
HAL Id: hal-01091351
https://univ-rennes.hal.science/hal-01091351

Submitted on 5 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isovaleraldehyde degradation using UV photocatalytic
and dielectric barrier discharge reactors, and their

combinations
Jordi Palau, Aymen Amine Assadi, Josep M Penya-Roja, Abdelkrim Bouzaza,

Dominique Wolbert, Vicente Martínez-Soria

To cite this version:
Jordi Palau, Aymen Amine Assadi, Josep M Penya-Roja, Abdelkrim Bouzaza, Dominique Wolbert, et
al.. Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors,
and their combinations. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, pp.110
- 117. �10.1016/j.jphotochem.2014.11.013�. �hal-01091351�

https://univ-rennes.hal.science/hal-01091351
https://hal.archives-ouvertes.fr


Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge 

reactors, and their combinations 

J. Palaua, A.A. Assadib, J.M. Penya-rojaa, A. Bouzazab, D. Wolbertb, V. Martínez-Soriaa* 

aResearch Group GI2AM, Department of Chemical Engineering, University of Valencia, 

Avda. Universitat s/n, 46100 Burjassot, Valencia, Spain.

bLaboratoire Sciences Chimiques de Rennes - Équipe Chimie et Ingénierie des Procédés, 

UMR CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes, France 

*Corresponding author: Vicente Martínez-Soria 

E-mail: vmsoria@uv.es 

Tel: +34963543169 

Fax: +3496354898 

Highlights 

• Langmuir-Hinselwood model fitted isovaleraldehyde UV photocatalytic degradation 

• Operational parameters were studied in DBD treatment of isovaleraldehyde 

• Coupled system provided a synergic improvement in the removal efficiency 

• Sequence of reactors affected significantly to degradation efficiency of VOC 
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Abstract 

The abatement of isovaleraldehyde present in air was carried out in UV photocatalytic and 

dielectric barrier discharge reactors (and their combinations) for concentrations up to 150 mg 

C m-3 and air flow rates ranging from 4 to 10 m3 h-1. A kinetic study was performed 

following a Langmuir-Hinshelwood model. Photocatalytic treatment of an isovaleraldehyde 

and isovaleric acid mixture showed a clear inhibition of isovaleric acid abatement in presence 

of isovaleraldehyde. Dielectric barrier discharge treatment of isovaleraldehyde showed an 

increase of removal efficiency with applied voltage and a decrease with air flow rate and inlet 

concentration. Moreover, introduction of a catalyst into the dielectric barrier discharge 

reactor did not produce a significant effect (UV light off). However, a combination of both 

techniques significantly increased isovaleraldehyde removal efficiency, indicating the 

treatment technique sequence had an effect on system performance. In conclusion, combined 

treatment showed promising results for the removal of VOCs, providing a synergic 

improvement in the removal of isovaleraldehyde. 
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1. Introduction 

The harmful effects of pollution on the environment and health has led in recent 

decades and in many countries, to environmental policies aimed at the reduction of pollution 

(including air pollution) [1, 2]. Among the main air pollutants are volatile organic compounds 

(VOCs) released into the atmosphere due to various human activities, among which industrial 

activity accounts for a high percentage of the total emissions. Long periods of exposure to 

certain VOCs are linked to the development of cancer, eye irritation and breathing difficulties 

after short periods of contact. 

VOCs are active in many atmospheric reactions contributing to the generation of 

tropospheric ozone and resulting in environmental problems [3, 4]. It is therefore necessary to 

reduce emissions, or if reduction is not possible, treatment with economically and 

environmentally-sustainable technologies. For this purpose, photocatalytic and dielectric 

barrier discharge (DBD) treatments are innovative techniques that have advantages (such as a 

reduced environmental impact) over conventional techniques, however more studies are 

necessary to develop/implement their industrial applications to make them viable alternatives 

to existing treatment technologies [5-7]. 

Heterogeneous photocatalysis is promoted by direct/indirect absorption of a photon 

with energy equal to or greater than the band gap of the semiconductor (typically TiO2), 

generating a hole (h+) - electron (e-) pair, which in turn produce species such as superoxide 

and hydroxyl radicals (OH˙) that can oxidize the VOCs to non-toxic end-products (primarily 

CO2 and water) [8-10]. 

DBD uses an electrical discharge to treat gas present between electrodes separated by 

a dielectric material, which can ionize the gas, modifying the components. This generates an 

electrical breakdown in which the new species create an electronic cascade generating a large 

number of reactive species (mainly O2
-
, OH˙ and O3) which interact and degrade organic 
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compounds. This approach has gained increasing attention in recent years, and several 

researchers have studied this technology for use in the removal of nitrogen oxides, sulphur 

oxides and VOCs [11-14].  

Although several studies have combined non-thermal plasma with heterogeneous 

catalysis in the abatement of VOCs and nitrogen oxides, the combination of dielectric barrier 

discharge with photocatalysis using external ultraviolet (UV) radiation in the removal of 

VOCs has not been extensively explored [15]. Increased removal efficiency for various 

VOCs [16-18] has been described using this specific combination, however additional efforts 

are needed to explore the synergistic reactions, as the effects of plasma-triggered 

photocatalysis are not well understood.  

Isovaleraldehyde and isovaleric acid (acid form) are used as reagents in the production 

of pesticides (e.g. pinacolone) and a wide range of pharmaceutical products, such as butizide 

[19]. Although isovaleraldehyde is not very toxic, it can cause health and environmental 

problems. This compound produces oral, dermal and respiratory irritation after exposure as 

well as discomfort related to the strong odour, even at very low concentrations [20, 21]. 

Despite these issues, studies on the removal of isovaleraldehyde from emissions are limited 

[17].  

In a previous work [22], operational parameters such as geometry, UV radiation, 

humidity, and air gap were explored in the photocatalytic degradation of isovaleraldehyde, 

and the optimal operational conditions were used in this present work. A part of the present 

work adds to previous photocatalytic studies by evaluating reaction kinetics in addition to the 

inhibitory effects of isovaleric acid in the mixture. The main objective of this paper was the 

degradation of isovaleraldehyde using photocatalysis and dielectric barrier discharge (and 

their combinations) to determine the potential synergy between systems, the effects on the 

reactor performance as well as the sequence for applying the techniques.

ACCEPTED M
ANUSCRIP

Tescribed using this specific combination, however additional efforts escribed using this specific combination, however additional efforts 

are needed to explore the synergistic reactions, as the effects of plasmaare needed to explore the synergistic reactions, as the effects of plasma

Isovaleraldehyde and isovaleric acid (acid form) are used as rIsovaleraldehyde and isovaleric acid (acid form) are used as reagents in the production eagents in the production 

of pesticides (e.g. pinacolone) and a wide range of pharmaceutical products, such as butizide of pesticides (e.g. pinacolone) and a wide range of pharmaceutical products, such as butizide 

[19]. Although isovaleraldehyde is not very toxic, it can cause health and environmental [19]. Although isovaleraldehyde is not very toxic, it can cause health and environmental 

problems. This compound produces oral, dermal aproblems. This compound produces oral, dermal and respiratory irritation after exposure as nd respiratory irritation after exposure as problems. This compound produces oral, dermal aproblems. This compound produces oral, dermal aproblems. This compound produces oral, dermal a

well as discomfort related to the strong odour, even at very low concentrations [20, 21]. well as discomfort related to the strong odour, even at very low concentrations [20, 21]. 

Despite these issues, studies on the removal of isovaleraldehyde from emissions are limited Despite these issues, studies on the removal of isovaleraldehyde from emissions are limited 

In a previous work [22]In a previous work [22]

humidity, and air gap were explored in the photocatalytic degradation of isovaleraldehyde, humidity, and air gap were explored in the photocatalytic degradation of isovaleraldehyde, 

and the optimal operational conditions were used in this present work. A part of the present and the optimal operational conditions were used in this present work. A part of the present 

work adds to prwork adds to pr

inhibitory effects of isovaleric acid in the mixture. The main objective of this paper was the inhibitory effects of isovaleric acid in the mixture. The main objective of this paper was the 



2. Material and methods 

2.1 Photoreactor unit 

The reactor (with a planar geometry, 1000 x 135 x 135 mm) consisted of a rectangular 

polymethyl metracrylate (PMMA) chamber containing two parallel PMMA sheets (4 mm 

thick) where the distance between sheets could be adjusted to modify the space/air gap (GAP, 

30 and 40 mm). In the centre of the reactor, four UV-A lamps (PL-S 9W/10/4P, spectrum 

centred at 365 nm, 0.012 m bulb diameter, 0.135 m bulb length, from Phillips, Netherlands) 

were equidistantly distributed to ensure a good distribution of radiation. The light intensity 

(20 W m-2 for 4 lamps with 40 mm of GAP) was measured using a UV Radiometer (VLX-

3W equipped with a sensor CX 365, ALYS Technologies, Switzerland). The catalyst was 

placed in commercial fiberglass tissue (Ahlostrom, Finland) supporting 13 g m-2 TiO2 at its 

surface [23] with a total length of 0.8 m, which was located on the internal face of the two 

PMMA sheets, yielding a photocatalytic surface of 0.19 m2 [22, 24]. 

2.2 Dielectric barrier discharge reactor 

The DBD reactor employed the same external frame as the photocatalytic unit, 

containing two sheets of glass installed parallel to each other which supported the  electrodes 

and dielectric barrier. As in the photocatalytic reactor, the distance between sheets was 

adjustable. Non-thermal plasma was obtained by applying a sinusoidal high voltage between 

0-60 kV (peak to peak) with a frequency of 50 Hz to the electrodes and a 700 pf capacitator 

was connected in series with the reactor to determine the charge transferred to the system 

(Manley method). The voltage applied and the high voltage capacity were measured by high-

voltage probes and recorded with a digital oscilloscope (Wave surfer 24Xs, 200 Mhz, 

LeCroy, EEUU) [24]. 

-
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2.3 Integrated system 

The integrated reactor contained stacked elements for both technologies, using the 

dielectric barrier discharge reactor as the primary structure with the ultraviolet lamps installed 

in the centre of the reactor. The fiberglass/catalyst was placed on the inner face of the two 

glass sheets, between the glass sheet and the inner electrode.  

2.4 Experimental set-up 

Figure 1 shows a diagram of the system used. The air flowrate (air relative humidity 

of 5%) was regulated by a mass flow controller (EL-FLOW F-201AV, Hi-Tec Bronkhorst, 

Netherlands) reaching a maximum working value of 10 m3 h-1. The humidity of the air stream 

was regulated to avoid the influence of this parameter on the results (40% ± 15%). This was 

achieved by passing a fraction of the air stream through a countercurrent humidifier column. 

The volatile organic compound was injected into the inlet air through a syringe pump with 

manual refill and a volume of 5 mL.  

Before every experiment, the power was turned off (UV and/or electric discharge), 

and once inlet and outlet concentration of VOCs were the same (adsorption equilibrium 

state), the reactor power was turned on. Output samples were collected at 30 to 60 minute 

intervals until a steady state was achieved. At the conclusion of the experiment, the reactor 

was cleaned by a flow of clean air for at least one hour. 

VOC concentration and air flow rate were 10-150 mg C m-3 and from 4-10 m3 h-1, 

respectively. 
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The operational conditions/parameters used for the experimental series as well as the 

evaluation of photoreactor performance were: 

• Inlet (Cinlet) and outlet (Coutlet) concentration of pollutant, as milligrams of carbon per 

cubic meter (mg C m-3) 

• Effective volume of reactor (V; m3) and air flowrate (Q; m3 h-1) 

• Removal efficiency (RE; %) = 100 (1-Coutlet/Cinlet)  

• Inlet load (IL; mg C m-3 s-1) = Cinlet Q/V 

• Elimination capacity (EC; mg C m-3 s-1) = (Cinlet-Coutlet) Q/V

2.5 Analytical methods 

Isovaleraldehyde and isovaleric acid concentrations were determined by a gas 

chromatograph (GC Thermo Focus, USA) equipped with a flame ionization detector and a 

Chrompact FFAP-CD capillary column (25 m of length), with nitrogen gas as the carrier. 

Samples were collected with a 250 µL syringe.  

Although intermediate organic compounds such as acetone or acetic acid [22] could 

be expected as by-products in these processes, they were not found above the detection limit 

of the analytical method (>0.2 mg C m-3), at least at the tested operational conditions. A 

simple pathway for the VOC removal is proposed as follow:  

VOC à (intermediates à) CO2 + H2O 

3. Results and discussions 

3.1 Photocatalytic reactor 

3.1.1 Effects of inlet concentration and flow rate on VOC degradation
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The effects of inlet concentration and flow rate on the performance of the planar 

photoreactor were tested, and the removal efficiency (RE) of the isovaleraldehyde is shown 

(Figure 2) for different air flow rates and inlet concentrations. RE decreased when inlet 

concentration increased, and could be explained by taking into account the limited number of 

active sites on the catalyst surface available for adsorption and reaction with VOCs [25-27]. 

Data indicated the higher air flow fed to the reactor, the lower the RE [28], which could be 

attributed to decreased contact time between the compound and active centres-hydroxyl 

radicals. The difference was greater at low concentrations and reduced at high concentrations, 

and could be explained by the ratio between the limited number of active centres and the 

compound molecules to be degraded decreasing with the inlet concentration of pollutant. At 

high inlet concentrations, the reaction rate, which determined the number of molecules 

degraded in a given time, became constant and independent of the inlet concentration (as can 

be observed and discussed in the next section). 

 

3.1.2 Photocatalytic degradation of individual compounds: effect of inlet load and kinetics  

Figure 3 shows the elimination capacity (EC) versus the inlet load (IL) for 

isovaleraldehyde and isovaleric acid. No significant differences in behaviour were observed 

at different air gaps and air flow rates (Fig 3a) for isovaleraldehyde degradation, which was 

similar to results previously described for aromatic and oxygenated compounds [29]. For 

both compounds, a nearly complete elimination (RE > 90%) was observed for low IL values, 

while at high inlet loads, the EC remained relatively constant at a maximum EC of 12 mg C 

m-3 s-1 for isovaleraldehyde and 10-14 mg C m-3 s-1 for isovaleric acid. These values were 

comparable to those obtained previously in the removal of toluene and xylene [29]. 
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The photocatalytic process can be modelled by Langmuir-Hinshelwood (LH) kinetics. 

Assuming the negligible mass transfer effects and considering a plug flow pattern in the 

reactor, the mass balance through the photocatalytic reactor can be described by the following 

equation [30]: 

r
d

dC
=

ζ
(1) 

where C is the VOC concentration (mg C m-3), r is the rate of disappearance for the 

component (mg C m-3 s-1) and ζ the retention time in the system(s).  

Considering the variations in oxygen concentration and water vapour in air as 

negligible while assuming the reaction was the limiting step and the by-products had little or 

no action on the active adsorption centres, the LH model can be described by the following 

rate equation [31-34]:  

CKk1

CKk
kr

LH

LH

+
== θ  (2) 

where k is the apparent kinetic constant (mg C m-3 s-1
), θ is the fraction of active sites being 

covered by adsorbed reactant and KLH is the adsorption constant (m3 mg C-1). Combining 

both equations yields: 

ζkdC
CK

1
1

LH

−=







+  (3)  

By integrating and rearranging this equation, it follows that: 

LH
outletinlet

LH
outletinlet

outletinlet K
CC

Kk
CC

)C/C(ln
−

−
=

−

ζ
 (4) 
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Plotting ln (Cinlet/Coutlet) / (Cinlet - Coutlet) versus ζ/(Cinlet - Coutlet) should be linear if the 

LH model described the process, where the slope of the regression line represented the 

product of constants kKLH and the y-intercept -KLH. The correlation between experimental 

results for the two compounds according to the LH model are shown in Figure 4, and 

constant values and correlations obtained for the LH model are shown in Table 1. 

As can be seen in Table 1, no significant differences were observed for the kinetic 

constant for isovaleraldehyde although this rate constant (k) should be slightly higher for the 

lower air gap, since this parameter should influence the light irradiance [22]. The adsorption 

Langmuir constant (KLH) refers to the adsorption/desorption equilibrium and it is supposed to 

be independent of the light intensity during photocatalytic reaction. Nevertheless, it has been 

reported that there are some influence of the photon flow on both kinetic and the apparent 

adsorption constant [22]. Explanations for this behaviour were related with the hypothesis 

that irradiation influences adsorption equilibrium and therefore KLH values. In any case, the 

expected variation of the LH model constants due to the variation of irradiation is lower than 

the experimental error of the test of our study (Table 1). 

3.1.3 Photocatalytic degradation of the mixture 

For these experiments, a mixture of isovaleraldehyde and isovaleric acid (2:1 weight) 

was added to air, simulating industrial emissions. In Table 2, the individual REs of each 

compound in the mixture and the overall RE are shown. At the lowest inlet concentrations, 

the efficacy of both components was similar, but for the highest inlet concentrations (lowest 

global removal efficiency), the behaviour changed dramatically. As inlet concentration 

increased, the degradation of isovaleric acid rapidly decreased, and no degradation was 

observed at inlet concentrations higher than 70 mg C m-3. At the highest concentrations, 

isovaleraldehyde was the only compound degraded and was responsible for the overall RE in 
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the mixture. These observations may be explained by competition for active centres between 

these compounds.  

Figure 5 shows the variations in EC versus inlet load for isovaleraldehyde and 

isovaleric acid, individually and as part of a mixture. Results seen for isovaleraldehyde were 

similar alone or as part of a mixture, and only at the highest concentrations, was the mixture 

EC slightly lower (compared to the sole compound), suggesting a slight inhibitory effect 

resulting from competition between both compounds for active sites on the catalyst. In case 

of isovaleric acid, the behaviour was very different for the individual compound compared to 

the mixture. Figure 5 shows the EC of isovaleric acid in the mixture decreased drastically 

with the inlet load, suggesting the compound might be strongly inhibited by the presence of 

the isovaleraldehyde, which agrees with the adsorption constant values for both compounds. 

The KLH values for isovaleraldehyde were higher than those of isovaleric acid, and it could be 

assumed that most of the catalyst active centres were preferentially occupied by 

isovaleraldehyde, hindering (to some extent) the adsorption of the isovaleric acid and its 

degradation. Similar competitive adsorption phenomena are described in the literature [29, 

35]. 

3.2 Dielectric barrier discharge reactor  

3.2.1 Effects of inlet concentration and air gap 

Isovaleraldehyde removal efficiency for the DBD reactor at different operational 

conditions can be seen in Figure 6. As was expected, RE decreased with concentration and 

increased with applied voltage [7], which could be explained by a ratio reduction between the 

number of radicals and the energy electrons available per unit of VOC to be degraded under 

constant conditions [36]. Moreover, the increased removal efficiency observed when the 

applied voltage was increased, resulted from an increased number of radicals and electrons 
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available in the system [11, 37]. 

 

 

 

The effect of distance between the sheets (GAP) that support the electrodes can be 

seen in Figure 6, where the results of experiments performed at 17 kV and at similar inlet 

concentration (31 and 35 mg C m-3) can be compared. In this case, to reach the same 

residence time of 1.3 s, the GAP was reduced from 40 to 30 mm and the flow rate was 

changed from 10 to 8 m3 h-1. A reduction in distance between electrode sheets resulted in an 

increased RE (17 to 29%), suggesting better ionization of the air due to increased contact 

between air and plasma. This observation was supported by the work of Cal and Schluep 

[38], that studied two different gap distances (3 and 5 mm) between electrodes and observed 

that the reactor with the 5 mm gap spacing required about three times the amount of power 

compared to the reactor with the 3 mm gap to achieve a benzene RE of 95%.  

 

3.2.2 Effect of the presence of TiO2 catalyst in the DBD reactor 

Figure 7 shows the variations in RE with applied voltage for the DBD reactor 

combined with catalyst sheets in situ. Comparing the results between the two configurations, 

introduction of the catalyst did not appear to exert a positive effect on the RE of 

isovaleraldehyde, also seen for similar catalysts elsewhere [39]. These results suggest the 

ultraviolet light produced by the ion plasma was not enough to appreciably activate the TiO2 

particles and create sufficient paired hole-electrons which could contribute (significantly) to 

the oxidation of VOCs [15]. Moreover, the slightly lower RE values for DBD combined with 

catalyst at low voltage (<20 kV) could be attributed to an extra-resistance due to the 

introduction of the TiO2 sheets. In contrast, other researchers report different results, 
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indicating higher removal efficiencies for DBD combined with catalyst, which could be due 

to modification of the catalysts by the incorporation of metals (such as aluminium or silver), 

resulting in significant changes in catalytic behaviour [40-42]. 

 

3.3 Performance of the combined system 

The performance of the combined system and its comparison with DBD and 

photocatalytic reactors is shown in Figure 8. These experiments were carried out at an inlet 

concentration of isovaleraldehyde around 50 mg C m-3, an applied voltage of 12, 17 and 20 

kV, flow rates of 4, 6 and 10 m3 h-1 and an electrode gap of 30 mm (the 0 kV voltage 

corresponded to the operation of the photocatalytic reactor alone). As expected, RE increased 

for both systems with applied voltage, and was attributed to an increase in the total number of 

free radicals and high-energy electrons. Additionally, RE decreased with flow rate due to 

decreased contact time with ionized molecules, free radicals, high-energy electrons and the 

catalyst. Furthermore, the existence of a threshold voltage (~10 kV) was seen, where below 

this value, electric breakdown did not occur and the pollutant was not degraded by DBD. The 

RE of the combined system was considerably higher than the REs obtained for individual 

reactors (photocatalyst and DBD) (Figure 8).

The values of the elimination capacities obtained for combined and individual reactors 

are summarized in Table 3. As can be seen, the EC of the combined system was considerably 

higher (>10-20%) than the sum obtained for individual reactors and independent of the 

applied voltage (12 or 17 kV). This indicated that coupling of the photocatalytic and DBD 

reactors significantly improved elimination and, consequently, the energy efficiency.  
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Studies using a combination of these technologies have been performed [16, 43, 44], 

and the results obtained by coupling these techniques show an improvement in elimination 

and a significant decrease in the production of by-products. The explanations of this 

synergistic effect have been attributed to diverse causes. It has been linked to intermediates 

produced by DBD [44] which could be more easily degraded by photocatalysis than the 

original compounds, increasing the rate of degradation for the overall system. This hypothesis 

was confirmed by analysis of the compounds adsorbed on the hole-electron pairs. In another 

study [15], the improvement in the RE was linked to improvements in VOC degradation by 

the photocatalytic phase, where the free radicals, oxygen atoms and ozone molecules 

produced by DBD interact with catalyst and the pollutants [16]. 

3.3.1 Effect of the treatment sequence 

In order evaluate the effects of treatment sequence on RE, experiments were designed 

where the reactor was internally divided into halves. DBD was implemented in one half while 

the other half was operated as a combined DBD and photocatalytic reactor. Initially, 

experiments were performed using DBD treatment first, then combined (DBD / Photo + 

DBD) and the sequence reversed (Photo + DBD / DBD). Analyses of each half-reactor were 

carried out. Results were also compared to the full reactor operating with both technologies. 

 

 

Figure 9 shows the RE values obtained for the three combinations. As expected, when 

the operation was performed with both technologies in the complete reactor, the performance 

was higher than when half the reactor operated with DBD. This result was consistent with the 

positive combination of these technologies (described above). When both sequential 

configurations were compared, for any voltage applied, higher removal efficiencies were 
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obtained when DBD treatment was placed in the first half, which could indicate treatment 

with this technique promoted/increased the rate of photocatalytic degradation in the second 

part. The results obtained from the first sequential reactor design (DBD alone and combined 

as DBD/Photo + DBD, second column of Figure 9) showed that degradation of the compound 

in the first part of the system contributed near the half of the global removal efficiency, and 

as voltage increased, the contribution percentage decreased (the combined portion increased 

the contribution of the applied voltage). The behaviour of the second sequential reactor 

(Photo + DBD / DBD, first column in Figure 9) was quite different, where the removal 

contribution from the first part of the reactor (combined) was notably higher than the second 

portion (DBD alone), except at the lowest voltage applied.  

These results could be explained by assuming pretreatment with DBD could enhance 

photocatalytic activity. Several reasons have been proposed in the literature for this 

enhancement [41]. By combining both treatments, modifications in electron energy, the type 

of discharge and effects on catalytic properties occur. The presence of the catalyst in the 

plasma discharge could increase the production of active species, in some cases accelerating 

the formation of superoxide (O2
-), reducing the recombination process and increasing total 

catalytic activity. Furthermore, the plasma could generate intermediate species with longer 

life-times which interacted with the surface of the catalyst (ozone, atomic oxygen and other 

reactive species) and increased the catalytic activity of the reactor. Moreover, the discharge 

could affect catalyst properties, improving the dispersion of the active catalytic components 

by modifying the stability and catalytic activity of the material. It is important to note the 

adsorption process for organic compounds was positively influenced by the presence of 

plasma discharge, and improved the affinity of the catalyst for the organic compounds. 

Furthermore, reactions could occur through alternative reduction and oxidation at the surface 

of the catalyst, and a positive effect for heat activation by the dielectric barrier discharge.  
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4. Conclusions 

The application of photocatalytic treatment to degrade VOCs resulted in a maximum 

elimination capacity of around 12 and 14 mg C m-3 for isovaleraldehyde and isovaleric acid, 

respectively. The elimination capacity of isovaleric acid was negatively affected in presence 

of isovaleraldehyde, indicating inhibitory and competition effects between both compounds. 

The dielectric barrier discharge treatment showed an increased removal efficiency 

when the applied voltage was increased, promoting the generation of high energy electrons 

and free radicals capable of degrading volatile organic compounds. As expected, an increase 

in air flow rate and inlet concentration of the VOC resulted in decreased removal efficiency  

At tested operational conditions, the coupled system combining dielectric barrier 

discharge and UV photocatalysis showed a significant improvement in VOC removal 

efficiency. This suggested the dielectric barrier discharge process promoted degradation of 

intermediates which facilitated the catalytic reaction, and the energy involved in the coupled 

system promoted the adsorption of organic compounds at catalytic active sites. The sequence 

of VOC treatments, dielectric barrier discharge and photocatalysis coupled with dielectric 

barrier discharge, was important to removal efficiency. The use of dielectric barrier discharge 

in the first half and in the second half of a coupled reactor system showed higher removal 

efficiency due to the generation of smaller compounds and more active molecules that could 

interact in the second half, activating the catalyst sites.  
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Figure Captions 

Figure 1. Schematics and layout of the integrated system: photocatalytic and DBD reactor. 

Figure 2. Isovaleraldehyde conversion versus inlet concentration at different air flow rates 

and GAP = 40 mm. 

Figure 3. Elimination capacity versus inlet load for isovaleraldehyde (a) and isovaleric acid 

(b) as individual pollutants.

Figure 4. Regression of experimental results with the kinetic LH model. 

Figure 5. Comparison of elimination capacities for isovaleraldehyde (a) and isovaleric acid 

(b), individually and as a mixture. Inlet concentration of 34-140 mg C m-3 and a 4 m3 h-1air 

flow rate. GAP = 30 mm. 

Figure 6. Removal efficiency of the dielectric barrier discharge reactor at different inlet 

concentrations and applied voltages. a) Residence time = 1.3 s and a GAP = 40 mm, b) 

Residence time = 1.3 s and GAP = 30 mm. 

Figure 7. Influence of catalyst on RE for various applied voltages. Inlet concentration of 

isovaleraldehyde = 35 mg C m-3, air flow rate = 10 m3 h-1 and GAP = 40 mm. 

Figure 8. RE for dielectric barrier discharge and its combination with photocatalysis for 

different applied voltages and flow rates. Inlet concentration = 50 mg C m-3 

(isovaleraldehyde) and GAP = 40 mm.
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Figure 5. Comparison of elimination capacities for isovaleraldehyde (a) and isovaleric acid Figure 5. Comparison of elimination capacities for isovaleraldehyde (a) and isovaleric acid 

(b), individually and as a mixture. Inlet concentration of 34(b), individually and as a mixture. Inlet concentration of 34

Removal efficiency of the dielectric barrier discharge reactor at different inlet Removal efficiency of the dielectric barrier discharge reactor at different inlet 
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Figure 9. Effect of the treatment sequence for different applied voltages. Inlet concentration = 

50 mg C m-3 (isovaleraldehyde), air flow rate = 8 m3 h-1 and GAP = 30 mm. 

Table 1. Values and estimated errors for LH model constants (obtained from regression of the 

experimental results, see Figure 4). 

VOC kKLH (s-1) KLH (m3 mg C-1) k (mg C m-3 s-1) r2 

Isovaleraldehyde (40 mm) 0.374±0.024 0.037±0.006 10.1±2.3 0.93 

Isovaleraldehyde (30 mm) 0.604±0.083 0.065±0.016 9.3±3.6 0.89 

Isovaleric acid (30 mm) 0.310±0.017 0.022±0.002 14.1±2.1 0.98 

Table 2. Global and individual removal efficiencies (RE%) in the photocatalytic reactor at 

different VOC inlet concentrations. Air flow rate = 4 m3 h-1 and GAP = 30 mm. 

Inlet concentration 

(mg C m-3) 

Global RE 

(%) 

Isovaleraldehyde RE 

(%) 

Isovaleric acid RE 

(%) 

34.6 34.6 36.5 32.9 

68.1 23.3 33.9 12.5 

104.6 10.7 21.4 0.0 

140.6 6.8 13.5 0.0 
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Table 3. EC (mg C m-3 s-1) values for isovaleraldehyde removal by DBD, photocatalysis and 

a combination of both. Inlet concentration = 40 mg C m-3 and GAP = 40. 

Applied Voltage Reactor 

Flow-rate 

4 m3 h-1 6 m3 h-1 10 m3 h-1 

0 kV Photocatalysis 4.5 5.9 8.4 

12 kV

DBD 1.8 1.9 1.5 

Combined 7.7 8.9 11.3 

17 kV 

DBD 3.5 5.2 6.0 

Combined 9.8 12.1 17.6 
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