0 0.3787
MFCM 1 1 1 1 1 1 1 0 0.3787
ZFCM 1 1 1 1 1 1 1 0 0.3787
MECM 1 1 1 1 1 1 1 0 0.3787
BGLL 0.9271 0.3583 0.6351 0.9271 0.3583 0.6351 0.4617 1.1784 0.5185
LPA 0.9250 0.5029 0.7070 0.9250 0.5029 0.7070 0.5595 0.8354 0.5070

Table 6: The results for Lesmis network by different methods

Precision Recall RI EP ER ERI NMI VI Modularity

MCM 0.6109 0.5522 0.9005 0.6109 0.5522 0.9005 0.7381 1.1295 0.4732
MFCM 0.5774 0.6456 0.8971 0.5774 0.6456 0.8971 0.7743 0.9555 0.4705
ZFCM 0.7368 0.5769 0.9217 0.7368 0.5769 0.9217 0.7805 0.9666 0.4983
MECM 0.7065 0.7473 0.9299 0.9298 0.4368 0.9258 0.7977 0.8531 0.4884
BGLL 0.5796 0.8104 0.9033 0.5796 0.8104 0.9033 0.7551 0.9435 0.5556
LPA 0.4594 0.9643 0.8544 0.4594 0.9643 0.8544 0.7500 0.8637 0.5428

psychology, etc, where any metric assumptions about the similarities/dissimilarities could not be

assured. The freedom for the data set leads to the restriction that the prototypes should be the

objects themselves. Nevertheless, this constraint seems reasonable for social networks as the center

of a community is usually the person (node) frequently contacting with others. Thus the approach

can be applied to community detection problems. Thanks to the introduction of imprecise classes,

it could reduce the risk of partitioning the objects which we are uncertain or ignorant into an

incorrect cluster. For this reason the algorithm can help us make soft decisions when clustering

the data set without distinct cluster/community structures or with overlap.

Due to the computational complexity, the proposed algorithm is not well directly adapted

to handle very large data sets. However, here we discuss the possibility to apply the evidential

community detection approach to large-scale networks. Firstly, the number of parameters to be

optimized is exponential and depends on the number of clusters [32]. For the number of classes

larger than 10, calculations are not tractable. But we can consider only a subclass with a limited

number of focal sets [32]. For instance, we could constrain the focal sets to be composed of at most

two classes (except Ω). Secondly, for the network with millions of nodes, MCM or MFCM could be

evoked as a first step to merge some nodes into small clusters. After that we can apply MECM to

the “coarsened” network. But how to define the edges or connections of the new graph should be

studied. Lastly we emphasize that the evidential community detection algorithm could be utilised

for gaining a better insight into the network structure and detecting the imprecise classes. For the

large-scale network, it is difficult to make specific decisions for all of nodes due to the limitation

of time, money or techniques. In this case we can use the proposed approach to make some “soft”

decisions first and then use some techniques special for the imprecise parts of the graph.

6. Conclusion

We introduced a Median variant of Evidential C-means (MECM) as a new prototype-based

clustering algorithm in the present contribution. The proposed approach is an extension of median

c-means and median fuzzy c-means. It is based on the framework of belief function theory. The

applied median-based clustering requires the definition of the dissimilarity between the objects only.

Therefore, it is not restricted to a metric space application. The prototypes of the clusters are

constrained to the data objects themselves. MECM provides us with not only credal partitions but
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Table 7: The results for Political books network by different methods

Precision Recall RI EP ER ERI NMI VI Modularity

MCM 0.8109 0.8030 0.8482 0.8109 0.8030 0.8482 0.5721 0.8426 0.4979
MFCM 0.8020 0.8187 0.8485 0.8020 0.8187 0.8485 0.5755 0.8256 0.4962
ZFCM 0.7928 0.7487 0.8234 0.7928 0.7487 0.8234 0.5301 0.9407 0.5048
MECM 0.7880 0.8081 0.8383 0.8458 0.6435 0.8128 0.5755 0.8247 0.4725
BGLL 0.8244 0.6203 0.7978 0.8244 0.6203 0.7978 0.5121 1.0987 0.5205
LPA 0.7331 0.8558 0.8200 0.7331 0.8558 0.8200 0.5612 0.7925 0.4604

also hard and fuzzy partitions as by-products through computing pignistic probabilities. Moreover,

it could distinguish ignorance from uncertainty while the fuzzy or crisp partitions could not. By

the introduced imprecise clusters, we could find some overlapped and indistinguishable clusters for

related nodes. Thanks to the advantages of belief function theory and median clustering, MECM

could be applied to community detection problems in social networks. As other median clustering

approaches, MECM tends to get stuck in local minima such that several runs have to be performed

to obtain good performance. However, we propose an initial prototype-selection scheme using

the evidential semi-centrality for the application of MECM in community detection to solve the

problems brought by the initial prototypes. Results of presented experiments on artificial and real-

world networks show that the credal partitions on graphs provided by MECM application are more

refined than crisp and fuzzy ones. Therefore, they could enable us to gain a better understanding

of analysed community structure. Some examples on the classical metric space are also given to

illustrate the interest of MECM and to show its difference with respect to the existing methods.

As mentioned in this paper, there may be more than one center in each community network.

Nevertheless, we ignore “multi-center” to avoid the troubles brought by the need for an initial seed

using ESC and the definition of a threshold to control the distance between prototypes. We are

aware that this is a drawback of the presented approach as not all the centers in each community

are taken into consideration. Therefore, we intend to include the feature of multiple centers in our

future research work.
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Figure 10: Original karate club network
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Figure 12: Modularity functions of karate club network by different methods
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Figure 13: Karate club network with two noisy nodes
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Figure 14: Detected communities in Karate club network with noisy nodes
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35


