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ABSTRACT: Lysozyme is mainly described active against Gram-positive bacteria, but is also 

efficient against some Gram-negative species. Especially, it was recently demonstrated that 

lysozyme disrupts E. coli membranes. Moreover, dry-heating changes the physicochemical 

properties of the protein and increases the membrane activity of lysozyme. In order to elucidate 

the mode of insertion of lysozyme into the bacterial membrane, the interaction between 

lysozyme and a LPS monolayer mimicking the E. coli outer membrane has been investigated by 

tensiometry, ellipsometry, Brewster Angle Microscopy and Atomic Force Microscopy. It was 

thus established that lysozyme has a high affinity for the LPS monolayer, and is able to insert 

into the latter as long as polysaccharide moieties are present, causing reorganization of the LPS 

monolayer. Dry-heating increases the lysozyme affinity for the LPS monolayer and its insertion 

capacity; the resulting reorganization of the LPS monolayer is different and more drastic than 

with the native protein.  

KEYWORDS: BAM, AFM, Langmuir film, Dry-heated lysozyme, LPS monolayer 
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ABBREVIATIONS 

AFM, atomic force microscopy; AMP, antimicrobial peptide or protein; BAM, Brewster angle 

microscopy; DH-L, dry-heated lysozyme; HEPES, 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid; KLA, Lipid A-(KdO)2; LPS, lipopolysaccharides; MIP, maximum insertion 

pressure; N-L, native lysozyme 
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1.  INTRODUCTION 1 

Antibiotic resistance due to decades of misuse in human and veterinary medicine, is causing an 2 

enormous public health problem. Several pathogens, such as Staphylococcus aureus and 3 

Klebsiella pneumonia, have developed multiple antibiotic resistance mechanisms. The 4 

consequence is difficult and expensive treatments of several diseases.[1] The number of these 5 

multi-resistant strains is increasing, but only three new antibiotic molecules against Gram-6 

positive multiresistant strains were registered since 1970, and none for Gram-negative 7 

multiresistant strains.[2] Research for novel antimicrobial compounds is thus needed, besides the 8 

measures of the European Union to limit the spread of antibiotic resistances. Preferably, novel 9 

compounds should decrease the development rate and spread of antibiotic resistance. 10 

Several natural proteins and peptides can be considered as potential candidates, especially the 11 

antimicrobial proteins or peptides (AMP) which act on the bacterial membranes. Their target, i.e. 12 

the bacterial cell membrane, is a generalized and vital target, and thus antimicrobial resistance 13 

development remains limited.[3,4] AMP are mostly positively charged molecules, amphiphilic, 14 

flexible, and contain several hydrophobic residues, suggesting electrostatic and hydrophobic 15 

interactions with the bacterial cell membrane.[3] These interactions can then lead to the 16 

membrane disruption, causing bacterial cell death or translocation of the AMP into the cytoplasm 17 

where these can interact with several intracellular targets.[3,5] 18 

One of the natural antimicrobial proteins, widely studied, is hen egg white lysozyme. This 19 

small enzyme (129 amino acid residues) was for a long time only known for its antimicrobial 20 

activity against Gram-positive bacteria, due to its muramidase activity.[6,7] However, several 21 

studies suggest other mechanisms of action against both Gram-positive and Gram-negative 22 

bacteria, such as perturbation of DNA or RNA synthesis, activation of autolysin production, and 23 
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membrane permeabilisation.[7–10] The disruption of both the outer and cytoplasmic membranes 24 

of E. coli by native lysozyme has been recently demonstrated in our laboratory.[9] Especially, 25 

pore formation in the outer membrane of E. coli has been described.[11] Moreover, pore size 26 

and/or quantity were higher with dry-heated lysozyme as compared to the native protein.[11] The 27 

physicochemical modifications resulting from dry-heating are an increased positive charge at 28 

physiological pH as well as increased flexibility and hydrophobicity while preserving the 29 

secondary and tertiary structure; these modifications could be responsible for the enhanced 30 

antibacterial activity of dry-heated lysozyme, similarly to what has been described for lysozyme 31 

modification by enzyme hydrolysis, heat denaturation, or fusion with several chemical 32 

moieties.[7,12–17]  33 

However, the interactions between the outer membrane lipids of Gram-negative bacteria and 34 

both types of lysozyme (native and dry-heated) remain to be investigated. In the presently 35 

reported study, lipopolysaccharide (LPS) monolayers of E. coli K12 have been used as a model 36 

for the bacterial outer membrane.[18,19] These LPS monolayers were formed in a Langmuir 37 

trough at a controlled initial surface pressure (πinitial). Multiscale analysis of the interfacial film 38 

using tensiometry, ellipsometry, Brewster angle microscopy (BAM) and atomic force 39 

microscopy (AFM), enabled to investigate the LPS-lysozyme interactions, to study the 40 

consequences of lysozyme interaction on the LPS monolayer  41 
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2.  MATERIALS AND METHODS 42 

2.1  Proteins and lipids.  43 

Native lysozyme (N-L) powder (pH 3.2) was obtained from Liot (Annezin, 62-France). It was 44 

heated for 7 days at 80°C in hermetically closed glass tubes to obtain dry-heated lysozyme (DH-45 

L). Lysozyme (N-L or DH-L) was solubilized (around 0.5 g/L) in 5 mM 4-(2-46 

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer (Sigma Aldrich, Saint-Quentin, 47 

France), pH 7.0, 150 mM NaCl (Fluka, Saint-Quentin, France). The concentration of the 48 

lysozyme stock solution was precisely determined by absorbance at 280 nm (extinction 49 

coefficient = 2.6 L/g)[20]. The protein solution was then diluted in the HEPES buffer to obtain 50 

the desired concentration for used lysozyme solutions. 51 

The lipopolysaccharides (LPS) of E. coli K12 were obtained from Invivogen (Toulouse, 52 

France). The LPS were solubilized in 2:1 chloroform/methanol mixture at 0.5 g/L. Lipid A-53 

(KdO)2 (KLA) were purchased by Avanti Polar Lipids (Alabaster, Alabama, USA) and were 54 

solubilized in a 2:1 chloroform/methanol mixture at 0.67 g/L. 55 

 56 

2.2 Lipid/protein monolayers.  57 

The experiments were performed in a homemade TEFLON® trough of 8 mL at 20°C. Before 58 

each use, the trough was thoroughly cleaned with successively warm tap water, ethanol, 59 

demineralized water, and then boiled for 15 minutes in demineralized water. After cooling the 60 

TEFLON® trough was then filled with 8 mL HEPES buffer. The LPS or KLA were spread with a 61 

high precision Hamilton microsyringe at the clean air / liquid interface to obtain an initial surface 62 

pressure between 18 and 30 mN/m. After 1h to allow the solvent to evaporate and the lipids to 63 
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organize, 50 µL N-L or DH-L solution were injected in the subphase with a Hamilton syringe to 64 

obtain a final protein concentration of 0.02, 0.03, 0.05, 0.1, 0.2, 0.3 or 1 µM. 65 

 66 

2.3 Surface pressure measurements.  67 

The surface pressure was measured following a Wilhelmy method using a 10 mm x 22 mm 68 

filter paper as plate (Whatman, Velizy-Villacoublay, France) connected to a microelectronic 69 

feedback system (Nima PS4, Manchester, England). The surface pressure (π) was recorded every 70 

4 s with a precision of ± 0.2 mN/m. The measured surface pressure is the result of the surface 71 

tension of water minus the surface tension of the lipid film.  72 

 73 

2.4 Ellipsometry.  74 

Measurements of the ellipsometric angle value were carried out with an in-house automated 75 

ellipsometer in a “null ellipsometer” configuration.[21,22] A polarised He–Ne laser beam 76 

(λ=632.8 nm, Melles Griot, Glan-Thompson polarizer) was reflected on the surface of the 77 

trough. The incidence angle was 52.12°, i.e. Brewster angle for the air/water interface minus 1°. 78 

After reflection on the liquid surface, the laser light passed through a λ/4 retardation plate, a 79 

Glan-Thompson analyser, and a photomultiplier. The analyser angle, multiplied by two, yielded 80 

the value of the ellipsometric angle (Δ), i.e. the phase difference between parallel and 81 

perpendicular polarisation of the reflected light. The laser beam probed the 1 mm² surface with a 82 

depth in the order of 1 µm. Initial values of the ellipsometric angle (Δ0) and surface pressure of 83 

buffer solutions were recorded for at least half an hour to assure that the interface is clean. Only 84 

in the case of a stable, minimal signal, experiments were performed. Values of Δ were recorded 85 

every 4 s with a precision of ± 0.5°. When measuring the pressure increase induced by lysozyme 86 
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at the air/liquid interface a lysozyme solution at 0.1 µM is deposited in the trough. When the 87 

pressure increase induced by lysozyme is measured at the LPS/liquid interface a LPS monolayer 88 

is first created as formerly described.  89 

For the detection of local ellipsometric angle values, an imaging ellipsometer EP3 (Nanofilm, 90 

Göttingen, Germany) in “null ellipsometer” configuration was used with a 10X objective. A 91 

solid-state laser (λ=532 nm) was used as a light source. Delta/Psi maps were recorded with the 92 

EP3 software for a 450 µm x 390 µm surface. For delta and psi maps, a polarizer and analyzer 93 

range of 20° was used. Delta/psi maps were based on 20 images taken at different polarizer and 94 

analyzer angles.  95 

 96 

2.5 Brewster angle microscopy.  97 

An ellipsometer EP3 (Nanofilm, Berlin, Germany) with a polarized incident laser (λ=532.0 98 

nm) was used with a 10X objective in a Brewster angle configuration (angle of incidence was 99 

53.1°). The images represented a 450 µm x 390 µm surface. Different zones of each sample were 100 

evaluated; the images here shown are representative of the whole samples. 101 

 102 

2.6 AFM sample preparation and AFM imaging.  103 

Experiments were performed with a computer-controlled and user-programmable Langmuir 104 

TEFLON®-coated trough (type 601BAM) equipped with two movable barriers and of total 105 

surface 90 cm² (Nima Technology Ltd., England). Before starting the experiments, the trough 106 

was cleaned successively with ultrapure water (Nanopure-UV), ethanol, and finally ultrapure 107 

water. The trough was filled with 5 mM HEPES buffer pH 7 150 mM NaCl. LPS were spread 108 

over the clean air/liquid interface at a surface pressure of 25 mN/m or 30 mN/m. The solvent was 109 
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then left to evaporate for 1 h. Then, a Langmuir-Blodgett transfer was performed onto freshly 110 

cleaved mica plates at constant surface pressure by vertically raising (1 mm/min) the mica 111 

through the air/liquid interface to obtain a sample of the initial LPS monolayer. The LPS 112 

monolayer stability was assured during the Langmuir-Blodgett transfer allowing the injection of 113 

lysozyme in the subphase.  114 

Then, 0.1 µM lysozyme was injected in the subphase of the previously sampled LPS 115 

monolayer with a Hamilton syringe. Surface pressure variations were recorded until a stable 116 

surface pressure was reached (after ~1 h). Then, a second Langmuir-Blodgett transfer was 117 

performed onto freshly cleaved mica as described above to obtain the sample of the LPS 118 

monolayer after lysozyme interaction. 119 

AFM imaging of Langmuir Blodgett films was performed in contact mode using a Pico-plus 120 

atomic force microscope (Agilent Technologies, Phoenix, AZ) under ambient conditions with a 121 

scanning area of 20x20 µm² and 5x5 µm². Topographic images were acquired using silicon 122 

nitride tips on integral cantilevers. The forces were controlled along the imaging process. 123 

Different zones of each sample were scanned; the images here shown are representative of the 124 

whole samples.   125 
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3. RESULTS 126 

3.1 Insertion capacity of lysozyme into a LPS monolayer.  127 

The insertion capacity of N-L and DH-L into a LPS monolayer was determined by 128 

independent tensiometry experiments at different protein concentrations. Insertion can be 129 

detected by a surface pressure increase (Δπ = πfinal – πinitial).  Here, lysozyme was injected under a 130 

LPS monolayer with an initial surface pressure (πinitial) of 18 mN/m.  131 

In both cases (N-L and DH-L), a surface pressure increase is demonstrated indicating lysozyme 132 

insertion into the LPS monolayer for protein concentrations above 0.02 µM (figure 1A). Below 133 

0.05 µM, no difference can be observed between both lysozymes, while above this protein 134 

concentration, DH-L induces a higher surface pressure increase than N-L (figure 1A). When 135 

increasing the lysozyme subphase concentration, a Δπ-plateau is obtained at a lysozyme 136 

concentration of 0.2 µM for both N-L and DH-L, indicating saturation of the interface in these 137 

conditions. However, the maximum Δπ value is higher for DH-L than for N-L (12 mN/m and 8 138 

mN/m, respectively; figure 1A). For further investigation of the insertion capacity of lysozyme, 139 

0.1 µM N-L or DH-L has been used. At this concentration, differences exist between both 140 

proteins, and lipid protein interactions can be observed, while minimizing protein-protein 141 

interactions in the bulk solution (aggregation) or at the lipid interface.   142 

 143 

3.2 Affinity of lysozyme for LPS monolayers.  144 

To evaluate the affinity of both N-L and DH-L for the LPS monolayer, Δπ was determined 145 

after lysozyme injection (0.1 µM) under LPS monolayers previously formed at different initial 146 

surface pressures (πinitial). Supplementary experiments demonstrated that no phase transition 147 

occurs in the π-range here used (supplementary data S3) comparisons are then valuable. Linear 148 
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regression analysis of the Δπ values versus πinitial allows calculation of three binding parameters 149 

of lysozyme: maximal insertion pressure (MIP), synergy factor, and Δπ0 (figure 1B).[23–25] 150 

MIP is the intercept of the straight line with x-axis after extrapolation; it is thus the initial surface 151 

pressure for which no surface pressure increase occurs when lysozyme is injected in the 152 

subphase. The synergy factor is determined as the slope of the linear regression +1. The synergy 153 

factor provides information on the affinity of the protein for the lipid monolayer. High positive 154 

synergy values indicate the existence of strong protein/lipid interactions, since it means that the 155 

protein is able to insert into the lipid film even when initial surface pressure is high. Δπ0 is the 156 

intercept of the straight line with y-axis after extrapolation; it is thus the theoretical pressure 157 

increase in the absence of lipids (πinitial = 0 mN/m).  158 

Linear regression for N-L and DH-L resulted in equations 1 and 2, respectively, with 159 

respective determination coefficients (R²) of 0.96 and 0.91. 160 

y = -0.21 x + 8.75  (eq. 1) 161 

y = -0.15 x + 9.10  (eq. 2) 162 

The MIP is higher with DH-L than with N-L (59.6 and 41.5 mN/m, respectively; table 1). The 163 

synergy factor as introduced by Boisselier et al. (2012) and Calvez et al. (2011) is also higher 164 

with DH-L than with N-L, and is positive for both proteins (0.89 and 0.79, respectively; table 165 

1).[24] Oppositely, the Δπ0 are similar for N-L and DH-L (8.75 and 9.10 mN/m, respectively; 166 

table 1). It is noticeable that these latter values are smaller than the experimental surface pressure 167 

increase observed for N-L and DH-L lysozymes at the air/liquid interface at the same subphase 168 

concentration (10 and 11 mN/m, respectively).  169 

The rate constant of adsorption kads (M
-1·s-1) of a lysozyme solution with a concentration (c) of 170 

0.1 µM at the air/liquid interface and the LPS/liquid interface can be evaluated by fitting the 171 
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Langmuir equation (eq. 3) for adsorption to the surface pressure measurements. The rate constant 172 

of desorption kdes (M
-1·s-1) can here be considered negligible. 173 

π (t) = πfinal (1- exp (- σ t)) (eq. 3) 174 

σ = kads c + kdes (eq. 4) 175 

At the air/liquid interface, N-L and DH-L have a kads value of 6.6·10² M-1·s-1 and 6.4·10² 176 

 177 

3.3 Changes of surface pressure (π) and ellipsometric angle (Δ) of LPS monolayer in the 178 

presence of lysozyme  179 

Kinetics of the π and Δ changes after injection of N-L and DH-L in the subphase were 180 

recorded using a LPS monolayer with an initial surface pressure of 25 mN/m and 30 mN/m, 181 

respectively. Different initial surface pressures of the LPS monolayers were chosen because of 182 

the different insertion capacities of N-L and DH-L for this experiment.The aim of this study is to 183 

evaluate the effects of N-L or DH-L on the LPS monolayer after a similar insertion of proteins, 184 

i.e. a similar Δπ. The initial surface pressures which correspond to this prerequisite is 25 mN/m 185 

and 30 mN/m for a concentration of 0.1 µM N-L and DH-L, respectively (figure 1B); more so, 186 

LPS monolayers with an initial surface pressure of 25 mN/m and 30 mN/m have similar Δ values 187 

(supplementary data S1). The injection of N-L and DH-L under the LPS monolayer in these 188 

conditions results in a surface pressure increase of 2.9 mN/m and 3.5 mN/m, respectively (figure 189 

2A), and induces an increase of ellipsometric angle of 8 and 12°, respectively (figure 2B). 190 

 191 

3.4 Changes of surface pressure (π) and ellipsometric angle (Δ)  of KLA monolayer in 192 

the presence of lysozyme.  193 

To estimate the influence of the polysaccharide moieties on lysozyme interactions with LPS 194 

monolayer, KLA lipids were used. KLA lipids are derivative forms of LPS from which the 195 
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polysaccharide moiety besides two 3-deoxy-D-manno-octulosonic acid (KdO) groups are 196 

missing (figure 3). The use of KLA was also relevant to test the role of electrostatic interactions 197 

between lysozyme and the negative charge at the interface by making the access to the charge 198 

easier. KLA monolayers are homogeneous lipid films on the contrary to LPS monolayers. This 199 

was confirmed by AFM imaging (supplementary data S2).  200 

Kinetics of the π and Δ changes after injection of N-L and DH-L in the subphase were 201 

recorded for a KLA monolayer with an initial surface pressure of 25 mN/m and 30 mN/m, 202 

respectively. For N-L, the surface pressure of the KLA monolayer is stable for the first half hour 203 

and then decreases after 3 h (-2.1 mN/m ) (figure 4A). Oppositely, DH-L injection induces an 204 

immediate and more intense decrease (-5 mN/m after 3 h) (figure 4A). Both N-L and DH-L 205 

interact with the KLA monolayer in such a way that the ellipsometric angle increases slightly 206 

after injection of both proteins: +0.65° and +1.5° after 3 h, respectively (figure 4B).207 

 208 

3.5 Microscopic observations of LPS monolayer in the presence of lysozyme.  209 

Brewster angle microscopy (BAM) and ellipsometry were performed to visualize the LPS 210 

monolayer organization on a µm-scale before and after lysozyme injection in the subphase. 211 

BAM-images give information on the thickness and refraction index of the LPS monolayer. 212 

Thick and/or high refraction index zones will appear lighter (white) than thin and low index 213 

zones (black). Delta maps show the same information as the BAM images, but the differences in 214 

height and/or refraction index are more precisely measured. Blue is the baseline color of the delta 215 

maps and correspond to a small delta value. High delta zones will be represented from green till 216 

red.  217 

Before lysozyme injection, the LPS monolayer is heterogeneous, with black and white zones, 218 

at both initial surface pressures (25 mN/m and 30 mN/m), as evidenced by BAM-imaging 219 
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(figures 5A and 5E). In the absence of literature references, the black colored zones are assumed 220 

to correspond to LPS with short polysaccharide chains (low refractive index and low thickness), 221 

while the white regions are assumed to correspond to LPS with long polysaccharide chains (high 222 

refractive index and low thickness). Such domain-organization is likely considering the optimal 223 

thermodynamic configuration that suggests segregation of LPS with similar polysaccharide chain 224 

lengths. The same information is provided by the delta-maps (figures 5C and 5G).  225 

One hour after injection of 0.1 µM N-L, the BAM-images and delta-maps do not show any 226 

significant change of the heterogeneity as compared to the initial LPS monolayer (figures 5B and 227 

5D), despite a slight increase of the background Δ-value in the delta-map (figure 5D). On the 228 

contrary, after injection of DH-L, an unequivocal change of the LPS monolayer organization is 229 

observed in both BAM-images and delta-maps (figures 5F and 5H). Especially, the small high Δ-230 

domains make place for bigger ones, and the background Δ-value increases (figure 5H). 231 

Atomic force microscopy (AFM) enables to investigate the LPS monolayer at a nanoscale with 232 

a high resolution. Thus, this technique was used to study more precisely the organization of the 233 

lipid monolayer observed in the background of BAM-images (black zones).234 

  235 
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The resulting AFM-images show the heterogeneity of the initial LPS monolayer at a nanoscale 236 

at both initial surface pressures (25 mN/m and 30 mN/m; figures 6A, 6C, 6E and 6G). The height 237 

difference between the lower (zone 1) and higher (zone 2) lipid zones is 1.2 to 2.0 ± 0.2 nm. By 238 

grating the LPS (data not shown), the monolayer thickness could be measured and corresponds 239 

to 5 nm. The monolayer thickness is in coherence with the one found by Le Brun et al. 240 

(2013).[26] 241 

The impact of N-L and DH-L on the lipid monolayer can also be studied by AFM, enabling to 242 

study more carefully the reorganization of the low Δ-domains present in the BAM-images. 243 

AFM shows that the injection of 0.1 µM N-L or DH-L does not significantly modify the 244 

heterogeneous appearance of the LPS monolayer (figures 6B, 6D, 6F and 6H). However, the 245 

insertion and adsorption of 0.1 µM N-L gives rise to the formation of small domains (object 1) 246 

with a height of 1.4 ± 0.4 nm (figures 6B and 6D). The height of these domains is equivalent to 247 

the height of the dense domains observed in absence of lysozyme (figures 6A and 6C). The 248 

adsorption and insertion of 0.1 µM DH-L induces the formation of two types of clusters (object 2 249 

and 3 with a height of 25 ± 5 and 57 ± 12 nm, respectively) and small domains (object 4) (1.4 ± 250 

0.3 nm height) (figures 6F and 6H).  251 

Topographical information shown in the AFM images is representative for the whole sample. 252 

However, the size and shape of the different domains is irregular and heterogeneously distributed 253 

over the sample, making it impossible to quantify the effect of lysozyme on the domain size and 254 

shape.  255 
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4. DISCUSSION 256 

Native lysozyme (N-L) has been shown active against Gram-negative bacteria such as E. 257 

coli.[11,27] Membrane permeabilization has been suggested as one of the mechanisms 258 

responsible for this activity.[8,28] This assumption was recently confirmed by our group who 259 

demonstrated that N-L causes the formation of pores and ion channels in the outer and 260 

cytoplasmic membranes, respectively.[9,11] Pore formation due to N-L implies that interactions 261 

occur between the protein and the E. coli outer membrane. Nevertheless, the mode of insertion of 262 

lysozyme into the outer membrane remains unknown.  263 

Moreover, dry-heated lysozyme (DH-L) has a higher antimicrobial activity and higher 264 

membrane disruption potential than N-L. [11] This improved activity is supposed to be related to 265 

the modified physico-chemical properties of DH-L. DH-L is more hydrophobic, flexible and 266 

surface active than N-L, but its secondary and tertiary structures remain intact. [29,30] It is thus 267 

relevant to compare the interaction of native and dry-heated lysozymes with LPS, the lipid 268 

components of the outer leaflet of the outer membrane of Gram negative bacteria. 269 

Interfacial monolayers are considered as good models to study interactions between 270 

antimicrobial peptides and bacterial membranes.[18,19] In the presently reported study, a LPS 271 

monolayer was used to mimic the outer leaflet of the E. coli K12 outer membrane, in order to 272 

explore the first step of lysozyme interaction with bacterial membrane. It is noticeable that wild-273 

type LPS was here used for the first time to investigate protein-LPS interactions at a macroscopic 274 

and mesoscopic level, using biophysical tools such as tensiometry, ellipsometry, AFM and 275 

BAM.  276 

 277 
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4.1 The affinity of N-L for LPS is very high and makes possible the insertion of the 278 

protein into a LPS monolayer.  279 

For the first time, protein insertion into a wild type LPS monolayer is here demonstrated. Until 280 

now, protein insertion was only recorded for LPS-derivative monolayers and lung surfactant 281 

protein D. [31] . The surface pressure increase measured when N-L is injected into the subphase 282 

demonstrates that N-L is able to insert into a LPS monolayer (figure 1A). The ability of 283 

lysozyme to interact with LPS is consistent with the surface activity of the protein at the 284 

air/liquid interface.[30] However, insertion of N-L into the LPS monolayer remains lower than 285 

for antimicrobial peptides such as temporin L, as suggested by the lower surface pressure 286 

increase (table 2).[32,33] The larger molecular size and higher rigidity of lysozyme,[34] as 287 

compared to peptides, could be responsible for the lower efficiency of the protein.  288 

The maximal insertion pressure (MIP), determined from measurements of N-L insertion at 289 

different initial pressures, is high (41.5 mN/m, table 1) and similar to MIP recorded for 290 

antimicrobial peptides and phospholipid monolayers (25-45 mN/m).[23,33] Especially, it is 291 

remarkable that the MIP value is higher than the lateral pressure which is supposed to exist in 292 

natural membrane systems in eukaryotic cells (~ 30 mN/m).[35] Unfortunately, no measurements 293 

or theoretical deductions of the lateral pressure in the outer and cytoplasmic membranes of 294 

prokaryotes are available in literature then no comparison is possible with the here observed MIP 295 

value. Moreover, the N-L synergy factor (0.79, table 1) is extremely high as compared to 296 

reported values for protein insertion into phospholipid monolayers (from 0.3 to 0.5).[24] It can 297 

thus be concluded that the protein has a high affinity for the LPS interface between 18 and 30 298 

mN/m and strikingly lysozyme insertion is almost not impacted by the lateral cohesion of the 299 

LPS molecules. These observations suggest a mode of action that is unusual compared to the 300 
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interaction between protein and phospholipids.This could result from the LPS inherent molecular 301 

structure and from the specificities of a LPS monolayer compared to a phospholipid monolayer; 302 

the LPS molecules have heterogeneous polysaccharide chains in length, thus the monolayer has a 303 

variable thickness induced by the auto-assemblage of similar LPS molecules observed by BAM 304 

and AFM microscopy (figures 5 and 6).  Indeed, a LPS monolayer can be divided into two 305 

distinct zones, i.e. a polysaccharide zone and a phospholipid-like zone, on the contrary to a 306 

phospholipid monolayer which is composed of a unique zone. 307 

  308 
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4.2 The polysaccharide moieties of LPS are needed for N-L insertion.  309 

When LPS molecules are depleted from their polysaccharide moieties (KLA), lysozyme is no 310 

longer able to insert into the lipid monolayer, since no increase of the surface pressure occurs 311 

(figure 4A). However, lysozyme adsorption is evidenced by the increase of the ellipsometric 312 

angle (Δ) (figure 4B). Lysozyme adsorption could involve hydrogen bonds between the protein 313 

and the remaining two sugar moieties, or electrostatic interactions between the positive lysozyme 314 

and the negative KLA. The latter assumption is reinforced by the immediate and higher 315 

adsorption of DH-L which is more positively charged than N-L (figure 2B). It is also in 316 

accordance with Brandenburg et al (1998) who reported electrostatic interactions between S. 317 

minnesota Re LPS and lysozyme in solution.[36]  318 

Actually, while N-L adsorption is proceeding for 3 h (figure 4B), the surface pressure of the 319 

lipid monolayer is decreasing (figure 4A). This could be due to a destabilization and partial 320 

solubilization of the lipid monolayer as has been previously described for with the antimicrobial 321 

peptide protegrin-1 at a lipid A monolayer [37]; another hypothesis is the reorganization or 322 

reorientation of the lipid headgroups induced by lysozyme presence beneath the monolayer, 323 

similarly to what has been previously reported for a dystrophin subdomain R20-24 at a 324 

DOPC/DOPS monolayer.[38] If a partial solubilization of the KLA occurs, this should be 325 

reflected in a decrease of the ellipsometric angle (Δ), due to the loss of matter at the interface. 326 

Here, the ellipsometric angle increases (figure 4), meaning that rather than a solubilization of the 327 

KLA monolayer, a reorganization of the KLA head groups takes place leading to a relaxation of 328 

the lipid film. Lysozyme molecules are trapped beneath the KLA monolayer caused by strong 329 

electrostatic attractive forces between lysozyme and the KLA lipids. 330 
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On the contrary, when N-L interacts with a LPS monolayer, i.e. including polysaccharide 331 

moieties, surface pressure and ellipsometric angle simultaneously increase (figures 2A and 2B). 332 

Undoubtedly, N-L is thus able to insert deeply in the interface, up to the hydrophobic zone of the 333 

LPS monolayer. A hypothesis can be the effect of steric hindrance of the polysaccharides which 334 

prevents total coverage of the interface by the lipid headgroups, thus leaving free space for 335 

lysozyme insertion. Moreover, the polysaccharide chains can also cause simultaneously partial 336 

shielding of the negative charges on the headgroups and therefore prevent the entrapment of the 337 

positive lysozyme molecules at the level of these negative charges as is the case for KLA lipids. 338 

The decreased interaction of the negative charges with positive lysozyme could enable insertion 339 

of the protein between the LPS headgroups. At last, lysozyme and the polysaccharides moieties 340 

could interact and create compact zones as LPS/lysozyme domains and complexes (figure 6) 341 

resulting in lesser density in other areas enabling the remaining free lysozyme to attain the 342 

interface. Such strong hydrophobic interactions have already been reported between LPS and 343 

lysozyme in solution,[39] and LPS/lysozyme complexes have been observed. [36,40]  344 

 345 

4.3 N-L interaction with LPS causes a slight reorganization of the LPS monolayer.  346 

At the same time as the surface pressure increases when N-L is injected under a LPS 347 

monolayer, a strong increase of the ellipsometric angle Δ (+7°, figure 2B) is observed, which is 348 

higher than the ellipsometric angle increase for protein/phospholipid monolayers.[41] This 349 

unusually high Δ increase can be explained by the LPS/lysozyme complex formation, 350 

polysaccharide reorganization, and/or the presence of N-L at the interface, since the ellipsometric 351 

angle depends on the refraction index and the film thickness.  352 
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BAM and AFM imaging were performed to evaluate the different hypotheses explaining the Δ 353 

increase. BAM and AFM imaging show the heterogeneity of the initial LPS monolayer at 354 

micrometer and nanometer scales, respectively (figures 4A, 4C, 5A and 5C), as a result of the 355 

variable lengths of the polysaccharides chains. After N-L injection and interaction with LPS, this 356 

heterogeneity is maintained as can be observed in the BAM (figures 5B and 5D) and AFM 357 

images (figures 6B and 6D). But N-L injection also results in a slight increase of the background 358 

Δ-value in the delta-map (figure 5D), and in the formation of small domains on the background 359 

zones in AFM-imaging (figures 6B and 6D). It can thus be concluded that N-L reorganizes the 360 

LPS monolayer, even if this reorganization remains limited. The reorganization of the LPS 361 

monolayer and the LPS/lysozyme complex formation could possibly be the preliminary steps for 362 

pore formation by N-L as observed in vivo by Derde et al (2013). [9] 363 

 364 

4.4 DH-L has a stronger affinity for LPS than N-L, and causes more radical 365 

reorganization of the LPS monolayer.  366 

Similarly to N-L, DH-L insertion into the LPS monolayer is enabled by the polysaccharides 367 

moieties, and DH-L reorganizes the LPS monolayer. However, differences in the behavior of 368 

DH-L versus N-L with the LPS monolayer can be noticed. This modified behavior could be 369 

related to its different physico-chemical properties such as increased hydrophobicity, surface-370 

activity, positive charge and flexibility.[29,30] 371 

DH-L insertion into the LPS monolayer is more efficient than N-L at concentrations higher 372 

than 0.05 µM (figure 1A). This could be due to the higher flexibility of DH-L as compared to N-373 

L,[29] which could allow more DH-L molecules to insert into the LPS monolayer, and/or to 374 

restructure more efficiently the interface. The increased insertion capacity of DH-L is consistent 375 



22 

 

with its slight increased interfacial behavior (πfinal, table 1). Especially, it is noticeable that the 376 

surface pressure increase induced by DH-L insertion into the LPS-monolayer is similar to that 377 

measured with an antimicrobial peptide, i.e. temporin L, in equivalent conditions (table 2). DH-L 378 

has also more affinity for the LPS monolayer than N-L, demonstrated by its higher MIP and 379 

synergy factor (59.6 mN/m and 0.89, respectively; table 1).[23,33] The drastically different 380 

reorganization of the LPS monolayer by DH-L is highlighted by BAM and AFM imaging (figure 381 

5 and 6). The BAM-images show that the many small domains with a high Δ-value visible in the 382 

presence of N-L (figures 5B and 5D) are replaced by larger and fewer high Δ-value domains in 383 

the presence of DH-L (figures 5F and 5H). Concurrently, more or less thick, and more or less 384 

large clusters appear in the presence of DH-L, as evidenced by AFM images (figures 6F and 6H). 385 

These clusters could be protein aggregates caused by high local concentration of DH-L at the 386 

LPS-monolayer, consistently with the higher sensitivity to aggregation of DH-L as compared to 387 

N-L, previously established by Desfougères et al (2011). [30]  388 
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5. CONCLUSIONS 389 

The presently reported study demonstrates the strong interaction between N-L and a LPS 390 

monolayer, usually considered as a relevant model of the outer membrane of Gram-negative 391 

bacteria. Even more, N-L is able to insert leading to a lateral reorganization of the LPS 392 

monolayer, which can explain pore formation into the E. coli outer membrane, previously 393 

observed in vivo.[11] An original and unexpected result is that lysozyme insertion between the 394 

lipid A of LPS monolayers requires the presence of the polysaccharide moieties. This reveals 395 

specific interactions between lysozyme and the polysaccharide moieties leading to better 396 

insertion and decreased electrostatic attraction. Further experiments are needed in order to settle 397 

between the different hypotheses that could explain this finding.  398 

Moreover, dry-heating modifies lysozyme properties in such a way that its affinity for LPS, its 399 

insertion capacity, and its ability for LPS monolayer reorganization are emphasized. These 400 

results are thus consistent with in vivo experiments that demonstrated larger and/or more 401 

numerous pores induced by DH-L into the E. coli outer membrane, as compared to N-L.[11]  402 

The interaction of N-L and DH-L with the outer membrane lipids is now well established and 403 

consistent with the pore formation previously demonstrated in vivo. Self-uptake mechanism is 404 

then imaginable meaning that lysozyme molecules involved in pore formation and stabilization 405 

could enable the entrance of free lysozyme in the bacterial cell. Then, it is relevant to further 406 

study the interaction of lysozyme with the cytoplasmic membrane, the final hurdle before access 407 

to the cytoplasm. The findings resulting from this study are currently analyzed and will soon be 408 

published.409 
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Supporting information. Additional experimental data on the ellipsometric angle of a LPS 
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Figure 1. A) Surface pressure increase (Δπ) of a LPS monolayer (πinitial=18 mN/m) induced by 

different subphase concentrations of native lysozyme (N-L) (�) and dry-heated lysozyme (DH-

L) (�); B) Surface pressure increase of a LPS monolayer induced by 0.1 µM N-L (�) and DH-L 

(�), depending on the initial surface pressure (πinitial); the maximal insertion pressure (MIP) and 

the theoretical pressure increase in the absence of lipids (Δπ0) are indicated by arrows.  
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Figure 2: 
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Figure 2. Surface pressure π (A) and ellipsometric angle Δ (B) changes during N-L (�) and DH-

L (�) adsorption at a LPS monolayer having an initial surface pressure of 25 mN/m and 30 

mN/m, respectively. 
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Figure 3: 

Figure 3. Schematic representation of E. coli K12 LPS and KLA lipids. GlcN (N-

acetylglucosamine); KdO (3-deoxy-D-manno-octulosonic acid); Hep (L-gycero-D-manno 

heptose); Gal (galactose); Glc (glucose).  



33 

 

Figure 4: 
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Figure 4. Surface pressure π (A) and ellipsometric angle Δ (B) changes during N-L (�) and DH-

L (�) adsorption at a KLA monolayer having an initial surface pressure of 25 mN/m and 30 

mN/m, respectively. The initial Δ of the KLA lipids at 25 mN/m and 30 mN/m are shown as a 

full and dashed line, respectively. 
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Figure 5: 

 

Figure 5. BAM-images and delta-maps (450 µm x 390 µm) before (A, C, E, G) and after N-L 

(B, D) or DH-L (F, H) injection under the LPS monolayer. The initial surface pressure was 25 

mN/m or 30 mN/m, for N-L or DH-L, respectively.  
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Figure 6: 

  Initial LPS monolayer 1h after lysozyme injection 
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Figure 6. Topographic AFM-images before (A ,C, E, G) and after N-L (B, D) or DH-L (F, H) 

injection under the LPS-monolayer. The initial surface pressure was 25 mN/m or 30 mN/m, for 

N-L or DH-L, respectively. The Z-range is 10 nm.  
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TABLES 

Table 1. Binding parameters calculated for N-L and DH-L adsorption at a LPS monolayer: 

maximal insertion pressure (MIP), synergy factor, and theoretical pressure increase in the 

absence of lipids (Δπ0); these parameters were extrapolated from the Δπ vs πinitial plots for 0.1µM 

lysozyme. For comparison, the surface pressure increase resulting from 0.1 µM lysozyme 

adsorption at the air/liquid interface is indicated (Δπfinal).  

  N-L DH-L 

LPS/liquid interface 

MIP (mN/m) 41.5 59.6 

Synergy factor 0.79 0.89 

Theoretical Δπ0 (mN/m) 8.75 9.10 

air/liquid interface Δπfinal (mN/m) 10 11 
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Table 2. Surface pressure increase (Δπ) of LPS or LPS-derivative monolayers measured after 

adsorption of antimicrobial peptides and N-L or DH-L. The initial surface pressure was 18 

mN/m for both peptides and protein. 

 

 Peptide or 

protein 

Concentration 

(µM) 

Δπ 

(mN/m) 

Bacterial 

species 

LPS type Reference 

 

Polymyxin B 

(1.4 kDa) 

0.5 17.5 S. enterica Re-LPS [32] 

Polymyxin E1 

(1.2 kDa) 

0.5 21 S. enterica Re-LPS [32] 

Colymycin 

(1.8 kDa) 

0.5 0.5 S. enterica Re-LPS [32] 

Gramicidin S 

(1.1 kDa) 

0.15 17 S. enterica Re-LPS [32] 

Temporin L 

(1.6 kDa) 

0.1 7.5 E. coli Wild-type 

LPS 

[33] 

 

N-L 

(14.4 kDa) 

0.1 5.2 E. coli Wild-type 

LPS 

This study 

N-L 

(14.4 kDa) 

0.1 -2.1 E. coli KLA  

~ Re-LPS 

This study 

DH-L 

(14.4 kDa) 

0.1 7.8 E. coli Wilt-type 

LPS 

This study 

DH-L 

(14.4 kDa) 

0.1 -5 E. coli KLA  

~ Re-LPS 

This study 

P
ep

ti
d

es
 

L
y
so

z
y
m

e 


