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Abstract: The copolymerization of 2-methyl-1,5-hexadiene (MHD) with propylene has been 

studied with different single-site group 4 metal catalysts. Systems based on ansa-zirconocene 

precursors such as rac-{Me2Si(2-Me-4-Ph-Ind}ZrCl2 (1) and C1- or CS-symmetric ansa-

{CpCR2Flu}ZrCl2 (2 and 3, respectively), once activated by MAO, are highly active (20600 

kgpol.gcat
1h1 at 6070 °C) and yield copolymers in which MHD is cyclopolymerized as 

methylene-(1-methyl)-1,3-cyclopentane (MMCP) units. 13C NMR studies revealed, depending 

on the symmetry of the precatalyst used, either highly isotactic (1, 2) or syndiotactic (3) 

polypropylene (PP) backbones, with isolated MMCP units. Fully trans-diastereoselective 

cyclopolymerization of MHD was observed with 1/MAO, while a mixture of trans and cis 

MMCP rings was observed with 2 and 3/MAO. The amount of MMCP units in PP (0.21.6 

mol-%) can be controlled by the amount of MHD in the feed. In contrast, the constrained 
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geometry catalyst system based on {C5Me4SiMe2NtBu}TiCl2 (4) and MAO showed a much 

lower productivity (ca. 3 kgpol.gcat
1h1 at 60 °C) and yields a regioirregular, atactic copolymer 

in which MHD is simply vinyl-inserted in quite moderate amount (0.2 mol-%). 
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Introduction 

Homopolymerization of short, yet non-conjugated diolefins such as 1,5-hexadiene leads to 

macromolecular structures that include in the polymer main-chain cyclic units interfaced by 

methylene groups, such as methylene-1,3-cyclopentane (MCP). Initially investigated with 

heterogeneous Ziegler-Natta catalyst systems,1 formation of such cyclopolyolefins from 1,5-

hexadiene was later extended with homogeneous group 4 (half) metallocenes2 and a variety of 

other molecular catalysts (rare earths: Sc, Y, Sm;3 V;4 Pd5). The cyclopolymerization was 

shown to be a two-step process. The enantioface selectivity of olefin insertion determines the 

tacticity of the polymer, and the diastereoselectivity of the cyclisation step determines 

whether cis or trans rings are formed. Although the stereoselectivity of the first 1,2 insertion 

was controlled by the enantiomorphic site of the catalyst (if any), the diastereoselectivity of 

the second insertion leading to the cyclization was attributed to the bulkiness of the ligand 

rather than to the symmetry of the catalyst precursor.2 Hence, for instance, catalyst systems 

based on Cp2ZrCl2,
2a,c {EBTHI}ZrCl2 ({EBTHI} = ethylenebis(tetrahydroindenyl))2b and 

half-sandwich scandium complexes3c yielded mainly trans cycles, while Cp*2ZrCl2 yielded 

mainly cis cycles.2a,c 

Copolymerization of 1,5-hexadiene with ethylene6 and propylene2g,j,4,7 mediated by 

group 4 metallocenes and related single-site catalysts proceeds via intramolecular insertion of 

the latter diolefin and eventually leads to polyolefins incorporating 5-membered rings.8 The 

copolymerization of higher diolefins such as 1,6-heptadiene,9 1,7-octadiene and 1,9-

decadiene10 with ethylene and propylene was also studied with different types of catalysts. 

Both 1,2 insertion and eventual cyclization were observed for 1,6-heptadiene and 1,7-

octadiene,9,10 but only 1,2 insertion occurred for 1,9-decadiene,10 showing that the critical step 

for cyclization of the monomer is the favorable formation of an intermediate where the 
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pendant vinyl-end is coordinated to the metal center. Cycloinsertion of diallylsilane in 

copolymerization with propylene was also reported, forming 6-membered rings.11 

Examples of catalysts enabling the cyclopolymerization of vinyl-vinylidene monomers 

are much more limited. Kesti and Waymouth have shown that the homopolymerization of 2-

methyl-1,5-hexadiene (MHD) catalyzed by Cp*2ZrMe2 combined with various activators 

(MAO, B(C6F5)3, [PhNHMe2]
+[B(C6F5)4]) produces a polymer with a repeating methylene-

(1-methyl)-1,3-cyclopentane (MMCP) unit (Scheme 1).12 The regio- and diastereoselective 

cyclopolymerization of the monomer results from the incorporation of the vinyl-end of the 

monomer, followed by the coordination and 1,2-insertion of the vinylidene group. The 

absence of β-hydrogen in the propagating species prevents β-H elimination termination 

reactions and the addition of another MHD molecule is favored over the β-methyl elimination. 

The stereochemistry of the MMCP ring was tentatively assigned as trans on the basis of NMR 

of oligomers and comparison with poly(methylnorbornene), a model polymer that contains 

only cis methylcyclopentane rings; it was further consolidated by conformational 

calculations.13 On the other hand, the copolymerization of ethylene with 5,7-dimethyl-1,6-

octadiene (5,7-DMO), a one-carbon higher homologue of MHD, with a variety of catalytic 

systems proceeded only via insertion of the vinyl moiety, leaving the vinylidene moiety 

unreacted.14 Noteworthy, the possibility to fine control the stereoselectivity of these 

cyclopolymerizations of vinyl-vinylidene monomers, with catalysts having drastically 

different stereocontrol abilities, has not been investigated yet in details. 
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Scheme 1. Homopolymerization of MHD with repeating methylene-(1-methyl)-1,3-

cyclopentane (MMCP) motifs.12  

 

 Herein, we report on the first attempts to copolymerize propylene with MHD. A series 

of molecular catalyst precursors, including ansa-zirconocenes with quite different 

stereocontrol (iso- vs. syndioselective) abilities and a “constrained-geometry” hemi-

titanocene, has been investigated. Our aim was to study their influence on the catalytic 

performance (productivity, comonomer incorporation) of the copolymerization process and on 

the microstructure of the cyclopolymers produced. 

 

Results and Discussion 

The copolymerization of MHD with propylene has been investigated with a series of ansa-

zirconocene precatalysts (Figure 1), activated by MAO. These precatalysts were selected due 

to their known propensity to produce high molecular weight isotactic (1,15 2,16) and 

syndiotactic (317) polypropylenes. In addition, we have investigated the essentially non-

stereoselective “constrained geometry” hemi-titanocene precatalyst 4, because of its well-

known great ability to incorporate -olefins.18 Representative results are reported in Table 1. 

The ansa-zirconocenes and hemi-titanocene behaved quite differently and, for the sake of 

clarity, these two types of catalysts are discussed separately hereafter. 
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Figure 1. Structures of the ansa-zirconocenes and constrained geometry hemi-titanocene 

precatalysts used in this study for the cyclo/copolymerization of MHD with propylene. 

 

Ansa-Zirconocene Catalysts 

General Trends. All three ansa-zirconocene catalyst systems investigated afforded selectively 

P(P-co-MHD) copolymers, as indicated by the unimodal and relatively narrow molecular 

weight distributions determined by GPC analysis (see the Supporting Information). This is 

also supported by detailed 1H and 13C NMR analyses (vide infra) which evidenced complete 

cyclopolymerization of MHD with propylene, eventually providing isolated MMCP rings 

within the PP chain; no pendant vinylidene group was observed in any case (Scheme 2). 

These first observations suggest that: (i) after insertion of a vinyl MHD group, insertion of the 

MHD vinylidene group is favored over insertion of a propylene molecule; (ii) insertion of a 

propylene molecule after cycloinsertion of a MHD molecule is favored over possible β-Me 

elimination from a [M]MMCP intermediate. 
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Scheme 2. Cyclopolymerization of MHD with propylene promoted by ansa-zirconocene 

catalysts. 

 

Despite its efficient cyclopolymerization, MHD has a noticeable, slightly detrimental 

influence on the catalyst productivity/activity. As compared to simple propylene 

homopolymerizations, the addition of MHD decreased by ca. 2550% the productivity of the 

ansa-zirconocene catalyst systems (compare entries 1 vs. 2, 4 vs. 58, 9 vs. 1011).19 As 

illustrated with system 2/MAO,20 the amount of MHD incorporated in the copolymers appears 

to be proportional to the concentration of monomer initially loaded (entries 48, Figure 2). 

Hence, from ca. 0.34 mol-% up to 1.31.6 mol-% of MHD (that is from ca. 11 up to 52 

insertions for 10,000 carbons) are incorporated by 2/MAO at [MHD]0 in the range 1280 

mmol.L1 (entries 48). In addition, the MHD incorporation rate remains stable during the 

polymerization course (as long as the MHD concentration does not vary much), as noted with 

the 3/MAO system after 10 and 20 min (entries 10 and 11). Both isoselective 2 and 

syndioselective 3 ansa-{CpCR2Flu}-zirconocene-based systems afforded comparable MHD 

incorporation rates (1.6 and 1.2 mol-%, respectively, at [MHD]0 = 80 mmol.L1; entries 7,8 

and 10,11). Apparently, Spaleck’s bis(indenyl)-zirconocene 1 showed, apart from a much 

higher activity than {CpCR2Flu}-zirconocene 2, a similar ability to incorporate MHD, with 

ca. 0.37 mol-%21 vs. 0.34 mol-% incorporation rates at [MHD]0 = 12.0 mmol.L1, respectively 

(entries 2 and 5).  
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Figure 2. Plot of MHD incorporated in PP as a function of initial loading, with catalyst 

system 2/MAO (Table 1, entries 4, 5, 6 and 8). 

 

For comparison purposes, the copolymerization of higher α-olefins comparable in size 

with MHD but having no additional polymerizable function, namely 8-trimethylsilyl-1-octene 

(8-TMSO) and 7-methyl-1,6-octadiene (1,6-MOD), has been carried out using the 5/MAO 

system (Figure 3), which has similar reactivity and properties as 2/MAO16 (Table 1, entries 

1416). The amounts of incorporated 8-TMSO and 1,6-MOD, which are easily determined 

using the TMS or internal vinylidene groups as NMR probes (see the Supporting 

Information), are quite comparable to those observed for MHD under similar conditions (ca. 

0.3 mol-%). This confirms that it is the rate of the terminal vinyl insertion that determines the 

ability of cyclic incorporation of MHD. 
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Figure 3. Structures of precatalyst 5 and higher -olefins 8-TMSO and 1,6-MOD. 

 

The cyclopolymerization of MHD affects the molecular features of the PP produced. 

The P(P-co-MHD) copolymers featured systematically lower molecular weights than the 

corresponding homoPP (entries 12, 48 and 911). This decrease of the molecular weight 

follows the same trend as the decrease of the activity/productivity. The incorporation of a 

monomer more difficult to insert than propylene (i.e., the vinylidene moiety of MHD) results 

in a kind of “dormant” species and likely leads to a higher probability for this latter species to 

undergo termination or chain transfer to aluminum reactions. This might also account for the 

the larger dispersity (yet still unimodal) observed with the highly active catalyst 1/MAO 

(entry 2). On the other hand, copolymers produced by 2/MAO and 3/MAO (entries 58 and 

1011) show a relatively narrow dispersity, comparable with that of homoPPs produced by the 

same catalyst (entries 4 and 9, respectively).  

As anticipated, the incorporation of little MHD as MMCP rings induced a small 

decrease in the stereoregularity compared to the corresponding homoPP, that is ca. 23% (at 

the m4 level) for 2 (entries 48) to ca. 4% for 1 (entries 13). Syndioselective catalyst 3 

followed the same trend with a drop of 3% at the r4 level (entries 911). The presence of 

MMCP rings in the polymer backbone also decreased the crystallinity of the copolymers, as 

evidenced by a pronounced decrease of the melting temperature up to 11 °C in the case of the 

copolymer produced with 1/MAO (entries 13). For less stereoregular copolymers produced 
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with 2/MAO or 3/MAO, a difference of only 12 °C was noted in the Tm values (entries 48 

and 911). 

 

Microstructural NMR Analysis. The microstructure of the P(P-co-MHD) copolymers 

produced with the three ansa-zirconocene catalysts was analyzed by 13C{1H} NMR 

spectroscopy. It was compared with that of the corresponding PP homopolymers in order to 

distinguish the resonances specific to the MMCP motifs from those which correspond to 

intrinsic branching and stereo/regio-defects in the PP backbone (not relevant to this study). In 

the NMR spectra of isotactic and syndiotactic polymers (Figures 4 and 5, respectively), the 

absence of a resonance at  ca. 34.5 ppm, which is observed when the cyclic MMCP units are 

adjacent to one another as in PMHD homopolymers [for the C4 methylene group],12 indicates 

that all of the MMCP units are separated by propylene units in the copolymers; this was not 

unexpected when considering the low MHD incorporation rates (< 2 mol-%).  

Depending on the ansa-zirconocene catalyst used, one or two sets of resonances 

assigned to the MMCP motifs incorporated in the PP backbone were identified. The two sets 

of signals for the MMCP motifs produced by syndioselective catalyst 3/MAO (identified with 

markers + (major set) and × (minor set)) are different from the signals identified for the 

corresponding motifs formed by isoselective catalysts 1/MAO and 2/MAO (identified with 

markers * (major) and ° (minor)22) (Table 2). As described hereafter, each of these four sets of 

signals corresponds to a specific MMCP stereoisomer (trans/cis) formed upon vinylidene 

insertion within either an isotactic or a syndiotactic PP backbone (Scheme 3, microstructures 

trans-iso/cis-iso and trans-syndio/cis-syndio). A 13C-13C INADEQUATE NMR experiment 

was performed on a copolymer produced by 2/MAO and containing 0.5 mol-% of MHD 

(Table 1, entry 6), enabling a complete assignment of the major set of signals observed for the 

MMCP motifs (Figure 6, Table 2; the minor set was of too low intensity to observe cross-
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peaks); only the resonance of the 1-methyl MMCP ( ca. 28.5 ppm)12 could not be 

unambiguously identified, as it overlaps with the CH signals of the iPP backbone. 

(insert Figures 4 and 5 here) 

 

21.223.3
28.3

42.8
30.133.040.9 37.6

45.4

48

48.5
50.7

 

 

Figure 6. 13C-13C INADEQUATE NMR spectrum (1,2,4-trichlorobenzene/C6D6 (5:1), 125 

MHz, 135 °C) of a P(P-co-MHD) copolymer produced by 2/MAO (Table 1, entry 6). 

 

CH2 PP CH PP CH3 PP 
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Table 2. Assignment of individual sets of 13C NMR resonances (in ppm) for cyclic MMCP 

motifs in isotactic and syndiotactic PP backbones. The right structure shows experimental 

chemical shifts for the major set (*) of resonances in an iPP backbone and (in parentheses) the 

corresponding calculated chemical shifts (ACD Lab). 

 

* 

(isotactic, 

major set; 

trans-iso) 

° 

(isotactic, 

minor set; 

cis-iso) 

+  

(syndiotactic, 

major set; 

trans-syndio) 

×  

(syndiotactic, 

minor set; 

cis-syndio) 

 

CH2 50.7 51.7 51.3 51.4 

CH2 48.5 49.0 48.6 48.5 

CH2 48.0 48.3 48.4 48.5 

CH2 45.4 45.1 46.4 overlapped 

C 42.7 43.0 42.7 43.0 

CH2 40.9 40.1 40.9 40.0 

CH 37.7 36.3 37.6 37.5 

CH2 33.1 32.8 32.5 32.2 

CH 30.1 overlapped 29.9 overlapped 

CH 28.3 27.3 28.0 27.2 

CH3 23.3 23.2 22.3 22.2 

CH3 21.1 21.6 21.2 21.2 
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Scheme 3. Cyclopolymerization mechanism of MHD with propylene by isoselective (left) 

and syndioselective (right) ansa-zirconocene catalysts, leading to the formation of two 

trans/cis MMCP stereoisomers in iPP and sPP backbones, respectively. 

 

In fact, the use of stereoselective catalysts for the copolymerization of MHD and 

propylene reduces the number of possible stereoisomers. With the {CpCR2Flu}-type 

isoselective 2/MAO and syndioselective 3/MAO catalysts, two sets of resonances (* (major) ° 

(minor)22 and + (major) × (minor), respectively) were clearly observed in the 13C NMR 

spectra. On the other hand, the incorporation of MHD by isoselective bis(indenyl) catalyst 

1/MAO leads to only one observable set (*). Based on earlier observations by Waymouth et 

al.,12 Naga et al.,7a and computations by Cavallo et al.,13 this latter set can be confidently 

assigned to the trans-iso isomer; similarly, the major and minor sets derived from 2 and 

3/MAO can be assigned to the trans-iso and cis-iso, and trans-syndio and cis-syndio isomers, 

respectively. This shows that vinylidene insertion is more stereoselective with 1 than with 2 

and 3. This is line with the higher stereoselectivity of this former catalyst system toward 

propylene homopolymerization, as compared to the latter {CpCR2Flu}-type catalysts (97.7% 

[m4] for 1/MAO vs. 94.1% [m4] for 2/MAO; Table 1, entries 1 and 4, respectively). 

Yet, this difference in isoselectivity between catalysts might not be important enough 

to justify the absence of the minor MMCP stereoisomer in the copolymer produced by 

1/MAO. In line with previous reports,7a,12,13 we suspect that the different geometries between, 

on one hand, the {CpCR2Flu}-type catalysts based on 2 and 3 and, on the other hand, the 

bis(indenyl) catalyst 1 might also account for the higher stereoselectivity of the process. The 

key factor in the formation of those stereoisomers is which enantioface of vinylidene is 

coordinated to the metal center (Scheme 3). In this process, the distance between the free 

coordination sites and the steric hindrance between the bridging carbons of MHD and the 
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substituents of the ligand certainly are determining factors in the formation of either one or 

the other intermediate. 

 

Hemi-Titanocene “Constrained Geometry” Catalyst 

The “constrained geometry” 4/MAO catalyst system behaved quite differently from the ansa-

zirconocene ones (Table 1, entries 12, 13). First, under comparable conditions, the catalytic 

productivity was lower by one or two orders of magnitude. More, although a copolymer with 

a relatively narrow, unimodal distribution was indeed produced, no cyclization of MHD was 

observed (Scheme 4). The 13C NMR spectra of copolymers produced with catalyst 4/MAO 

proved much more complicated than those of polymers prepared with stereoselective ansa-

zirconocene catalysts (Figure 7). Despite the complexity of the spectra, arising as anticipated 

from the presence of many regio-errors (2,1-insertions, as evidenced by signals in the  1517 

ppm region)23 and the absence of stereocontrol,18 informative observations could be made: i) 

CH2 signals at  4850 ppm, characteristic of MMCP rings (vide supra) were absent; ii) 

instead, signals at  110.0 and 146.1 ppm, assignable to the pendant vinylidene group of 

vinyl-inserted MHD, were observed.24 Simple vinyl-insertion of MHD was corroborated by 

the observation in the 1H NMR spectra of signals at  4.69 and 4.67 ppm for the pendant 

vinylidene group (see Figure S2 in the Supporting Information).24  
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Scheme 4. Vinyl-copolymerization of MHD with propylene promoted by hemi-titanocene 

“constrained geometry” catalyst 4/MAO. 

 

(insert Figure 7 here) 

 

 The amount of MHD inserted was estimated by 13C NMR to be ca. 0.2 mol-%, that is 

ca. 5 fold less than with ansa-zirconocenes under similar conditions (compare entries 13 vs. 

7/8 and 10/11). Overall, these data show that the 4/MAO system polymerizes much more 

easily vinyl than vinylidene groups. This was somehow unexpected considering that 

constrained geometry titanium catalysts have been reported to promote the copolymerization 

of isoalkenes with olefins (ethylene), yet with bimetallic catalysts leading to incorporation 

rates significantly enhanced as compared to those achieved with monometallic ones.25 

 

Summary 

The copolymerization of MHD with propylene by isoselective and syndioselective 

ansa-zirconocene catalysts leads to the production of copolymers in which MHD is 

selectively incorporated as methylene-(1-methyl)-1,3-cyclopentane (MMCP) units via 

consecutive insertion of the vinyl and vinylidene bonds. The MMCP rings feature specific 13C 

NMR resonances, depending on their trans/cis configuration and on the isotactic/syndiotactic 

PP backbone, and some of them could be assigned by a 13C-13C INADEQUATE NMR 

experiment. Fully trans-diastereoselective cyclopolymerization of MHD was observed with 

the bis{indenyl} catalyst 1/MAO, while a mixture of trans (major) and cis (minor) MMCP 

rings was observed with the {CpCR2Flu}-type catalysts 2 and 3/MAO. This behavior is 

attributed to the intrinsic higher stereoselectivity of the former catalyst and geometric 

differences between the catalysts. The copolymers produced with 2 and 3/MAO, which 
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contains up to 1.6 mol-% of MHD/MMCP, have melting temperatures close to those of the 

corresponding i/sPP homopolymers. In contrast, incorporation of 0.40.6 mol-% of MHD in 

iPP by 1/MAO resulted in a much more pronounced drop of the melting temperature. 

 

Experimental section 

General. All manipulations were performed under a purified argon atmosphere using 

standard Schlenk techniques or in a glovebox. Solvents were distilled Na/K alloy (toluene, 

hexane, pentane) under argon, degassed thoroughly and stored under argon prior to use.  

Ansa-metallocene rac-{Me2Si(2-Me-4-Ph-Ind}ZrCl2 (1) was generously provided by Total 

Raffinage Chimie. Ansa-metallocenes 2,16 326 and 516 were synthesized as described in the 

literature. Hemi-titanocene {C5Me4SiMe2NtBu}TiCl2 (4) was purchased from Boulder 

Scientific. Methyl-1,5-hexadiene (MHD), 8-trimethylsilyl-1-octene (8-TMSO) and 7-methyl-

1,6-octadiene (1,6-MOD) were purchased from Aldrich, and kept over activated molecular 

sieves. Propylene (99.99%) was purchased from Air Liquide and used as received. MAO (30 

wt-% solution in toluene, Albermale; contains ca. 10 wt-% of free AlMe3) was used as 

received.  

13C{1H} NMR analyses of polymer samples were run in the research center of Total 

Raffinage-Chimie in Feluy (Belgium) on a Avance 500 Bruker spectrometer equipped with a 

cryoprobe using the following conditions: solutions of ca. 200700 mg of polymer in 

Cl2CDCDCl2 or in a 1,2,4-trichlorobenzene/C6D6 (5:1) mixture at 135 °C in 10 mm tubes, 

inverse gated experiment, pulse angle = 90°, delay = 30 s, acquisition time = 1.25 s, number 

of scans = 5001,000. 13C chemical shifts are reported in ppm using Me3SiOSiMe3 ( 2.03 

ppm; equivalent to  0.00 ppm for SiMe4) as internal standard. The MHD incorporation rate 

was determined as MHD (mol-%) = [average of integral values of MMCP signals] / [integral 

value for CH of PP + average of integral values of MMCP signals] × 100. The 13C-13C 
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INADEQUATE spectrum was recorded using 700 mg of polymer dissolved in a 10 mm tube 

in a 1,2,4-trichlorobenzene/C6D6 (5:1) mixture at 135 °C, with a 50 ppm spectral width 

centered at  34 ppm, using 240 increments containing each 384 scans, and a delay of 4 s.  

DSC measurements were performed on a SETARAM Instrumentation DSC 131 

differential scanning calorimeter at a heating rate of 10 °C.min1; first and second runs were 

recorded after cooling to 30 °C; the melting temperatures reported in tables correspond to the 

second run. GPC analyses were carried out in 1,2,4-trichlorobenzene at 135 °C in the research 

center of Total Raffinage-Chimie in Feluy (Belgium), using polystyrene standards for 

universal calibration.  

Propylene/2-methyl-1,5-hexadiene copolymerization procedure. Copolymerization 

experiments were performed in a 300 mL high-pressure glass reactor equipped with a 

mechanical stirrer (Pelton turbine) and externally heated with a double mantle with a 

thermostated circulating water bath. The reactor was charged with toluene (80 to 150 mL), the 

appropriate amount of 2-methyl-1,5-hexadiene (MHD) and MAO (1.5 mL of a 30 wt-% 

solution in toluene), and propylene (5 bar) was introduced. The reactor was thermally 

equilibrated at the desired temperature for 30 min. Propylene pressure was decreased to 1 bar, 

and a solution of the catalyst precursor in toluene (ca. 2 mL) was added by syringe. The 

propylene pressure was immediately increased to 5 bar (kept constant with a back regulator) 

and the solution was stirred for the desired time. The temperature inside the reactor was 

monitored using a thermocouple. The polymerization was stopped by venting the vessel and 

quenching with a 10 wt-% solution of aqueous HCl in methanol (ca. 3 mL). The polymer was 

precipitated in methanol (ca. 200 mL) and 35 wt-% aqueous HCl (ca. 1 mL) was added to 

dissolve possible catalyst residues. The polymer was collected by filtration, washed with 

methanol (ca. 200 mL), and dried under vacuum overnight. Homopolymerization of 
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propylene (Table 1, entries 1, 4, 9, 12, 14) and copolymerization of propylene with other 

model -olefins (Table 1, entries 15 and 16) were conducted in a similar way. 

 

Supporting Information Available. 1H NMR spectrum of a P(P-co-MHB) copolymer 

produced with “constrained geometry” catalyst 4/MAO; 1H NMR spectra of copolymers of 

propylene with 8-TMSO and 1,6-MOD; representative GPC and DSC traces of copolymers. 
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Table 1. Copolymerization of propylene with MHD and model -olefins by catalytic systems 15/MAOa 

Ent. Precat. 
[Zr] 

[µmol.L1] 
[Al]/[Zr] Comon. 

nCom 

[mmol] 

Tpolym 

[°C]d 

mpp 

[g] 

Prod. 

[kgPP.gcat
1h1] 

Mn 

[kg.mol1] 
Mw/Mn 

Tm 
e 

[°C] 

Tcryst 
e 

[°C] 

[m4] or 

[r4] 

[%] 

Comon. incorp.f 

[mol-%]/ 

[comon/10 000C] 

Comonomer 

conv.f [%] 

1 1 2.9 15 510 - 0 60 (72) 21.6 541 41.0 2.1 155 108 97.7 - - 

2 1 3.8 12 000 MHD 1.8 60 (75) 22.2 370 13.3 2.7 144 107 93.9 0.37/12 99 

3 1 3.8 11 900 MHD 1.8 80 (96) 32.4 1 853 ndg ndg 145 113 93.6 0.64/21 100 

4 2 8.0 5 000 - 0 60 (72) 15.1 100 61.3 2.3 143 105 94.1 - - 

5 2 9.3 4 800 MHD 1.8 60 (72) 7.6 42 45.7 2.3 142 105 91.2 0.34/11 25 

6 2 9.3 4 800 MHD 5.2 60 (70) 5.0 27 33.3 2.4 145 106 92.1 0.64/21 11 

7 2 11.0 2 180 MHD 12.0 60 (72) 21.6 100 42.2 2.3 139 103 92.0 1.56/51 56 

8 2 9.3 4 800 MHD 12.0 60 (68) 12.7 76 44.8 2.3 141 108 92.5 1.59/52 33 

9 3 13.3 3 600 - 0 60 (84) 5.1 29 95.9 2.2 109 95 77.5 - - 

10 3 9.3 2 560 MHD 12.0 60 (65) 2.5 19 54.9 2.2 107 83 74.0 1.23/40 6 

11b 3 9.3 2 560 MHD 12.0 60 (66) 5.3 20 54.1 2.2 107 85 74.6 1.17/38 12 

12 4 18.0 1 600 - 0 30 (45) 14.5 29 131.5 2.3 noh noh ndh - - 

13c 4 18.0 1 600 MHD 12.0 60 (65) 1.4 2.8 42.7 2.2 noh noh ndh 0.19/6 0.5 

14 5 10.0 5 200 - 0 60 (62)  10.5 69 62.5 2.0 148 102 92.2 - - 

15 5 10.0 5 200 TMSO 2.7 60 (62) 1.6 12 59.2 2.2 146 102 91.8 0.30/10 5 

16 5 10.0 5 200 MOD 2.2 60 (62) 0.5 3.5 63.6 2.5 145 103 91.2 0.30/10 2 
a Conditions: [Zr or Ti] = 3.8 to 11.0 µmol.L1, toluene (150 mL), in situ activation with 1,60015,000 equiv. MAO, Ppropylène = 5 bar (i.e., [propylene] = ca. 1.7 

mol.L1, Tpolym = 60 °C, time = 10 min. b Reaction time = 20 min. c Reaction time = 30 min. d Values in brackets correspond to the maximal temperature reached in 

the reactor. e Melting (Tm) and crystallization (Tcryst) temperatures, as determined by DSC. f Determined by 1H (8-TMSO and 1,6-MOD) or 13C (MHD) NMR; see 

the Experimental section. g Not determined as a small part of this polymer was not soluble in TCB at 135 °C. h Not observed/not determined, gummy materials at 

room temperature. 
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Figure 4. Detail of the 13C{1H} NMR spectra (Cl2CDCDCl2, 125 MHz, 135 °C) of a) an iPP homopolymer produced by 1/MAO (Table 1, entry 

1). b) a P(P-co-MHD) copolymer produced by 1/MAO (Table 1, entry 2); c) a P(P-co-MHD) copolymer produced by 2/MAO (Table 1, entry 6); 

d) an iPP homopolymer produced by 2/MAO (Table 1, entry 4). Signals corresponding to MMCP motifs are noted * (major series) and ° (minor 

series). 
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Figure 5. Detail of the 13C{1H} NMR spectra (Cl2CDCDCl2, 125 MHz, 135 °C) of e) a P(P-co-MHD) copolymer produced by 3/MAO (Table 1, 

entry 10); signals corresponding to MMCP motifs are noted + (major series) and × (minor series) and f) a sPP homopolymer produced by 

3/MAO (Table 1, entry 9). 
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Figure 7. Details of the 13C{1H} NMR spectrum (1,2,4-trichlorobenzene/C6D6 (5:1), 125 MHz, 135 °C) of a P(P-co-MHD) copolymer produced 

by 4/MAO (Table 1, entry 13) 
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