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Abstract : New pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs were synthesized and their inhibitory activities against 
DYRK1A, CDK5/p25, GSK3α/β and p110-α isoform of PI3K evaluated using harmine as reference. Both furan-2-yl 10 and pyridin-4-yl 19 
from the two different series, exhibited submicromolar IC50 against DYRK1A with no activities against the three other kinases. In addition, 
compound 10 exhibited antiproliferative activities in the Huh-7, Caco2 and MDA-MB-231 cell lines. 

 

Harmine and other members of the family of β-carboline alkaloids have been shown to inhibit the dual-specificity tyrosine 

phosphorylation-regulated kinase 1A (DYRK1A), a serine/threonine kinase implicated in Down syndrome, and to reduce the levels of 

multiple phosphorylated forms of tau protein that are important in the pathological progression of Alzheimer's disease (AD).[1-3] DYRK1A 

belongs to the DYRK family within the CMGC group (cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP 

kinases), glycogen synthase kinases (GSK) and CDK-like kinases (CLKs)) of the eukaryote kinome. Although harmine represents a 

standard in terms of activity and selectivity, the numerous side effects have led to the development and study of various natural and 

synthetic compounds, a number of them incorporating indolic or aza-indolic scaffolds (see meridianin, meriolin and lamellarin 

derivatives).[4] In particularly, harmine and derivatives exhibited cytotoxic activities against human cancer cell lines that could be (partly) 

attributed to its planar tricyclic system able to intercalate DNA.[5,6]  

 

Previously, as an initial attempt to design new kinase inhibitors focused on a pyridazino[4,5-b]indol-4-one scaffold, we already 

prepared compound 1 showing micromolar IC50 value against DYRK1A (Fig. 1).[7] Due to its structural analogy with harmine, we thought 

that this molecule could be a good starting template for further optimization. Thus, we focused our efforts on the introduction of various 

(het)aryl substituents at position 1 of this privileged structure and compared the biological results with some of their non-planar analogs 

derived from a pyridazin-3(2H)-one scaffold (Fig. 1). 
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Figure 1. General structures of synthesized compounds. 

 

Pyridazino[4,5-b]indol-4-ones 7-10 were classically prepared starting from ethyl 5-methoxy-1H-indole-2-carboxylate. Friedel-Crafts 

acylation using a wide variety of acid chlorides in the presence of Tin(IV) chloride in methylene chloride-nitromethane gave indoles 3-6 

which were cyclized with hydrazine hydrate in ethanolic solution to afford the expected tricyclic compounds (Scheme 1).[8,9] 
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Scheme 1. Reagents and conditions: (a) SnCl4, RCOCl, CH2Cl2, CH3NO2, rt or reflux, 5-20 h, 28-48%; (b) Hydrazine hydrate, EtOH, rt or reflux, 10-72 h, 38-

49%. 
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Pyridazin-3(2H)-ones 15-19 can be prepared from bromomaleic anhydride, which reacted with hydrazine sulfate in water under 

refluxing conditions, to give 4-bromo-1,2-dihydropyridazine-3,6-dione (12) in 89% yield.[10] Condensation of p-anisidine with compound 

12, in the presence of copper powder, in N-methyl-2-pyrrolidone (NMP) at 160°C led to compound 13 which can be monochlorinated at 

the C-6 position with excess phosphorus oxychloride (POCl3) at 100°C during one hour to give intermediate 14.[11,12] Introduction of a 

methyl substituent (15) was successful with trimethylaluminium under Pd(PPh3)4 catalyzed conditions in refluxing dioxane[13] whereas 

Suzuki cross-coupling with various boronic acids or pyridine-4-boronic acid pinacol ester, under microwave irradiation, afforded 

molecules 16-19 (Scheme 2).[14]   
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Scheme 2. Reagents and conditions: (a) Hydrazine sulfate, H2O, reflux, 10 h, 89%; (b) p-anisidine, Cucat, NMP, 160°C, 4 h, 87%; (c) POCl3 (6éq), 100°C, 1 h, 

81%; (d) AlMe3, Pd(PPh3)4, 1,4-dioxane, reflux, 24 h, 20%; (e) Boronic acids or pyridine-4-boronic acid pinacol ester, Na2CO3 (2M), Pd(PPh3)4, toluene or DMF, 

110°C (mW), 15-35 min, 20-82%. 

 

The final products were tested against four representative kinases DYRK1A, CDK5/p25, GSK3/β and p110- isoform of PI3K 

chosen for their involvement in regulation processes including neurodegenerative diseases or cancer (Table 1).[7,15] The biological results 

are very heterogeneous, except on CDK5/p25 where all the compounds displayed IC50 values above 10 µM. In the pyridazino[4,5-b]indol-

4-one series (7-10), compound 10 bearing a furan-2-yl substituent showed a significant submicromolar IC50 value of 0.22 µM against 

DYRK1A, only 4-fold less active than harmine, with no activity towards the other kinases. From this data alone, it appears that particular 

variations at position 1 of the pyridazino[4,5-b]indol-4-one scaffold seem to be allowed for a good inhibitory activity against this enzyme, 

although the results observed for compounds 7-9 are contradictory. Also, when we compared compounds 1 and 10 with their ring-opened 

analogs 15 and 18 from the pyridazin-3(2H)-one series, a loss of activity was observed while the unique compound 19 containing a 

pyridine moiety at position 6 of the pyridazin-3(2H)-one series displayed a pronounced inhibitory activity against DYRK1A (IC50 = 0.61 

µM). Such structure-activity relationships are difficult to interpret and it is plausible that different binding modes in the ATP binding site 

are involved depending upon the substituent and the capacity of these compounds to form multiple hydrogen bonds with the hinge region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Kinase inhibition (IC50 values in µM; NT = not tested; values lower than 10 µM are highlighted in bold). 
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Compounds R R’ DYRK1A CDK5/p25 GSK3/β PI3K 

1 CH3  5 >10 >10 NT 

7 

 

 >10 NT 1.3 >10 

8 
MeO

 

 1.5 >10 1.4 >10 

9 F
3
C

 

 >10 >10 >10 6.9 

10 
O  

 0.22 >10 >10 >10 

15  CH3 >10 >10 >10 NT 

16  

 

>10 >10 >10 >10 

17  MeO

 

5.1 >10 2.5 NT 

18  
O  

>10 >10 >10 >10 

19  N

 

0.61 >10 9.6 >10 

Harmine   0.06 8 >10 NT 

 

A purely hypothetical binding mode for the most efficient compound 10 inside the ATP-binding site of DYRK1A (pdb code: 2WO6) 

is shown in Figure 2.[16,17] In contrast to harmine which interacts with residue Leu241 (hinge region) via a key hydrogen bond to its 

methoxy group,[18] compound 10 appears to involve its pyridazinone ring through hydrogen bonds with the hinge region (backbone atoms 

of Glu239 and Leu241), thereby positioning the five-membered aromatic furan ring in a - stacking interaction with the gatekeeper 

residue (Phe238). Selectivity over CDK5 and GSK3 could be attributed to an additional direct or water-mediated hydrogen bond 

interaction between the methoxy group and the asparagine residue (Asn244) located in the pocket of the kinase (Asp86 in CDK5; Thr138 

in GSK3). 

 

 
 

 

Figure 2. Docking model of compound 10 into the ATP site of DYRK1A. 

 

 

 



The cytotoxic effects of these compounds were then determined against six human cancer cell lines (hepatocellular carcinoma Huh-7, 

colorectal adenocarcinoma Caco2, colorectal carcinoma HCT-116, breast carcinoma MDA-MB-231, prostate carcinoma PC3 and lung 

carcinoid NCI-H727) and one normal cell line (fibroblasts) (Table 2).[7] Only compound 10 exhibited anti-proliferative activities in the 

Huh-7, Caco2 and MDA-MB-231 cell lines with an IC50 value lower than 1 μM, probably by exerting a cytostatic effect, while other 

compounds had no effect on cell proliferation. However, these anti-proliferative effects may not be correlated with the compounds’ ability 

to inhibit the DYRK1A protein kinase as compounds 8 or 19 were inactive on these cell lines.

 

Table 2. Anti-proliferative activity in various cell lines (IC50 values in µM; NT = not tested; values lower than 1 µM are highlighted in bold; the number in brackets 

indicate the percentage of cell growth decrease).a 
 

Compounds Huh-7 Caco2 HCT-116 MDA-MB-231 PC3 NCI-H727 Fibroblasts 

1 3 8 15 5 7 5 20 

7 NT NT NT NT NT NT NT 

8 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

9 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

10 0.25 (50%) 0.6 3 (50%) 0.3 (50%) > 25 > 25 > 25 

15 NT NT NT NT NT NT NT 

16 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

17 NT NT NT NT NT NT NT 

18 > 25 > 25 > 25 > 25 > 25 > 25 > 25 

19 > 25 > 25 > 25 > 25 > 25 > 25 > 25 
 

a Assays were performed in triplicate. Reference compounds used (not shown) were DMSO, taxol and doxorubicin. 

 

DYRK1A has been shown to be expressed ubiquitously, and its functional role in cancer is still largely obscure. Therefore, the attractive 

inhibitory profiles of both compounds 10 and 19 (from the two different series) against DYRK1A and selected cancer cell growth make 

them candidates for further evaluations (i.e. a screen against a wide variety of kinases to get an overall view of their selectivity), even if 

biological results for the pyridazino[4,5-b]indol-4-one scaffold (10) are probably due to combined interactions with several relevant 

targets that could imply undesirable side-effects. 

 

Acknowledgments 

This work was supported by grant from the Cancéropôle Grand Ouest. 

 

References and notes 

1. Frost, D.; Meechoovet, B.; Wang, T.; Gately, S.; Giorgetti, M.; Shcherbakova, I.; Dunkley, T. Plos one 2011, 6, e19264.  
2. Gockler, N.; Jofre, G.; Papadopoulos, C.; Soppa, U.; Tejedor, F. J.; Becker, W. FEBS J. 2009, 276, 6324. 

3. Smith, B.; Medda, F.; Gokhale, V.; Dunckley, T.; Hulme, C. ACS Chem. Neurosci. 2012, 3, 857. 

4. Gourdain, S.; Dairou, J.; Denhez, C.; Bui, L. C.; Rodrigues-Lima, F.; Janel, N.; Delabar, J. M.; Cariou, K.; Dodd, R. H. J. Med. Chem. 2013, 56, 9569. 
5. Cao, R.; Peng, W.; Chen, H.; Ma, Y.; Liu, X.; Hou, X.; Guan, H. Xu, A. Biochem. Biophys. Res. Commun. 2005, 338, 1557. 

6. Schmitt, C.; Kail, D.; Mariano, M.; Empting, M.; Weber, N.; Paul, T.; Hartmann, R. W.; Engel, M. Plos one 2014, 9, e87851.  

7. Bruel, A.; Logé, C.; Tauzia, M. L.; Ravache, M.; Le Guevel, R.; Guillouzo, C.; Lohier, J. F.; Oliveira Santos, J. S.; Lozach, O.; Meijer, L.; Ruchaud, 
S.; Bénédetti, H.; Robert, J. M. Eur. J. Med. Chem. 2012, 57, 223. 

8. Synthesis of Ethyl 3-(furan-2-ylcarbonyl)-5-methoxy-1H-indole-2-carboxylate (6). To a cold solution of ethyl 5-methoxy-1H-indole-2-carboxylate (2) 

(500 mg, 2.28 mmol) in freshly distilled dichloromethane (10 mL)/nitromethane (4 mL) was added Tin(IV) chloride (2.7 mL, 2.74 mmol) and dropwise 
furan-2-carbonyl chloride (0.27 mL, 2.74 mmol). The mixture was boiled under argon for 18 h, then poured into ice-cold water and extracted with 

dichloromethane. The organic layers were combined, dried over Na2SO4, filtered and concentrated under reduced pressure to give the crude product 6 

(28% yield, off-white solid) which was used without further purification. 1H NMR (DMSO-d6): δ 1.02 (t, 3H, 3J = 7.1 Hz), 3.79 (s, 3H), 4.35 (q, 2H, 3J 
= 7.1 Hz), 6.75 (dd, 1H, 3J = 3.6 Hz, 4J = 1.6 Hz), 7.04 (dd, 1H, 3J = 8.8 Hz, 4J = 2.4 Hz), 7.14 (d, 1H, 3J = 2.4 Hz), 7.21 (dd, 1H, 3J = 3.6 Hz, 4J = 0.8 

Hz), 7.48 (d, 1H, 3J = 8.8 Hz), 8.00 (dd, 1H, 3J = 3.6 Hz, 4J = 0.8 Hz), 12.53 (s, 1H). IR (KBr cm-1): 3448-3236 (υ NH), 1692 (υ C=O), 1639 (υ C=O). 

9. Synthesis of 1-(furan-2-yl)-8-Methoxy-4-oxo-3,4-dihydro-5H-pyridazino[4,5-b]indole (10). To a stirred solution of Ethyl 3-(furan-2-ylcarbonyl)-5-

methoxy-1H-indole-2-carboxylate (6) (200 mg, 0.64 mmol) in EtOH (6 mL) was added dropwise hydrazine hydrate (0.062 mL, 1.28 mmol). After being 

stirred at room temperature for 10 h, the solution was concentrated under reduced pressure. The residue was washed with 1N HCl, filtered and purified 

on silica gel column chromatography (dichloromethane/methanol 10/1) to give compound 10 (38% yield, off-white solid). mp > 300°C; 1H NMR 
(DMSO-d6): δ 3.84 (s, 3H), 6.82 (m, 1H), 7.03 (d, 1H, 3J = 3.2 Hz), 7.23 (dd, 1H, 3J = 9.0 Hz, 4J = 2.4 Hz), 7.58 (d, 1H, 4J = 2.4 Hz), 7.60 (d, 1H, 3J = 

9.0 Hz), 8.13 (m, 1H), 12.86 (s, 1H), 13.00 (s, 1H). 13C (100.6 MHz, DMSO-d6)  155.15, 154.81, 150.23, 143.92, 135.40, 134.45, 132.55, 121.08, 

117.59, 114.80, 114.09, 112.36, 109.86, 104.36, 55.41. IR (KBr cm-1): 3455-3225 (υ NH), 1671 (υ C=O). MS (ESI) m/z (%): 282.1 [M+H]+; UPLC 
purity 100%. 

10. Synthesis of 4-bromo-1,2-dihydropyridazine-3,6-dione (12). To a solution of hydrazine sulfate (6.5 g, 50 mmol) in water (70 mL) was added 

bromomaleic anhydride (11) (4.6 mL, 50 mmol). The mixture was heated under reflux for 10 h. After cooling, the crude product was filtered, washed 
with acetone and dried over reduced pressure to give compound 12 (89% yield, white solid). mp > 270°C; 1H NMR (DMSO-d6): δ 7.64 (s, 1H), 11.19 

(s, 1H), 12.39 (s, 1H). IR (KBr cm-1): 1638 (υ C=O). 



11. Synthesis of 4-[(4-methoxyphenyl)amino]-1,2-dihydropyridazine-3,6-dione (13). To a solution of 4-bromo-1,2-dihydropyridazine-3,6-dione (12) (3.0 
g, 15.71 mmol) in N-methyl-2-pyrrolidone  (8 mL) was added p-anisidine (3.87 g, 31.42 mmol) and copper powder (10 mg, 0.16 mmol). The resulting 

mixture was heated at 160°C for 4 h. After cooling, the mixture was basified with NaOH 1M, washed with ethyl acetate and then acidified by dropwise 

addition of concentrated HCl. The precipitate was filtered, triturated with ether and dried over reduced pressure to give compound 13 (87% yield, brown 

solid). mp = 256°C; 1H NMR (DMSO-d6): δ 3.78 (s, 3H), 6.01 (s, 1H), 6.98 (d, 2H, 3J = 9.0 Hz), 7.25 (d, 2H, 3J = 9.0 Hz), 8.13 (s, 1H) and two NH are 

not visible. 13C (100.6 MHz, DMSO-d6)  156.28, 156.06 (2C), 142.77, 132.15, 124.03 (2C), 114.62 (2C), 92.30, 55.43. MS (ESI) m/z (%): 234.0 

[M+H]+; UPLC purity 95%. 
12. Synthesis of 6-chloro-4-[(4-methoxyphenyl)amino]pyridazin-3(2H)-one (14). A mixture of 4-[(4-methoxyphenyl)amino]-1,2-dihydropyridazine-3,6-

dione (13) (3.0 g, 12.86 mmol) in POCl3 (7.2 mL, 77.18 mmol) was heated at 100°C for 1 h. After cooling, the reaction mixture was poured into an ice-

cold 1N NaOH solution and neutralized with concentrated HCl. The crude product was extracted with ethyl acetate. Organic layers were dried over 
Na2SO4, filtered and concentrated under reduced pressure. The residue was purified on silica gel column chromatography (dichloromethane/methanol 

98/2) to give compound 14 (81% yield, off-white solid). 1H NMR (DMSO-d6): δ 3.80 (s, 3H), 6.34 (s, 1H), 7.01 (d, 2H, 3J = 8.8 Hz), 7.31 (d, 2H, 3J = 

8.8 Hz), 8.98 (s, 1H), 12.93 (s, 1H). 13C (100.6 MHz, DMSO-d6)  156.79, 156.07, 143.28, 139.92, 131.02, 124.82 (2C), 114.76 (2C), 98.88, 55.46. IR 
(KBr cm-1): 3239 (υ NH), 1659 (υ C=O). MS (ESI) m/z (%): 252.0 [M+H]+; 254.0 [M+H+2]+ (Cl isotope); UPLC purity 97%. 

13. Synthesis of 4-[(4-methoxyphenyl)amino]-6-methylpyridazin-3(2H)-one (15). To a solution of 6-chloro-4-[(4-methoxyphenyl)amino]pyridazin-3(2H)-

one (14) (100 mg, 0.4 mmol) in dry 1,4-dioxane (3 mL) under a nitrogen atmosphere were added tetrakis(triphenylphosphine)palladium (23 mg, 0.019 
mmol) and trimethylaluminium (0.4 mL, 0.8 mmol). The resulting mixture was heated under reflux for 24 h. After cooling and adding water, the crude 

product was extracted with ethyl acetate. Organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was 

purified on silica gel column chromatography (petroleum ether/ethyl acetate 90/10) to give compound 15 (20% yield, off-white solid).  1H NMR (DMSO-
d6): δ 2.14 (s, 3H), 3.79 (s, 3H), 6.42 (s, 1H), 6.98 (d, 2H, 3J = 8.8 Hz), 7.29 (d, 2H, 3J = 8.8 Hz), 8.41 (s, 1H), 12.53 (s, 1H). 13C (100.6 MHz, DMSO-

d6)  156.73, 156.11, 146.15, 141.22, 132.18, 123.86 (2C), 114.72 (2C), 100.14, 55.56, 21.05. IR (KBr cm-1): 3449 (υ NH), 1640 (υ C=O). MS (ESI) 

m/z (%): 232.1 [M+H]+; UPLC purity 99%. 
14. Synthesis of 4-[(4-methoxyphenyl)amino]-6-(pyridine-4-yl)pyridazin-3(2H)-one (19). To a 10 mL vial under argon were added 6-chloro-4-[(4-

methoxyphenyl)amino]pyridazin-3(2H)-one (14) (150 mg, 0.6 mmol), pyridine-4-boronic acid pinacol ester (183 mg, 0.89 mmol), 

tetrakis(triphenylphosphine)palladium (34 mg, 0.029 mmol), 2M Na2CO3 aqueous solution (0.6 mL) and dry DMF (3 mL). The resulting mixture was 

heated at 110 °C under microwave irradiation (100W) for 20 min. After cooling and adding water, the crude product was extracted with ethyl acetate. 

Organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified on silica gel column chromatography 

(dichloromethane) to give compound 19 (20% yield, off-white solid). 1H NMR (DMSO-d6): δ 3.81 (s, 3H), 7.01 (s, 1H), 7.02 (d, 2H, 3J = 8.8 Hz), 7.40 

(d, 2H, 3J = 8.8 Hz), 7.75 (d, 2H, 3J = 5.8 Hz), 8.66 (d, 2H, 3J = 5.8 Hz), 8.78 (s, 1H), 13.19 (s, 1H). 13C (100.6 MHz, DMSO-d6)  156.84, 156.31, 

150.33 (2C), 143.74, 143.56, 141.96, 131.70, 124.25 (2C), 120.28 (2C), 114.73 (2C), 96.26, 55.43. IR (KBr cm-1): 3200 (υ NH), 1647 (υ C=O). MS 

(ESI) m/z (%): 295.1 [M+H]+; UPLC purity 94%. 
15. Dehbi, O.; Tikad, A.; Bourg, S.; Bonnet, P.; Lozach, O.; Meijer, L.; Aadil, M.; Akssira, M.; Guillaumet, G.; Routier, S. Eur. J. Med. Chem. 2014, 80, 

352. 

16. Soundararajan, M.; Roos, A. K.; Savitsky, P.; Filippakopoulos, P.; Kettenbach, A. N.; Olsen, J. V.; Gerber, S. A.; Eswaran, J.; Knapp, S.; Elkins, J. M. 
Structure 2013, 21, 986. 

17. Molecular modeling studies were performed using Sybyl software version 8.0 running on a dell precision T3400 workstation. The structure of DYRK1A 
in complex with a consensus substrate (PDB code, 2WO6) was used as the template. Flexible docking of compound 10 into the ATP-binding site was 

performed using GOLD software. For each compound, the most stable docking model was selected according to the best scored conformation predicted 

by the GoldScore scoring function. 
18. Ogawa, Y.; Nonaka, Y.; Goto, T.; Ohnishi, E.; Hiramatsu, T.; Kii, I.; Yoshida, M.; Ikura, T.; Onogi, H.; Shibuya, H.; Hosoya, T.; Ito, N.; Hagiwara M. 

Nat. Commun. 2010, 1, 1. 

Supplementary Material 

1H and 13C NMR spectra for compounds 10 and 19 can be found in the online version. 


