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Preface

This volume contains the papers presented at GEMOC 2014, the 2nd Interna-
tional Workshop on The Globalization of Modeling Languages held on September
27-28, 2014 in Valencia.

September 10, 2014
Sophia Antipolis Cedex
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Workshop on the Globalization of Modeling

Languages

Benoit Combemale1, Julien Deantoni2, and Robert France3

1 IRISA, University of Rennes1, France, benoit.combemale@irisa.fr
2 I3S, University of Nice Sophia Antipolis, France,

julien.deantoni@polytech.unice.fr
3 Colorado State University, USA, france@cs.colostate.edu

This volume contains the papers presented at GEMOC 2014, the 2nd Interna-
tional Workshop on The Globalization of Modeling Languages held on September
27-28, 2014 in Valencia.

Context and Motivation

Software intensive systems are becoming more and more complex and commu-
nicative. Consequently, the development of such systems requires the integration
of many different concerns and skills. These concerns are usually covered by dif-
ferent languages, with specific concepts, technologies and abstraction levels. This
multiplication of languages eases the development related to one specific concern
but raises language and technology integration problems at the different stages
of the software life cycle. In order to reason about the global system, it be-
comes necessary to explicitly describe the different kinds of relationships that
exist between the different languages used in the development of a complex sys-
tem. To support effective language integration, there is a pressing need to reify
and classify these relationships, as well as the language interactions that the rela-
tionships enable. In this context, the proceedings of the workshop GEMOC 2014
include contributions that outline language integration approaches, case studies,
or that identify and discuss well defined problems about the management of
relationships between heterogeneous modeling languages.

This edition 2014 of the GEMOC workshop followed the successful first edi-
tion at MODELS 2013 in Miami, FL, USA. This new edition completes the
state of the art and practice started last year. It also strengthen the commu-
nity that broadens the current DSML research focus beyond the development of
independent DSMLs to one that provides support for globalized DSMLs.

GEMOC 2014 is supported by the GEMOC initiative that promotes research
seeking to develop the necessary breakthroughs in software languages to support
global software engineering, i.e., breakthroughs that lead to effective technologies
supporting different forms of language integration, including language collabo-
ration, interoperability and composability.

Content

This workshop proceedings include an extended abstract of the keynote pre-
sentation given by Prof. Gabor Karsai, and 8 technical papers.
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❆❜str❛❝t✳ ▼♦❞❡❧✲❞r✐✈❡♥ s♦❢t✇❛r❡ ❞❡✈❡❧♦♣♠❡♥t ❛♥❞ s②st❡♠s ❡♥❣✐♥❡❡r✲
✐♥❣ r❡❧② ♦♥ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s t❤❛t ♣r♦✈✐❞❡ ❡✣❝✐❡♥t✱ ❞♦♠❛✐♥✲s♣❡❝✐✜❝
❛❜str❛❝t✐♦♥s ❢♦r ❞❡s✐❣♥✱ ❛♥❛❧②s✐s✱ ❛♥❞ ✐♠♣❧❡♠❡♥t❛t✐♦♥✳ ▼♦❞❡❧s ❛r❡ ❡ss❡♥✲
t✐❛❧ ❢♦r ❝♦♠♠✉♥✐❝❛t✐♥❣ ✐❞❡❛s ❛❝r♦ss t❤❡ ❡♥❣✐♥❡❡r✐♥❣ t❡❛♠✱ ❜✉t ❛❧s♦ ❦❡②
t♦ t❤❡ ❛♥❛❧②s✐s ♦❢ t❤❡ s②st❡♠✳ ◆♦ s✐♥❣❧❡ ♠♦❞❡❧ ♦r ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡
❝❛♥ ❝♦✈❡r ❛❧❧ ❛s♣❡❝ts ♦❢ ❛ s②st❡♠✱ ❛♥❞ ❡✈❡♥ ❢♦r ♣❛rt✐❝✉❧❛r ❛s♣❡❝ts ♠✉❧✲
t✐♣❧❡ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s ❛r❡ ✉s❡❞ ✐♥ t❤❡ s❛♠❡ s②st❡♠✳ ❚❤✉s ❡♥❣✐♥❡❡rs
❢❛❝❡ t❤❡ ❞✐❧❡♠♠❛ ♦❢ ❡✐t❤❡r ❞❡✜♥✐♥❣ ❛ ✉♥✐❢②✐♥❣ s❡♠❛♥t✐❝s ❢♦r ❛❧❧ ♠♦❞❡❧s✱
♦r ✜♥❞✐♥❣ ❛ s♦❧✉t✐♦♥ t♦ t❤❡ ♠♦❞❡❧ ✐♥t❡❣r❛t✐♦♥ ♣r♦❜❧❡♠✳ ❚❤❡ t❛❧❦ ✇✐❧❧
❡❧❛❜♦r❛t❡ t❤❡s❡ ♣r♦❜❧❡♠s✱ ❛♥❞ s❤♦✇ t✇♦✱ ♣♦t❡♥t✐❛❧ s♦❧✉t✐♦♥s✿ ♦♥❡ ✉s✐♥❣
❛ ♠♦❞❡❧ ✐♥t❡❣r❛t✐♦♥ ❧❛♥❣✉❛❣❡ ✭❢♦r t❤❡ ❡♥❣✐♥❡❡r✐♥❣ ❞❡s✐❣♥ ❞♦♠❛✐♥✮ ❛♥❞
❛♥♦t❤❡r ♦♥❡ ✉s✐♥❣ ❡①♣❧✐❝✐t ❛♥❞ ❡①❡❝✉t❛❜❧❡ s❡♠❛♥t✐❝s ✭❢♦r t❤❡ ❞♦♠❛✐♥ ♦❢
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♠♦❞❡❧s ❛r❡ ✉s❡❞ ✐♥ ❛❧❧ ♣❤❛s❡s ♦❢ t❤❡ s②st❡♠✬s ❧✐❢❡❝②❝❧❡✱ ❢r♦♠ ❝♦♥❝❡♣t ❞❡✈❡❧♦♣♠❡♥t
t♦ ♣r♦❞✉❝t t♦ ♦♣❡r❛t✐♦♥✳ ▼♦❞❡❧s ❛r❡ ❜✉✐❧t ❢♦r ❡✈❡r②t❤✐♥❣✿ ❢r♦♠ t❤❡ s♠❛❧❧❡st ♣❛rt
t♦ t❤❡ ❡♥t✐r❡ s②st❡♠✱ ❛♥❞ ♠♦❞❡❧s ❛r❡ ✉s❡❞ ❢♦r ❛❧❧ s♦rts ❡♥❣✐♥❡❡r✐♥❣ ❛❝t✐✈✐t✐❡s✿
❢r♦♠ ❞❡s✐❣♥ t♦ ❛♥❛❧②s✐s ❛♥❞ ✈❡r✐✜❝❛t✐♦♥✱ t♦ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❛♥❞ ♠❛♥✉❢❛❝t✉r✐♥❣✳
❊♥❣✐♥❡❡r✐♥❣ ♠♦❞❡❧s ❛r❡ ♦❢t❡♥ ❜❛s❡❞ ♦♥ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ❛❜str❛❝t✐♦♥s ♦❢ r❡❛❧✐t②❀
❢♦r ❡①❛♠♣❧❡ ❛ ✜♥✐t❡✲❡❧❡♠❡♥t ♠♦❞❡❧ r❡♣r❡s❡♥ts ❛ ✸❉ s❤❛♣❡ ❛♥❞ ❛♥ ❡♥❣✐♥❡❡r✐♥❣
❛ss❡♠❜❧② ❞r❛✇✐♥❣ r❡♣r❡s❡♥ts ❤♦✇ t❤♦s❡ s❤❛♣❡s ♥❡❡❞ t♦ ❜❡ ❥♦✐♥❡❞ t♦❣❡t❤❡r ❜②
s♦♠❡ ♠❛♥✉❢❛❝t✉r✐♥❣ st❡♣s t♦ ❢♦r♠ ❛♥ ❛ss❡♠❜❧②✳ ❲❤✐❧❡ t❤❡r❡ ✐s ❛ ♠✉❧t✐t✉❞❡ ♦❢
❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧s ✉s❡❞ ✐♥ t❤❡ ❞❡s✐❣♥ ♦❢ ❛ ❝♦♠♣❧❡① s②st❡♠✱ s♦♠❡❤♦✇ t❤❡s❡
♠♦❞❡❧s ❤❛✈❡ t♦ ✬✜t t♦❣❡t❤❡r✬ ❜❡❝❛✉s❡ ✭✶✮ t❤❡② ❛r❡ ❞❡s❝r✐❜✐♥❣ t❤❡ s❛♠❡✱ s✐♥❣❧❡
s②st❡♠✱ ❛♥❞ ✭✷✮ t❤❡② ♥❡❡❞ t♦ ❜❡ ❝♦♠❜✐♥❡❞ t♦ ❛❧❧♦✇ ❝r♦ss✲❞♦♠❛✐♥✱ s②st❡♠✲❧❡✈❡❧
❛♥❛❧②s✐s ♦❢ t❤❡ ❞❡s✐❣♥✳ ▼♦❞❡❧s ❝r❡❛t❡❞ ✐♥ ✭❞♦♠❛✐♥✲s♣❡❝✐✜❝✮ ✐s♦❧❛t✐♦♥ ❛r❡ ♥❡❝❡ss❛r②
❛♥❞ ✈❡r② ✉s❡❢✉❧✱ ❜✉t ✐♥s✉✣❝✐❡♥t ✇❤❡♥ t❤❡ ❧❛r❣❡r s②st❡♠ ✐s ❝♦♥s✐❞❡r❡❞ ✲ ✐♥ t❤❡
❧❛r❣❡r s②st❡♠s s✉❜s②st❡♠s ❛♥❞ t❤❡✐r ❝♦♠♣♦♥❡♥ts ✐♥t❡r❛❝t✱ ❛♥❞ t❤❡s❡ ✐♥t❡r❛❝t✐♦♥s
❤❛✈❡ t♦ ❜❡ ❡①♣r❡ss❡❞ ❛s ✇❡❧❧✳
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❖❜✈✐♦✉s❧②✱ t❤❡ s❛♠❡ ❛♣♣❧✐❡s t♦ s♦❢t✇❛r❡ s②st❡♠s✿ ♠✉❧t✐♣❧❡✱ ♦❢t❡♥ ❞♦♠❛✐♥✲
s♣❡❝✐✜❝ ♠♦❞❡❧s ❛r❡ ✉s❡❞ t♦ ❞❡s❝r✐❜❡ ❛ ❝♦♠♣❧❡① s②st❡♠✳ ❙♦♠❡✇❤❛t ❞✐✛❡r❡♥t❧②
❢r♦♠ ❝♦♥✈❡♥t✐♦♥❛❧ ❡♥❣✐♥❡❡r✐♥❣✱ ✇❤❡r❡ ❛ ♠✉❧t✐♣❧❡✱ ✭♣❤②s✐❝❛❧✮ ❞♦♠❛✐♥ ♠♦❞❡❧✐♥❣
t♦♦❧s ❛r❡ ✉s❡❞✱ ✐♥ s♦❢t✇❛r❡ ✇❡ t❡♥❞ t♦ ✉s❡ ♠✉❧t✐♣❧❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧✐♥❣
❧❛♥❣✉❛❣❡s✳ ❆r❣✉❛❜❧②✱ ❡✈❡r② ♠♦❞❡❧✐♥❣ t♦♦❧ ❤❛s ❛ ✬❧❛♥❣✉❛❣❡✬ ✭❡①♣❧✐❝✐t❧② ❞❡✜♥❡❞ ♦r
♥♦t✮ ❛♥❞ ❛ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡ ✇✐t❤♦✉t ❛ s✉♣♣♦rt✐♥❣ t♦♦❧ ✐s ♦♥❧② ♣❛rt✐❛❧❧② ✉s❡❢✉❧❀
❤❡♥❝❡ ✐♥ t❤✐s ♣❛♣❡r ✇❡ ✇✐❧❧ ❢♦❝✉s ♦♥ t❤❡ ✐ss✉❡ ♦❢ t❤❡ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s ❛♥❞ t❤❡✐r
s❡♠❛♥t✐❝s✳ ❙❡♠❛♥t✐❝s ✐s ❛ ❝❡♥tr❛❧ q✉❡st✐♦♥ ✐♥ ❧❛♥❣✉❛❣❡ ❡♥❣✐♥❡❡r✐♥❣✿ ❤♦✇ ❞♦ ✇❡
s♣❡❝✐❢② ✇❤❛t ✬s❡♥t❡♥❝❡s✬ ♦❢ ❛♥ ❛rt✐✜❝✐❛❧✱ ❡♥❣✐♥❡❡r❡❞ ❧❛♥❣✉❛❣❡ ♠❡❛♥❄ ❋♦rt✉♥❛t❡❧②✱
✐♥ t❤❡ t❤❡♦r② ♦❢ ❝♦♠♣✉t❡r ❧❛♥❣✉❛❣❡s t❤❡r❡ ❤❛s ❜❡❡♥ ♠❛♥② ❞❡❝❛❞❡s ♦❢ r❡s❡❛r❝❤
t❤❛t ♣r♦❞✉❝❡❞ t❡❝❤♥✐q✉❡s ❢♦r s♣❡❝✐❢②✐♥❣ s❡♠❛♥t✐❝s ♦❢ ❧❛♥❣✉❛❣❡s✳ ❍♦✇❡✈❡r✱ t❤❡s❡
s♣❡❝✐✜❝❛t✐♦♥s r❛r❡❧② s♣❛♥ ♠✉❧t✐♣❧❡✱ ♣♦t❡♥t✐❛❧❧② ❞✐✛❡r❡♥t ❧❛♥❣✉❛❣❡s✳

❚❤❡ ♣r♦❜❧❡♠ ❛t ❤❛♥❞ ✐s st❛t❡❞ ❛s ❢♦❧❧♦✇s✿ ❍♦✇ ❝❛♥ ✇❡ ✐♥t❡❣r❛t❡ ❤❡t❡r♦❣❡✲
♥❡♦✉s✱ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s s♦ t❤❛t t❤❡ ✐♥st❛♥❝❡ ♠♦❞❡❧s ❝❛♥ ❜❡
❧✐♥❦❡❞ t♦❣❡t❤❡r ❛♥❞ s②st❡♠✲❧❡✈❡❧ ❛♥❛❧②s✐s ❝❛♥ ❜❡ ♣❡r❢♦r♠❡❞ ♦♥ t❤❡s❡ ♠♦❞❡❧s❄
■t ✐s ❡❛s② t♦ s❡❡ t❤❛t t❤✐s ♣r♦❜❧❡♠ ❤❛s ♠✉❧t✐♣❧❡ ❢❛❝❡ts✳ ◆❛t✉r❛❧❧②✱ ♦♥❡ ♣r♦❜❧❡♠
✐s t❤❛t ♦❢ s❡♠❛♥t✐❝s✿ ❤♦✇ ❞♦ ✇❡ ✬✐♥t❡❣r❛t❡ t❤❡ s❡♠❛♥t✐❝s✬ ♦❢ ♠✉❧t✐♣❧❡ ♠♦❞❡❧✐♥❣
❧❛♥❣✉❛❣❡s❄ ❙❛②✱ ✐❢ ✇❡ ❤❛✈❡ ❛ ♠♦❞❡❧ ML1

(A) ♦❢ ❛ s✉❜s②st❡♠ A ✐♥ ❛ ♠♦❞❡❧✐♥❣ ❧❛♥✲
❣✉❛❣❡ L1✱ ❛♥❞ ❛♥♦t❤❡r ♠♦❞❡❧ ML2

(A) ♦❢ t❤❡ s❛♠❡ A ✐♥ ❛ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡ L2✱
✇❤❛t ❞♦❡s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ML1

(A)×ML2
(A) ♠❡❛♥ ✭✐❢ ✐t ✐s ♠❡❛♥✐♥❣❢✉❧ ❛t ❛❧❧✮❄

❙✐♠✐❧❛r❧②✱ ✇❤❛t ✐❢ ✇❡ ❝♦♠♣♦s❡ t❤❡ ♠♦❞❡❧s ♦❢ t✇♦ ❞✐✛❡r❡♥t ❝♦♠♣♦♥❡♥ts✱ s❛② A ❛♥❞
B✱ ❛♥❞ ❛s❦ t❤❡ s❛♠❡ q✉❡st✐♦♥ ❛❜♦✉t ML1

(A)×ML2
(B) ❄ ❈❧❡❛r❧②✱ t❤❡ s❡♠❛♥t✐❝s

♦❢ ❝♦♠♣♦s✐t✐♦♥ ❤❛s t♦ ❜❡ ❞❡✜♥❡❞✳ ❆♥♦t❤❡r ♣r♦❜❧❡♠ ✐s ♠♦r❡ ♦♣❡r❛t✐♦♥❛❧✿ ❤♦✇
❞♦ ✇❡ ♠❛♥❛❣❡ ❝♦♠♣❧❡① ✬♠♦❞❡❧ r❡♣♦s✐t♦r✐❡s✬ ✇❤❡r❡ t❤❡ ♠♦❞❡❧s ♦❢ t❤❡ s②st❡♠ ✭♦r
s②st❡♠s✮ ❛r❡ ❜❡✐♥❣ ❦❡♣t❄ ■❢ ❝❤❛♥❣❡s ❛r❡ ♠❛❞❡ ✐♥ ♦♥❡ ♠♦❞❡❧✱ ✇❤❛t ✐s t❤❡ ✐♠♣❛❝t
♦❢ t❤❡s❡ ❝❤❛♥❣❡s ♦♥ t❤❡ ❞❡♣❡♥❞❡♥t ❛♥❞ r❡❧❛t❡❞ ♠♦❞❡❧s❄ ❇✉✐❧❞✐♥❣ ❛♥❞ ♠❛♥❛❣✐♥❣
s✉❝❤ ♠♦❞❡❧ r❡♣♦s✐t♦r✐❡s ❜r✐♥❣s ✉♣ ♠❛♥② ❞❡❡♣ t❡❝❤♥✐❝❛❧ ❛♥❞ ♣r❛❣♠❛t✐❝ ♣r♦❜❧❡♠s✳

❚❤❡ ♣r♦❜❧❡♠ st❛t❡❞ ❛❜♦✈❡ ❤❛s ❛ ❝❧♦s❡ r❡❧❛t✐♦♥s❤✐♣ t♦ s②st❡♠s ❡♥❣✐♥❡❡r✐♥❣✳
❖♥❡ ♦❢ t❤❡ ♠❛✐♥ t❛s❦s ✐♥ s②st❡♠s ❡♥❣✐♥❡❡r✐♥❣ ✐s t♦ ❞✐s❝♦✈❡r✱ ✉♥❞❡rst❛♥❞✱ ❛♥❞
♠❛♥❛❣❡ ❝r♦ss✲❞♦♠❛✐♥ ❛♥❞ ❝r♦ss✲s②st❡♠ ✐♥t❡r❛❝t✐♦♥s t❤❛t ♠❛❦❡ t❤❡ ❡♥❣✐♥❡❡r✐♥❣
♦❢ ❝♦♠♣❧❡① s♦ ❞✐✣❝✉❧t✳ ❙♦❧✉t✐♦♥s✱ ❧✐❦❡ ❙②s▼▲ ❛r❡ ❝❡rt❛✐♥❧② ❛ ❣♦♦❞ st❡♣ ✐♥ t❤❡
r✐❣❤t ❞✐r❡❝t✐♦♥✱ ❜✉t t❤❡② ❛r❡ r❛t❤❡r ❧✐♠✐t❡❞ ❛s ❢❛r ❛s s❡♠❛♥t✐❝s ✐s ❝♦♥❝❡r♥❡❞✱ ❛♥❞
♠♦r❡ r❡s❡❛r❝❤ ✐s ♥❡❡❞❡❞ t♦ ♣❧❛❝❡ t❤❡♠ ♦♥ ❛ s♦❧✐❞ t❤❡♦r❡t✐❝❛❧ ❢♦✉♥❞❛t✐♦♥✳

❯♥✐✜❝❛t✐♦♥ ♦r ■♥t❡❣r❛t✐♦♥❄

❚❤❡r❡ s❡❡♠ t♦ ❜❡ ✭❛t ❧❡❛st✮ t✇♦ ❛♣♣r♦❛❝❤❡s t♦ s♦❧✈✐♥❣ t❤❡ ♣r♦❜❧❡♠✳ ❖♥❡ ❝❛♥ ❜❡
❝❛❧❧❡❞ ❛s ✬✉♥✐✜❝❛t✐♦♥✬✱ ✇❤❡r❡ ✇❡ ❞❡s✐❣♥ ❛ ✉♥✐✈❡rs❛❧ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡ t❤❛t ♠❛❣✲
✐❝❛❧❧② ✉♥✐✜❡s ❛❧❧ ❡①✐st✐♥❣ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s✳ ❉♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧s ✇✐❧❧ t❤❡♥
❜❡ tr❛♥s❧❛t❡❞ ✐♥t♦ t❤✐s ✉♥✐✜❡❞ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡✱ ❛♥❞ ❛♥❛❧②s✐s ❛♥❞ ✈❡r✐✜❝❛t✐♦♥
✇✐❧❧ ❤❛♣♣❡♥ ♦♥ t❤❡ ✉♥✐✜❡❞ ♠♦❞❡❧s✳ ❚❤❡ s❡♠❛♥t✐❝s ♦❢ ❛❧❧ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞✲
❡❧✐♥❣ ❧❛♥❣✉❛❣❡s ✇♦✉❧❞ ❤❛✈❡ t♦ ❜❡ r❡✲❡①♣r❡ss❡❞ ✐♥ t❤❡ ✉♥✐✜❡❞ ❧❛♥❣✉❛❣❡ ✭✐✳❡✳ ✐♥ ❛
❝♦♠♠♦♥ s❡♠❛♥t✐❝ ❞♦♠❛✐♥✮✳ ❍♦✇❡✈❡r✱ t❤✐s ❛♣♣r♦❛❝❤ s❡❡♠s ✈❡r② ✉♥r❡❛❧✐st✐❝✿ t❤❡
❞♦♠❛✐♥✲s♣❡❝✐✜❝ ❧❛♥❣✉❛❣❡s ❛r❡ t②♣✐❝❛❧❧② r✐❝❤✱ s♦ ❝♦♠✐♥❣ ✉♣ ✇✐t❤ ❛ ❧❛♥❣✉❛❣❡ t❤❛t
✉♥✐✜❡s t❤❡♠ ❛❧❧ ✐s ❡①tr❡♠❡❧② ❞✐✣❝✉❧t✱ t❤❡✐r s❡♠❛♥t✐❝s s♦♠❡t✐♠❡s ❞♦❡s ♥♦t ❛❧✐❣♥
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✇❡❧❧✱ ❛♥❞ ❝r❡❛t✐♥❣ ❛ ❣r❛♥❞ ✉♥✐✜❡❞ ❧❛♥❣✉❛❣❡ ❞♦❡s ♥♦t s❡❡♠ ❢❡❛s✐❜❧❡✳ ❆❞❞✐t✐♦♥❛❧❧②✱
t❤❡ s❡t ♦❢ ❧❛♥❣✉❛❣❡s t♦ ❜❡ ✐♥t❡❣r❛t❡❞ ✐s ❝❤❛♥❣✐♥❣ ❢r♦♠ ♣r♦❥❡❝t t♦ ♣r♦❥❡❝t✱ s♦ ❛
✉♥✐✜❡❞ ❧❛♥❣✉❛❣❡ ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ ❡①tr❡♠❡❧② ❧❛r❣❡✳ ❆r❣✉❛❜❧②✱ t❤❡ ♦♥❧② ✬❧❛♥❣✉❛❣❡✬
t❤❛t ✐s ❝♦♠♠♦♥ ❛❝r♦ss ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧✐♥❣ ✐s t❤❛t ♦❢ ♠❛t❤❡♠❛t✐❝s ❜✉t t❤✐s
♦♥ s✉❝❤ ❛ ❤✐❣❤ ❧❡✈❡❧ t❤❛t ✐t ✐s ♥♦t ♣r❛❣♠❛t✐❝ ❞✉❡ t♦ t❤❡ ❧♦ss ♦❢ ❞♦♠❛✐♥✲s♣❡❝✐✜❝✐t②✳

❚❤❡ ♦t❤❡r ❛♣♣r♦❛❝❤ ❝❛♥ ❜❡ ❝❛❧❧❡❞ ❛s ✬✐♥t❡❣r❛t✐♦♥✬ ✇❤❡r❡ t❤❡ ❢♦❝✉s ✐s ♦♥ ✐♥t❡✲
❣r❛t✐♥❣ ♠♦❞❡❧s✿ ❛ ♠♦❞❡❧ ✐♥t❡❣r❛t✐♦♥ ❧❛♥❣✉❛❣❡ ✭▼■▲✮ ✇✐t❤ ✬s♣❛rs❡✬ s❡♠❛♥t✐❝s ✐s
✉s❡❞✳ ❚❤❡ s❡♠❛♥t✐❝s ♦❢ t❤❡ ♠♦❞❡❧ ✐♥t❡❣r❛t✐♦♥ ❧❛♥❣✉❛❣❡ ✐s ❢♦r ❝❛♣t✉r✐♥❣ t❤❡ ❝r♦ss✲
❞♦♠❛✐♥ ✐♥t❡r❛❝t✐♦♥s ✐♥ t❡r♠s ♦❢ t❤❡ str✉❝t✉r❡ ♦❢ t❤❡ s②st❡♠✳ ❚❤✐s ♠♦❞❡❧ ✐♥t❡✲
❣r❛t✐♦♥ ❧❛♥❣✉❛❣❡ ✐s ❧✐❣❤t✇❡✐❣❤t ❛♥❞ ✭♣♦t❡♥t✐❛❧❧②✮ ❡✈♦❧✈❛❜❧❡✱ s♦ t❤❛t ♥❡✇ ❞♦♠❛✐♥✲
s♣❡❝✐✜❝ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡s ❝❛♥ ❜❡ ❛❞❞❡❞ t♦ t❤❡ s✉✐t❡ ❛s ♥❡❝❡ss✐t❛t❡❞ ❜② t❤❡
❞❡✈❡❧♦♣♠❡♥t ♣r♦❥❡❝t✳ ■♥ t❤✐s ❛♣♣r♦❛❝❤ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♠♦❞❡❧s ✬st❛②✬ ✐♥ t❤❡✐r
♦✇♥ ♠♦❞❡❧✐♥❣ t♦♦❧s✱ ❛♥❞ t❤❡ ✐♥t❡❣r❛t✐♦♥ ♠♦❞❡❧s ❛r❡ r❡✢❡❝t✐♦♥s ♦❢ t❤❡s❡ ❞♦♠❛✐♥
♠♦❞❡❧s✳ ❚❤❡ ✐♥t❡❣r❛t✐♦♥ ♠♦❞❡❧s t❤✉s ❝❛♣t✉r❡ t❤❡ ✐♥t❡r❢❛❝❡s ♦❢ t❤❡ ❞♦♠❛✐♥ ♠♦❞❡❧s
r❡❧❡✈❛♥t ❢♦r ❛♥❛❧②③✐♥❣ t❤❡ ✐♥t❡r❛❝t✐♦♥s✳❚❤❡ ✐♥t❡r❢❛❝❡s ♦❢ t❤❡ ❝♦♠♣♦♥❡♥t ✭♦r s✉❜✲
s②st❡♠✮ ♠♦❞❡❧s ✐♥ t❤❡ ▼■▲ ❛r❡ ✬r✐❝❤✬ ✐♥ t❤❡ s❡♥s❡ t❤❛t t❤❡② ❛r❡ ♠✉❧t✐✲❞♦♠❛✐♥ ❛♥❞
t❤❡✐r ❝♦♥♥❡❝t✐✈✐t② ✇✐❧❧ ❛❧❧♦✇ t❤❡ ❛♥❛❧②s✐s ♦❢ ✐♥t❡r❛❝t✐♦♥s t❤r♦✉❣❤♦✉t t❤❡ s②st❡♠✳

❆♥ ❡①❛♠♣❧❡ ❢♦r ❛ ▼♦❞❡❧ ■♥t❡❣r❛t✐♦♥ ▲❛♥❣✉❛❣❡

■♥ ♦♥❡ ♦❢ ♦✉r r❡s❡❛r❝❤ ♣r♦❥❡❝ts✶✱ ✇❡ ❤❛✈❡ ❜✉✐❧t ❛ ♠♦❞❡❧✲✐♥t❡❣r❛t✐♦♥ ❧❛♥❣✉❛❣❡ t♦
s✉♣♣♦rt t❤❡ ❞❡s✐❣♥ ♦❢ ❝♦♠♣❧❡① ❝②❜❡r✲♣❤②s✐❝❛❧ s②st❡♠s ✭❈P❙✮✳ ❈P❙ ❛r❡ ❞❡✜♥❡❞
❛s ❡♥❣✐♥❡❡r❡❞ s②st❡♠s t❤❛t ✐♥t❡❣r❛t❡ ♣❤②s✐❝❛❧ ❛♥❞ ❝②❜❡r ❝♦♠♣♦♥❡♥ts ✇❤❡r❡ r❡❧✲
❡✈❛♥t ❢✉♥❝t✐♦♥s ❛r❡ r❡❛❧✐③❡❞ t❤r♦✉❣❤ t❤❡ ✐♥t❡r❛❝t✐♦♥s ❜❡t✇❡❡♥ t❤❡ ♣❤②s✐❝❛❧ ❛♥❞
❝②❜❡r ♣❛rts✳ ❊①❛♠♣❧❡s ✐♥❝❧✉❞❡ ❤✐❣❤❧② ❛✉t♦♠❛t❡❞ ✈❡❤✐❝❧❡s✱ s♠❛rt ❡♥❡r❣② ❞✐str✐✲
❜✉t✐♦♥ s②st❡♠s✱ ❛✉t♦♠❛t❡❞ ♠❛♥✉❢❛❝t✉r✐♥❣ s②st❡♠s✱ ✐♥t❡❧❧✐❣❡♥t ♠❡❞✐❝❛❧ ❞❡✈✐❝❡s✱
❡t❝✳ ❚❤❡ ❞❡s✐❣♥ ♦❢ s✉❝❤ s②st❡♠s ✐♥✈♦❧✈❡s t❤❡ ❞❡s✐❣♥ ♦❢ t❤❡ ♣❤②s✐❝❛❧✱ t❤❡ ❝②❜❡r
✭❝♦♠♣✉t❛t✐♦♥❛❧ ❛♥❞ ❝♦♠♠✉♥✐❝❛t✐♦♥❛❧✮✱ ❛♥❞ t❤❡ ❝②❜❡r✲♣❤②s✐❝❛❧ ❝♦♠♣♦♥❡♥ts ♦❢
t❤❡ s②st❡♠ ❛♥❞ t❤❡✐r ✐♥t❡❣r❛t✐♦♥✳ ❚❤❡r❡ ❛r❡ ❛ ♥✉♠❜❡r ♦❢ ❝♦♠♣❧❡① ❡♥❣✐♥❡❡r✐♥❣
t♦♦❧s t❤❛t s♦❧✈❡ ♣❛rts ♦❢ t❤❡ ♣r♦❜❧❡♠✱ ❡✳❣✳ ❈❆❉ t♦♦❧s ❢♦r ♠❡❝❤❛♥✐❝❛❧ ❞❡s✐❣♥✱
❋✐♥✐t❡ ❊❧❡♠❡♥t ❆♥❛❧②s✐s ✭❋❊❆✮ t♦♦❧s ❢♦r ❞❡t❡r♠✐♥✐♥❣ str❡ss❡s ♦♥ str✉❝t✉r❛❧ ❡❧❡✲
♠❡♥ts✱ s✐♠✉❧❛t✐♦♥ t♦♦❧s ❢♦r t❤❡ ❛♥❛❧②③✐♥❣ t❤❡ ❞②♥❛♠✐❝s ♦❢ t❤❡ s②st❡♠✱ ♠♦❞❡❧✐♥❣
❛♥❞ s②♥t❤❡s✐s t♦♦❧s ❢♦r t❤❡ ❞❡s✐❣♥ ❛♥❞ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤❡ ✭❝②❜❡r✮ ❤❛r❞✇❛r❡
❛♥❞ s♦❢t✇❛r❡✱ t❤❡r♠❛❧ ❛♥❛❧②s✐s t♦♦❧s ❢♦r ✈❡r✐❢②✐♥❣ t❤❡r♠❛❧ ❜❡❤❛✈✐♦r ♦❢ t❤❡ s②s✲
t❡♠✱ ❛♥❞ s♦ ♦♥❀ ❜✉t t❤❡② ❛r❡ ✉s❡❞ ✐♥ ✐s♦❧❛t✐♦♥✱ ❜② ❞♦♠❛✐♥ ❡♥❣✐♥❡❡rs✳ P✉r❡❧②
✉♥❞❡rst♦♦❞ ❝r♦ss✲❞♦♠❛✐♥ ✐♥t❡r❛❝t✐♦♥s ❧❡❛❞ t♦ ❡①♣❡♥s✐✈❡ ❞❡s✐❣♥ ✐t❡r❛t✐♦♥s✳

❲❡ ❤❛✈❡ ❞❡s✐❣♥❡❞ ❛♥❞ ✐♠♣❧❡♠❡♥t❡❞ ❛ ▼■▲ ❝❛❧❧❡❞ ✬❈②❜❡r✲P❤②s✐❝❛❧ ▼♦❞❡❧✐♥❣
▲❛♥❣✉❛❣❡✬ ✭❈②P❤②▼▲✮ ❬✶❪ t❤❛t ❛❧❧♦✇s t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❝②❜❡r✲♣❤②s✐❝❛❧ ❝♦♠✲
♣♦♥❡♥ts ❛♥❞ t❤❡ ❞❡s✐❣♥ ❈P❙ t❤r♦✉❣❤ ❝♦♠♣♦s✐t✐♦♥✳ ❚❤❡ ❧❛♥❣✉❛❣❡ ✐s ♣r✐♠❛r✐❧②
str✉❝t✉r❛❧ ✭✐✳❡✳ ❝♦♠♣♦s✐t✐♦♥✲♦r✐❡♥t❡❞✮✱ ❜✉t ❝♦♠♣♦♥❡♥ts ✭❛♥❞ s✉❜s②st❡♠s✮ ❤❛✈❡
r✐❝❤✱ t②♣❡❞ ✐♥t❡r❢❛❝❡s✱ ✇✐t❤ ❢♦✉r ❝❛t❡❣♦r✐❡s✿ ♣❛r❛♠❡tr✐❝ ❛♥❞ ♣r♦♣❡rt② ✐♥t❡r❢❛❝❡s
✭❢♦r ♣❛r❛♠❡tr✐③❛t✐♦♥ ❛♥❞ ❝♦♥✜❣✉r❛t✐♦♥✮✱ s✐❣♥❛❧ ✐♥t❡r❢❛❝❡s ✭❢♦r ❝②❜❡r ✐♥t❡r❛❝t✐♦♥s✮✱

✶ ❉❆❘P❆ ❆❞❛♣t✐✈❡ ❱❡❤✐❝❧❡ ▼❛❦❡ Pr♦❣r❛♠✱ ▼❊❚❆ ❉❡s✐❣♥ ❚♦♦❧s ❛♥❞ ▲❛♥❣✉❛❣❡s
♣r♦❥❡❝t ❛t ❱❛♥❞❡r❜✐❧t ❯♥✐✈❡rs✐t②
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♣♦✇❡r ✐♥t❡r❢❛❝❡s ✭❢♦r ♣❤②s✐❝❛❧ ✐♥t❡r❛❝t✐♦♥s r❡♣r❡s❡♥t✐♥❣ t❤❡ ❞②♥❛♠✐❝s✮✱ ❛♥❞ str✉❝✲
t✉r❛❧ ✐♥t❡r❢❛❝❡s ✭❢♦r ❣❡♦♠❡tr✐❝ ❛❧✐❣♥♠❡♥t ♦❢ t❤❡ ♣❤②s✐❝❛❧ ❝♦♠♣♦♥❡♥ts✮✳ ■♥ ❈②✲
P❤②▼▲ ♦♥❡ ❝❛♥ r❡♣r❡s❡♥t t❤❡ ❞❡s✐❣♥ ♦❢ ❛♥ ❡♥t✐r❡ ❈P❙✱ ❜✉t t❤❡ ♥❛t✐✈❡ ♠♦❞❡❧s
♦❢ t❤❡ ❝♦♠♣♦♥❡♥ts ❛♥❞ s✉❜s②st❡♠ ❛r❡ st♦r❡❞ ✐♥ t❤❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ t♦♦❧s ✲ ❈②✲
P❤②▼▲ ♠❡r❡❧② ❞❡s❝r✐❜❡s ❤♦✇ t❤❡② ❛r❡ ❝♦♠♣♦s❡❞✳ ❈r♦ss✲❞♦♠❛✐♥ ❛♥❛❧②s✐s ✐s s✉♣✲
♣♦rt❡❞ ❜② ♠♦❞❡❧ ✐♥t❡r♣r❡t❡rs t❤❛t ❛ss❡♠❜❧❡ ❝♦♠♣❧❡① ♠♦❞❡❧ ❛♥❛❧②s✐s ❝❛♠♣❛✐❣♥s
❢r♦♠ t❤❡ ❈②P❤②▼▲ ♠♦❞❡❧s✱ ♣♦ss✐❜❧② ✐♥✈♦❧✈✐♥❣ ♠✉❧t✐♣❧❡ ❛♥❛❧②s✐s t♦♦❧s✳

❆♥ ❡①❛♠♣❧❡ ❢♦r ■♥t❡r❛❝t✐♦♥ ▼♦❞❡❧✐♥❣

■♥ ❛♥♦t❤❡r r❡s❡❛r❝❤ ♣r♦❥❡❝t✷ ✇❡ ✇♦r❦❡❞ ♦♥ t❤❡ ♣r♦❜❧❡♠ ♦❢ s❡♠❛♥t✐❝ ✐♥t❡❣r❛t✐♦♥
♦❢ ♠♦❞❡❧s r❡♣r❡s❡♥t✐♥❣ r❡❛❝t✐✈❡ ❝♦♥tr♦❧❧❡rs✳ ❚❤❡ ♠♦t✐✈❛t✐♥❣ ❡①❛♠♣❧❡ ❝❛♠❡ ❢r♦♠
❛ s②st❡♠ ♦❢ s②st❡♠s✿ ❛ s♣❛❝❡❝r❛❢t ❛♥❞ ❛ ❧❛✉♥❝❤ ✈❡❤✐❝❧❡✱ ✇❤❡r❡ ❜♦t❤ s②st❡♠s ❤❛✈❡
❛ r❡❛❝t✐✈❡ ❝♦♥tr♦❧❧❡r t❤❛t ✐♥t❡r❛❝ts ✇✐t❤ ✐ts ❝♦✉♥t❡r♣❛rt ✐♥ t❤❡ ♦t❤❡r s②st❡♠✳
❚✇♦ ♠❛❥♦r ✐ss✉❡s ✇❡r❡ ♣♦s❡❞✿ ✭✶✮ ❡❛❝❤ r❡❛❝t✐✈❡ ❝♦♥tr♦❧❧❡r ✇❛s ♠♦❞❡❧❡❞ ✐♥ ❛
❞✐✛❡r❡♥t ✈❛r✐❛♥t ♦❢ t❤❡ ❙t❛t❡❝❤❛rt ♥♦t❛t✐♦♥ ✭❙t❛t❡✢♦✇ ❛♥❞ ❯▼▲ ❙t❛t❡ ♠❛❝❤✐♥❡s✱
s♣❡❝✐✜❝❛❧❧②✮✱ ❛♥❞ ✭✷✮ t❤❡ ❝♦♥tr♦❧❧❡rs ✇❡r❡ ❡①❝❤❛♥❣✐♥❣ ♠❡ss❛❣❡s t❤❛t ✐♥✢✉❡♥❝❡❞
t❤❡✐r ❜❡❤❛✈✐♦r✳ ❚❤❡ ❣♦❛❧ ✇❛s t♦ ✈❡r✐❢② t❤❡ ❝♦♥❝r❡t❡✱ ✐♥t❡❣r❛t❡❞ s②st❡♠ ✭✇❤❡r❡
t❤❡ ❝♦♥tr♦❧❧❡r ♠♦❞❡❧s ❛♥❞ t❤❡ ♠❡ss❛❣❡ ❡①❝❤❛♥❣❡s ✇❡r❡ ❣✐✈❡♥✮ t❤r♦✉❣❤ ♠♦❞❡❧
❝❤❡❝❦✐♥❣✳

❚❤❡ ✜rst ♣r♦❜❧❡♠ ✇❛s s♦❧✈❡❞ ❜② ❞❡✈❡❧♦♣✐♥❣ ❛ ❢r❛♠❡✇♦r❦✱ ❝❛❧❧❡❞ P♦❧②❣❧♦t❬✷❪✱
t♦ s♣❡❝✐❢② t❤❡ s❡♠❛♥t✐❝s ♦❢ ❙t❛t❡❝❤❛rt ✈❛r✐❛♥ts ✐♥ ❛♥ ❡①❡❝✉t❛❜❧❡ ❢♦r♠✳ ❚❤❡ ❢r❛♠❡✲
✇♦r❦ ✐s ❜✉✐❧t ❛s ❛ s❡t ♦❢ ❏❛✈❛ ❝❧❛ss❡s t❤❛t ❝❛♥ ❜❡ s♣❡❝✐❛❧✐③❡❞ ❛❝❝♦r❞✐♥❣ t♦ t❤❡
s❡♠❛♥t✐❝ ✈❛r✐❛♥t ②✐❡❧❞✐♥❣ ❛♥ ✬✐♥t❡r♣r❡t❡r✬ t❤❛t r❡❝❡✐✈❡s ❡✈❡♥ts ❛♥❞ ♣r♦❞✉❝❡s r❡❛❝✲
t✐♦♥s t♦ ❡✈❡♥ts✱ ❜✉t ✇❤♦s❡ ❜❡❤❛✈✐♦r ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ s♣❡❝✐✜❝ ♠♦❞❡❧✱ ❛❝t✐♥❣
❛s t❤❡ ✬♣r♦❣r❛♠✬ ❜❡✐♥❣ ✐♥t❡r♣r❡t❡❞✳ ❚❤❡ ✬♠♦❞❡❧✬ ✐s st♦r❡❞ ❛s ❛ ❞❛t❛ str✉❝t✉r❡
✐♥ t❤❡ ✐♥t❡r♣r❡t❡r✳ ❲❡ ❤❛✈❡ ✈❡r✐✜❡❞ t❤❡ ❝♦rr❡❝t♥❡ss ♦❢ t❤❡ ♠♦❞❡❧ ✐♥t❡r♣r❡t❡r✭s✮
✉s✐♥❣ ♥✉♠❡r♦✉s t❡sts ❡①❡r❝✐s✐♥❣ t❤❡ ✈❛r✐♦✉s ❢❡❛t✉r❡s ♦❢ t❤❡ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡✳
❚❤❡ ♠♦❞❡❧ ✐♥t❡r♣r❡t❡r ♣r♦❞✉❝❡❞ t❤❡ s❛♠❡ ♦✉t♣✉t s❡q✉❡♥❝❡s ❢r♦♠ t❤❡ s❛♠❡ ✐♥♣✉t
s❡q✉❡♥❝❡s ❛s t❤❡ ❝♦❞❡ ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❙t❛t❡✢♦✇ ❛♥❞ ❘❛t✐♦♥❛❧ ❘♦s❡ ❝♦❞❡ ❣❡♥✲
❡r❛t♦rs✱ r❡s♣❡❝t✐✈❡❧②✳ ◆♦t❡ t❤❛t t❤❡ ✐♥t❡r♣r❡t❡r ✭❛s ✇❡❧❧ ❛s t❤❡ ❣❡♥❡r❛t❡❞ ❝♦❞❡✮ ✐s
♣✉r❡❧② s❡q✉❡♥t✐❛❧✿ ✐t ✐s ❡①❡❝✉t❡❞ ✉♣♦♥ t❤❡ ❛rr✐✈❛❧ ♦❢ ✐♥♣✉t ❡✈❡♥ts ❛♥❞ ♣r♦❞✉❝❡s
♦✉t♣✉t ❡✈❡♥ts ✉♣♦♥ ❡❛❝❤ ✐♥✈♦❝❛t✐♦♥✳

❚❤❡ s❡❝♦♥❞ ♣r♦❜❧❡♠ ✇❛s ❛❞❞r❡ss❡❞ ❜② ♣r♦✈✐❞✐♥❣ ❛ ❢r❛♠❡✇♦r❦✱ ✐♠♣❧❡♠❡♥t❡❞
❛❣❛✐♥ ✐♥ ❏❛✈❛✱ ❢♦r r❡♣r❡s❡♥t✐♥❣ ✭✶✮ ❤♦✇ ❛ r❡❛❝t✐✈❡ ❝♦♥tr♦❧❧❡r ✐s ✇r❛♣♣❡❞ ✐♥t♦ ❛
❧♦♦♣✐♥❣ ♣r♦❝❡ss t❤❛t ✉s❡s s♦♠❡ ✭❜❧♦❝❦✐♥❣ ♦r ♥♦♥✲❜❧♦❝❦✐♥❣✮ ✬r❡❝❡✐✈❡✬ ❛♥❞ ✬s❡♥❞✬
♦♣❡r❛t✐♦♥s t♦ ✐♥t❡r❛❝t ✇✐t❤ ✐ts ❡♥✈✐r♦♥♠❡♥t✱ ❛♥❞ ✭✷✮ ❤♦✇ t✇♦ ✭♦r ♠♦r❡✮ r❡❛❝t✐✈❡
♣r♦❝❡ss❡s ✐♥t❡r❛❝t ✇✐t❤ ❡❛❝❤ ♦t❤❡r ✈✐❛ s♦♠❡ ♠❡ss❛❣❡ ❡①❝❤❛♥❣❡ ♣r♦t♦❝♦❧✳ ◆♦t❡ t❤❛t
t❤❡ ♣r♦❝❡ss❡s ❛r❡ ❝♦♥❝✉rr❡♥t✱ ✐✳❡✳ ❛r❜✐tr❛r② ✐♥t❡r❧❡❛✈✐♥❣ ♦❢ t❤❡ ♣r♦❝❡ss ❡①❡❝✉t✐♦♥s
✐s ♣♦ss✐❜❧❡✱ ❤❡♥❝❡ t❤❡ s②st❡♠ ❤❛s ❛ ❜✉✐❧t✲✐♥ ♥♦♥✲❞❡t❡r♠✐♥✐s♠✳ ❚❤❡ ♠❛✐♥ ✐❞❡❛ ❤❡r❡
✇❛s t♦ ♠♦❞❡❧ t❤❡ ✐♥t❡r❛❝t✐♦♥s ✭t❤✉s t❤❡ ✐♥t❡❣r❛t✐♦♥✮ ✈✐❛ ♠♦❞❡❧✐♥❣ t❤❡ ✬❣❧✉❡✬✿ t❤❡
s❝❤❡❞✉❧✐♥❣ ♦❢ ♣r♦❝❡ss❡s ❛♥❞ t❤❡ ✐♥t❡r❛❝t✐♦♥ ♣r♦t♦❝♦❧s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡
❝r❡❛t❡❞ ❛ ✭♣♦t❡♥t✐❛❧❧② ♥♦♥✲❞❡t❡r♠✐♥✐st✐❝✮ s❝❤❡❞✉❧❡r t❤❛t ♠♦❞❡❧❡❞ t❤❡ ❜❡❤❛✈✐♦r ♦❢

✷ ▼♦❞❡❧ ❚r❛♥s❢♦r♠❛t✐♦♥s ❛♥❞ ❱❡r✐✜❝❛t✐♦♥ ♣r♦❥❡❝t✱ s✉♣♣♦rt❡❞ ❜② ◆❆❙❆ ❆❘❈✳
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t❤❡ ❝♦♠♣♦s❡❞ s②st❡♠✳ ❋♦r t❤❡ ❛♥❛❧②s✐s ♦❢ t❤❡ ❝♦♠♣♦s❡❞ s②st❡♠ ✇❡ ❤❛✈❡ r❡❧✐❡❞
♦♥ t❤❡ ❏❛✈❛ P❛t❤ ❋✐♥❞❡r t♦♦❧ ✭❢r♦♠ ◆❆❙❆✮ t❤❛t ❛❧❧♦✇s t❤❡ ❜②t❡✲❝♦❞❡ ❜❛s❡❞
✈❡r✐✜❝❛t✐♦♥ ♦❢ ❏❛✈❛ ♣r♦❣r❛♠s✱ ♣❡r♠✐tt✐♥❣ ♥♦♥✲❞❡t❡r♠✐♥✐st✐❝ ❜❡❤❛✈✐♦r✳

▲❡ss♦♥s ▲❡❛r♥❡❞

❚❤❡ ♠❛✐♥ ❧❡ss♦♥ ✇❡ ❤❛✈❡ ❧❡❛r♥❡❞ ✇❛s t❤❛t ♦♥❡ s❤♦✉❧❞ ❢♦❝✉s ♦♥ ♣r♦❜❧❡♠✲❞r✐✈❡♥
✐♥t❡❣r❛t✐♦♥ ♦❢ ♠♦❞❡❧s✱ ❛♥❞ ♥♦t ♦♥ s♦♠❡ ❣r❛♥❞ ✉♥✐✜❝❛t✐♦♥✳ ▼♦❞❡❧s ❛r❡ ❜✉✐❧t ❢♦r
❛ ♣✉r♣♦s❡ ❛♥❞ ✇❤❡♥ ❛ ❧❛r❣❡r s②st❡♠ ♥❡❡❞s t♦ ❜❡ ❛♥❛❧②③❡❞✱ s②♥t❤❡s✐③❡❞✱ ✐♠♣❧❡✲
♠❡♥t❡❞✱ ✈❡r✐✜❡❞✱ t❡st❡❞✱ ♦♣❡r❛t❡❞✱ ♦r ♠❛✐♥t❛✐♥❡❞ ♦♥❡ ❤❛s t♦ ❜❡ ✈❡r② ♣r❛❣♠❛t✐❝
❛♥❞ ❝♦♥❝❡♥tr❛t❡ ♦♥ ✇❤❛t t❤❡ ♠♦❞❡❧s ❛r❡ ❢♦r✱ ❛♥❞ ❝♦♥s✐❞❡r ✐♥t❡❣r❛t✐♦♥ ❛❝❝♦r❞✲
✐♥❣❧②✳ ❍❡♥❝❡✱ ♦♥❡ s❤♦✉❧❞ ♣❛② ❛tt❡♥t✐♦♥ t♦ ❤♦✇ ❡✛❡❝t✐✈❡❧② s✉❝❤ ♠♦❞❡❧ ✐♥t❡❣r❛t✐♦♥
❝❛♥ ❜❡ s✉♣♣♦rt❡❞ ❜② t♦♦❧s✳

❆❝❦♥♦✇❧❡❞❣♠❡♥ts

❚❤❡ ❝♦♥❝❡♣ts✱ ✐❞❡❛s✱ ❛♥❞ ✇♦r❦ ❞❡s❝r✐❜❡❞ ✐♥ t❤✐s ♣❛♣❡r ❛r❡ t❤❡ ✇♦r❦ ♦❢ ♠❛♥②
♣❡♦♣❧❡✱ ✐♥❝❧✉❞✐♥❣ ❏❛♥♦s ❙③t✐♣❛♥♦✈✐ts✱ ❉❛♥✐❡❧ ❇❛❧❛s✉❜r❛♠❛♥✐❛♥✱ ❚❡❞ ❇❛♣t②✱ ❆❜✲
❤✐s❤❡❦ ❉✉❜❡②✱ ❊t❤❛♥ ❏❛❝❦s♦♥✱ ❳❡♥♦❢♦♥ ❑♦✉ts♦✉❦♦s✱ ❩s♦❧t ▲❛tt♠❛♥♥✱ ❚✐❤❛♠❡r
▲❡✈❡♥❞♦✈s③❦②✱ ◆❛❣ ▼❛❤❛❞❡✈❛♥✱ ❆❞❛♠ ◆❛❣❡❧✱ ❙❛♥❞❡❡♣ ◆❡❡♠❛✱ ❏♦s❡♣❤ P♦rt❡r✱
●❛❜♦r ❙✐♠❦♦ ❛♥❞ ♠❛♥② ♦❢ t❤❡ ❝♦❧❧❡❛❣✉❡s ❛t t❤❡ ■♥st✐t✉t❡ ❢♦r ❙♦❢t✇❛r❡✲■♥t❡❣r❛t❡❞
❙②st❡♠s✳ ❚❤❡ s✉♣♣♦rt ♦❢ ❉r ▼✐❝❤❛❡❧ ▲♦✇r② ♦❢ ◆❆❙❆ ❆♠❡s ❛♥❞ ❉r ❈♦r✐♥❛
P❛s❛r❡♥❛✉ ♦❢ ❈▼❯ ✇✐t❤ ✇❤♦♠ ✇❡ ❝♦❧❧❛❜♦r❛t❡❞ ♦♥ t❤❡ ◆❆❙❆ ♣r♦❥❡❝t ✐s ❛❧s♦
r❡❝♦❣♥✐③❡❞✳ ❚❤❡ s♣❡❝✐✜❝ ✇♦r❦ ❤❛s ❜❡❡♥ s✉♣♣♦rt❡❞ ❜② t❤❡ ❉❆❘P❆ ❆❱▼ ♣r♦❣r❛♠
✭❍❘✵✵✶✶✲✶✷✲❈✲✵✵✵✽✮✱ ❜② t❤❡ ◆❙❋ ✭❈◆❙✲✶✵✸✺✻✺✺✮ ❛♥❞ ◆❆❙❆ ✭◆◆❳✵✾❆❱✺✽❆✮✳
❆♥② ♦♣✐♥✐♦♥s✱ ✜♥❞✐♥❣s✱ ❛♥❞ ❝♦♥❝❧✉s✐♦♥s ♦r r❡❝♦♠♠❡♥❞❛t✐♦♥s ❡①♣r❡ss❡❞ ✐♥ t❤✐s
♠❛t❡r✐❛❧ ❛r❡ t❤♦s❡ ♦❢ t❤❡ ❛✉t❤♦r ❛♥❞ ❞♦ ♥♦t r❡✢❡❝t t❤❡ ✈✐❡✇s ♦❢ ❉❆❘P❆✱ ◆❙❋✱
♦r ◆❆❙❆✳

❘❡❢❡r❡♥❝❡s

✶✳ ❙③t✐♣❛♥♦✈✐ts✱ ❏✳✱ ❇❛♣t②✱ ❚✳✱ ◆❡❡♠❛✱ ❙✳✱ ❍♦✇❛r❞✱ ▲✳✱ ❏❛❝❦s♦♥✱ ❊✳✿ ❖♣❡♥♠❡t❛✿ ❆ ♠♦❞❡❧
❛♥❞ ❝♦♠♣♦♥❡♥t✲❜❛s❡❞ ❞❡s✐❣♥ t♦♦❧ ❝❤❛✐♥ ❢♦r ❝②❜❡r✲♣❤②s✐❝❛❧ s②st❡♠s✳ ■♥✿ ❋r♦♠ Pr♦✲
❣r❛♠s t♦ ❙②st❡♠s ✕ ❚❤❡ ❙②st❡♠s P❡rs♣❡❝t✐✈❡ ✐♥ ❈♦♠♣✉t✐♥❣ ✭❋P❙ ✷✵✶✹✮✱ ●r❡♥♦❜❧❡✱
❋r❛♥❝❡✱ ❙♣r✐♥❣❡r✱ ❙♣r✐♥❣❡r ✭✷✵✶✹✮

✷✳ ❇❛❧❛s✉❜r❛♠❛♥✐❛♥✱ ❉✳✱ P➔s➔r❡❛♥✉✱ ❈✳❙✳✱ ❑❛rs❛✐✱ ●✳✱ ▲♦✇r②✱ ▼✳❘✳✿ P♦❧②❣❧♦t✿ s②st❡♠✲
❛t✐❝ ❛♥❛❧②s✐s ❢♦r ♠✉❧t✐♣❧❡ st❛t❡❝❤❛rt ❢♦r♠❛❧✐s♠s✳ ■♥✿ ❚♦♦❧s ❛♥❞ ❆❧❣♦r✐t❤♠s ❢♦r t❤❡
❈♦♥str✉❝t✐♦♥ ❛♥❞ ❆♥❛❧②s✐s ♦❢ ❙②st❡♠s✳ ❙♣r✐♥❣❡r ✭✷✵✶✸✮ ✺✷✸✕✺✷✾
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Supporting Diverse Notations
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Abstract. To be able to build effective DSLs, these DSLs must not just
use language concepts that are aligned with their respective domain, but
also use notations that correspond closely to established domain notations
– and those are often not purely textual or graphical. The underlying lan-
guage workbench must support these notations, and combining different
notations in a single editor must be supported as well in order to support
the coherent definitions of systems that use several DSLs. In this paper
we provide an overview over the notations supported by JetBrains MPS.
MPS is a language workbench that uses a projectional editor, which, by
its very nature, can deal with many different notational styles, including
text, prose, math tables and graphics. The various supported notations
are illustrated with examples from real-world systems.

1 Introduction

The GEMOC 2014 workshop description states: To cope with complexity, modern
software-intensive systems are often split in different concerns, which serve diverse
stakeholder groups and thus must address a variety of stakeholder concerns. These
different concerns are often associated with specialized description languages and
technologies, which are based on concern-specific problems and solution concepts.
In particular, these different concerns also require different notations. Ideally,
these notations are closely aligned with existing domain-specific notations used
by the stakeholders. However, such existing notations are not necessarily just text:
they use forms, diagrams, mathematical symbols, a mix of prose and structure
or combinations of those. Representing such diverse notations faithfully requires
a high degree of flexibility in the kinds of editors that can be built with the
language workbench used to create the languages.

Projectional editing (see Section 2) allows creating editors that can use a wide
variety of notations, including the ones mentioned above. In particular, it can also
mix these notations seamlessly, leading to a more faithful representation of existing
domain languages in tools. JetBrains MPS is one of the leading projectional
editors, and this paper describes its capabilities in terms of notational flexibility.

Contribution This paper provides an overview over the notational styles
currently supported by MPS. For each style we discuss why it is useful, where it
is being used as well as some details about how to define the respective editors.

7



Availability of the Code JetBrains MPS is open source software available
from http://jetbrains.com/mps. Also, those editor facilities that are separate
plugins to MPS are open source software and their repositories are indicated in
each case. The examples shown in this paper are mostly based on mbeddr [1] and
are open source as well. The screenshots in Figures 7, 9 and 10 are taken from a
commercial tool currently being developed by Siemens PLM software; however,
the underlying editor facilities are all open source as well.

Structure In the next section we provide a brief overview over MPS’ projectional
editor and show briefly how to implement regular text editors. Section 3 introduces
the fundamental notations supported by MPS and Section 4 discusses other useful
features of the MPS editor. We conclude the paper with a brief discussion and
summary in Section 5.

2 Projectional Editing in MPS

What is Projectional Editing? In parser-based editors users type sequences
of characters into a text buffer. The buffer is parsed to check whether the sequence
of characters conforms to a grammar. The parser ultimately builds an abstract
syntax tree (AST), which contains the relevant structure of the program, but omits
syntactic details. Subsequent processing (linking, type checks, transformation) is
based on the AST. Modern IDEs (re-)parse the concrete syntax while the user
edits the code, continuously maintaining an up-to-date AST in the background
that reflects the code in the editor’s text buffer. However, even in this case, this
AST is created by a parser-driven transformation from the source text.

A projectional editor does not rely on parsers. As a user edits a program, the
AST is modified directly. Projection rules are used to create a representation of
the AST with which the user interacts, and which reflects the resulting changes.
No parser-based transformation from concrete to abstract syntax is involved. This
approach is well-known from graphical editors: when editing a UML diagram,
users do not draw pixels onto a canvas, and a “pixel parser” then creates the
AST. Rather, the editor creates an instance of uml.Class when a user drops a
class. A projection engine renders the class as a rectangle. As the user edits the
program, program nodes are created as instances of language concepts. Programs
are stored using a generic tree persistence format (such as XML).

The projectional approach can be generalized to work with any notation,
including textual. A code-completion menu lets users create instances based on
a text string entered in the editor called the alias. The aliases allowed in any
given location depend on the language definition. Importantly, every next text
string is recognized as it is entered, so there is never any parsing of a sequence
of text strings. In contrast to parser-based editors, where disambiguation is
performed by the parser after a (potentially) complete program has been entered,
in projectional editors disambiguation is performed by the user as he selects
a concept from the code-completion menu. Once a node is created, it is never
ambiguous, irrespective of its syntax : every node points to its defining concept.
Every program node has a unique ID, and references between program elements
are represented as references to the ID. These references are established during
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Fig. 1. Editor definition for the IfStatement (details in the running text).

program editing by directly selecting reference targets from the code-completion
menu; the references are persistent. This is in contrast to parser-based editors,
where a reference is expressed as a string in the source text, and a separate name
resolution phase resolves the target AST element after the text has been parsed.

Projectional editing has two advantages. First, it supports flexible composition
of languages because the ambiguities associated with parsers cannot happen
in projectional editors. We do not discuss this aspect in this paper and refer
the reader to [2]. The other advantage of projectional editors is that, since no
parsing is used, the program notation does not have to be parseable and a wide
range of notations can be used. This paper focusses on this aspect. Traditionally,
projectional editors have also had disadvantages relative to editor usability and
infrastructure integration; those are discussed in [3].

Defining a Simple Editor In order for the reader to better understand the
explanations in Sections 3 and 4, this section briefly introduces the MPS structure
and editor definitions. MPS’ meta model is similar to EMF Ecore [4]. Language
concepts (aka meta classes) declare children (single or lists), references and
primitive properties. Concepts can extend other concepts or implement concept
interfaces; subtype polymorphism is supported. Programs are represented as
instances of concepts, called nodes. Each concept also defines one or more editors.
These are the projection rules that determine the notation of instance nodes in
the program. Editor definitions consist of cells arranged in various layouts. A cell
can be seen as an atomic element of an editor definition. As an example, let us
consider the if statement in C. Its structure is defined as follows:

concept IfStatement extends Statement

alias: if

children:
condition: Expression[1] elsePart: StatementList[0..1]

thenPart: StatementList[1] elseIfs: ElseIfPart[0..n]

Fig. 1 shows the editor definition for the IfStatement concept. At the top level,
it consits of a collection cell [- .. -] which aligns a sequence of additional
cells in some particular way – a linear sequence in this case. The sequence starts
with the constant (keyword) if and a pair or parentheses. Between those, the
editor projects the condition expression; the % sign is used to refer to children
of the current concept. The thenPart follows, and since it is a StatementList,
it comes with its own curly braces. The (- ... -) collection captures the list
of else if parts, if any. The ElseIfPart comes with its own editor which is
embedded here. Finally, there is an optional set of cells (represented by the ?

and a condition expression that is not shown) that contains the else keyword as
well as the elsePart child. A flag (not shown) determines that the else part is
shown on a new line, leading to the expected representation of if statements.
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Fig. 2. Mathematical symbols used in C
expressions embedded into C functions.

Fig. 3. The definition of the sum symbol
editor using the LOOP primitive.

3 Notations

This section discusses the notations supported by MPS. For each we provide a
rationale, an example and a hint on how to build editors that use the style.

Textual Notations The first notation supported by MPS has been textual
notations. Notations used by programming languages such as Java, C or HTML
can be represented easily. The example in the previous section shows how to create
editors for textual notations. The backbone is the indent layout collection cell
which can deal flexibly with sequences of nodes, newlines and indentation.

Mathematical Symbols A plugin [5] supports mathematical notations. The
plugin comes with a set of new layout primitives (cell types) that enable typical
mathematical notations such as fraction bars, big symbols (sum or product),
roots and all kinds of side decorations (as used in abs or floor). The plugin
contributes only the editor cells so they can be integrated into arbitrary languages.
So far they have been integrated into C (Fig. 2) and an insurance DSL.

Fig. 3 shows the definition of the sum editor. It uses the new primitive LOOP
which can be used for everything that has a big symbol as well as things above,
below and right of the symbol. The particular symbol is defined separately and
referenced from the editor definition. The LOOP cell has three slots (lower, upper
and body) into which child nodes can be added. The Sum expression defines
children upper, body and lower, which are mapped to these slots. These slots
can contain arbitrary editor cells, not just child collections: the lower slot contains
a collection that projects the name property, an equals sign and the lower child.

Tables Tables can be used to represent collections of structured data or to
represent two-dimensional concerns. For example, Fig. 4 shows a state machine

Fig. 4. A state machine represented as a table; also shows nested headers.
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rendered as a table. Another example used in mbeddr [1] is decision tables
(essentially two nested if statements).

Tables come in several flavors. For example, a row-oriented table has a fixed
set of columns and a variable list of rows. Users can add rows, but the columns
are prescribed by the language definition. In contrast, the state machine shown
in Fig. 4 is a cell-oriented table: users can add new columns (events), new rows
(states) and new entries in the content cells (transitions). The language for
defining tabular editors [6] takes these different categories into account. For
example, the definition for the state machine uses queries over the state machine
model to determine the set of columns and rows. The contents for the transition
cells are also established via queries: each transition is a child of its source state
and references the triggering event. Since both columns and rows can be added
(or deleted) by the user, callbacks for adding and deleting both are implemented.
The code below shows part of the table implementation for state machines.

table
column headers:

group "Events" {

query {

getHeaders (node)->join(string | EditorCell | node<> | Iterable) {

node.inEvents(); }

insert new header (node, index)->void { // callback for inserting }

on delete: (node, index)->void { // callback for deleting }

} }

row headers: // similar

cells:
column count: node.inEvents().size;

row count: node.states().size;

cell: (node, columnIndex, rowIndex)->join(node<> | string | EditorCell | Iterable) {

node<InEvent> evt = node.inEvents().toList.get(columnIndex);

node<AbstractState> state = node.states().toList.get(rowIndex);

node.descendants<Transition>.

where({~it => it.parent==state && it.trigger.event==evt; }); } as vertical list

Prose with Embedded Code One characteristic of projectional editors is
that the language structure strictly determines the structure of the code that
can be written in the editor. While this is useful for code, it does not work for
prose. Hence, an MPS plugin [7] supports ”free text editing” in MPS: all the
usual selection and editing actions known from text editors are supported. The
resulting text is stored as a sequence of IWord nodes. By creating new concepts
that implement the IWord concept interface, other specific nodes can be inserted
into the sequence of words. Said differently, arbitrary structured program nodes
can be embedded into the (otherwise unstructured) prose. The user can press
Ctrl-Space anywhere in the prose block and insert instances of those concepts
that are valid at this location. Fig. 5 shows an example of a requirement with
a prose block that embeds a reference to another requirement. Other examples
include references to arguments in function comments or embedded formulas.

Margin Cells Margin cells are rendered beyond the right editor margin; each
margin cell is associated with an anchor cell inside the editor, and the margin
cell is rendered at the y-position of that anchor cell. Fig. 6 shows an example.
To use margin cells in the editor of some concept, the editor for that concept
embeds a margincell cell which points to the collection that contains the margin
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Fig. 5. The prose block includes a sequence of ”normal” words plus a reference to
another requirement (§req(..)). The reference is a real, navigable and refactoring-safe
pointer, not just nice syntax.

contents (the comments in Fig. 6). The contents specified for the margin cell must
implement the IMarginCellContent interface which contributes the facilities
that connect the margin cell content to the anchor cell. Margin cells are available
in the mbeddr.platform at http://mbeddr.com.

Fig. 6. Margin cells used to support Word-like comments in MPS; other contents can
be projected into the margin as well.

Graphics MPS supports editable graphical notations as shown in Fig. 7. They
can be embedded into any other editor. MPS’ support for graphical notations is
new (available since MPS 3.1, June 2014) and not yet as mature as the rest of
MPS, and the API for defining the editor is not yet as convenient as it should be.
The code below shows part of the definition of the editor for Fig. 7: the contents
of a block plus its ports are mapped as the contents of the diagram canvas.

diagram {

content: this.contents,
this.ancestor<Block>.allInPorts().toList,
this.ancestor<Block>.allOutPorts().toList

palette: custom AccentPaletteActionGroup

}

Custom Cells MPS supports embedding custom cells. This means that the user
can plug in their own subclass of CellProvider and implement specific layout
and paint methods. This way, any notation can be drawn in a low-level way. The
cell provider can be parameterized, and ultimately, it can become a new, reusable
primitive. Fig. 8 shows an example of a language that reports progress with
work packages. It uses three custom cells: horizontal lines (parameterizable with
thickness and color), check boxes (that are associated with boolean properties of
the underlying language concept) and progress bars (whose percentage and color
can be customized, typically by querying other parts of the model).

4 Other Features of the MPS Editor

As a language workbench, MPS supports the features known from traditional
IDEs for custom languages. These include code completion, quick fixes, syntax
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Fig. 7. A graphical editor embedded in a regular text editor.

coloring, code folding, goto definition, find references and refactorings. In this
section we describe editor features that are specific to MPS’ projectional editor.

Mixed Notations The various notations discussed in the previous section can
all be mixed arbitrarily (with the aforementioned exception of embedding things
into graphical editors). Since all editors use the same projectional architecture
this works seamlessly. In particular, non-textual notations can be used inside
textual notations. Examples include:

– mathematical symbols embedded in textual programs
– tables that contain text or math symbols
– tables embedded in textual programs
– mathematical symbols embedded in prose
– lines, progress bar other other shapes embedded arbitrarily

Multiple Editors A single concept can define several editors, and a given
program can be edited using any of them. Each of the multiple editors has a tag,
and by setting tags in an editor window (either by the user or programmatically),
the editors corresponding to these tags can be selected. For example, state
machines can be edited in a textual version (roughly similar to Fowler’s state
machine DSL [8]) or in the tabular notation shown in Fig. 4.

Partial Syntax Editors can also be partial in the sense that they do not
project all contents stored in the AST. Of course the non-projected aspects of the
program cannot be edited with this particular editor. But the contents remain
stored in the AST (and are cut, copied, pasted or moved) and can be edited later.
Using this facility, programs can be edited in ways specific to the current process

Fig. 8. Custom widgets (checkbox, line, progress bar) used in an MPS editor.
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Fig. 9. A querylist is used to project
the ports and contracts inherited from
the interface realized by this block (in
grey). New nodes ports or contracts can
be entered above the grey lines.

Fig. 10. This tooltip shows the defini-
tion of the quantity referenced via the
-> notation: it shows its type and various
additional details. The tooltip uses the
querylist to project derived nodes.

step or stakeholder. An example are the requirements traces shown in Fig. 14;
programs can be shown with or without them.

Query List An MPS editor normally displays nodes at their phyiscal location.
For example, the child condition of the IfStatement shown in Fig. 1 is projected
as part of its parent editor. Sometimes, however, it is useful to render nodes in
other places. An example is shown in Fig. 9: the grey parts are defined by the
interface realized by the block, but they are still projected for the block itself.

To project nodes in locations where they are not defined, a querylist editor
cell is used (available as part of the mbeddr.platform at http://mbeddr.com). Like
other MPS collection cells it projects a list of nodes, but this list is assembled via
an arbitrary model query. The result can be projected read-only (as in Fig. 9)
or fully editable. The querylist also supports callback functions for adding new
nodes (because it is not automtically clear where they would have to be inserted
physically) or for deleting existing ones. This way, querylists support views.

Tooltips MPS can use the projectional editing facilities in tooltips (available
in the mbeddr.platform). To define a tooltip, a special cell is inserted into the
editor of the cell that should display the tooltip. Since the purpose of a tooltip
often is to project information gathered from other parts of the model, tooltip
editors often use querylists (Fig. 10).

Conditional Editors Conditional editors essentially support aspect orientation
for editor cells. A conditional editor defines a decoration for existing editors as
well as a pointcut that determines to which existing editor cells the decoration
is applied. Figures 12 and 13 show examples. Importantly, these conditional
editors can be defined after the fact, and potentially in a different language
module. This way, arbitrary decorations can be overlaid over exiting syntax. The
example in Fig. 12 renders an arrow above all references that have pointer type.
Another example could be to change the background color of some nodes based
on external data such as profiling times. By including a tooltip in the definition
of the decoration, users can get more detailed information by hovering over the
decorated part of the program. Another use case for conditional editors is the
expression debugger shown in Fig. 11.
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Fig. 11. This expression debugger renders the values of all subexpression over or to the
left of the expression itself. The original expression (without the debug info) is (10 +

BASEPOINTS) * (alt + speed)).

Annotations Annotations are similar to conditional editors in that they can
render additional syntax around (or next to) existing syntax without the original
syntax definition being aware of this. However, in contrast to conditional editors,
annotations are additional nodes (i.e., they are additional data in the program)
and not just a property of the projection. The additional nodes are stored as
children of the annotated node. Fig. 14 shows an example in which requirements
traces are added to C code (details are discussed in [9]).

Read-Only Contents Especially in DSLs for non-programmers it is often
useful to be able to project rigid, predefined, non-deletable skeletons of the to-be-
written program in order to guide the user. For example, in Fig. 9, the keywords
atomicblock, realizes, contract and ccode, as well as the brackets and lines,
are automatically projected as soon as a user instantiates an atomic block.
Similarly in Fig. 8, the grey line starting with “last updated” is automatically
projected and consists of computed data. In MPS, parts of the syntax of a
program can be marked as readonly, meaning that they cannot be deleted or
changed. This does not just work for constants (keywords), but for arbitraty
content (such as the inherited ports of blocks shown in Fig. 9).

5 Discussion and Summary

In this paper we have discussed the syntactic flexibility supported by MPS’
projectional editor. We have described the various supported notational styles
and emphasized that they can be combined flexibly. However, it is not enough to
just compose different notations – other aspects of languages must be composed
as well. Language composition with MPS is discussed in [2].

Over the last three years a team at itemis has been developing mbeddr [1],
using MPS in a non-trivial development project. Many of the notations discussed

Fig. 12. C references whose type is a
pointer are annotated with the arrow on
top. This works for all kinds of references,
including to arguments, local variables
and global variables.

Fig. 13. The editor applies to concepts
that implemenet IRef and whose type
is pointer. The editor renders the arrow
(manually drawn in the custom cell) on
top of the existing editor.
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Fig. 14. The first two constants have traces attached. These are pointers to requirements
shown in the code. The original definition of C is not aware of these annotations.

in this paper are used in mbeddr and its commercial addons. Several of the
extensions have also been developed in the context of mbeddr. In addition, we
are now also developing business applications (in the insurance and financial
domains) with MPS. There, non-textual notations (and in particular, math and
tables) are essential to be able to allow non-programmers to directly contribute
to the programming effort. User feedback is very positive: they said that the
abililty to have such notations is a signigicant advance over existing or alternative
tools and approaches.

Based on this experience we conclude that the notations supported by MPS
are reasonably complete relative to the notational styles encountered in practice.
Classical textual notations are found in programming languages and DSLs; graph-
ical notations are used by many modeling tools; mathematics are widespread in
scientific or financial domains; tables are ubiquitous, as the the popularity of
Excel demonstrates. And prose (with interspersed program elements) is an im-
portant ingredient to almost all these domains (for documentation, requirements
or comments).
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References

1. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: instantiating a language
workbench in the embedded software domain. ASE Journal 20(3) (2013) 1–52

2. Voelter, M.: Language and IDE Development, Modularization and Composition with
MPS. In: GTTSE 2011. LNCS. Springer (2011)

3. Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional
editors. In: Proceedings of SLE’14. (2014) 20

4. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

5. Lisson, S.: MPS Math Plugin. https://github.com/slisson/mps-math/
6. Lisson, S.: MPS Tables Plugin. https://github.com/slisson/mps-tables/
7. Lisson, S.: MPS Richtext Plugin. https://github.com/slisson/mps-richtext/
8. Fowler, M.: Domain Specific Languages. 1st edn. Addison-Wesley Professional (2010)
9. Voelter, M., Ratiu, D., Tomassetti, F.: Requirements as first-class citizens. In:

Proceedings of ACES-MB Workshop. (2013)

16



Putting the Pieces Together –

Technical, Organisational and Social Aspects

of Language Integration for Complex Systems

H̊akan Burden

Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden
burden@cse.gu.se

Abstract. Dealing with heterogenuous systems is often described as a
technical challenge in scientific publications. We analysed data from 25
interviews from a study of Model-Driven Engineering at three companies
and found that while the technical aspects are important, they do not
encompass the full challenge – organizational and social factors also play
an important role in managing heterogenuous systems. This is true not
only for the development phase but also for enabling early validation of
interdependent systems, where processes and attitudes have an impact
on the outcome of the integration.
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1 Introduction

Complex systems, consisting of numerous and interdependent subsystems [15],
require a plethora of languages for efficient implementation [7]. From the as-
pect of Model-Driven Engineering (MDE), the challenges are often described
in technical terms [4] since heterogenuous languages imply different abstraction
levels, representations and aspects of software [8], but also since the languages
have their own domain-specific and platform-dependent constraints [11]. The
one-sided focus on technical aspects is surprising since Kent already in 2002
pointed out that if MDE is to be successful it needs to encompass also the or-
ganisational and social aspects of software engineering [10], a claim that has
since been reiterated [1, 9].

To explore to what extent language integration for comlex systems is a chal-
lenge in terms of technical, organisational and social aspects we analysed data
collected at three different companies, looking for evidence regarding the mo-
tivations and challenges of heterogenuous development of embedded systems.
Among the findings are that engineers tend to favour integration at the concrete
code level instead of at the more abstract model level, that management needs to
fit the right team with the right task and that which language you use identifies
you as a software engineer.
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The following section will describe the context of the three companies as well
as how the data was collected and analysed. Section 3 structures the findings
according to technical, organizational and social aspects of language integration.
We then conclude and present our intentions to further investigate the interde-
pendency between the factors in Section 4.

2 Model-Driven Engineering at Three Companies

During 2013 we conducted a case study of MDE at three companies – Volvo Cars
Corporation, Ericsson AB and the Volvo Group. The respective organisations
had different experiences with MDE but were all transitioning towards a more
agile way of software development.

2.1 Heterogenuous Languages for Complex Systems

Electronic Propulsion Systems (EPS) is a relatively new unit at Volvo Cars with
the responsibility of developing software for electric and hybrid cars. MDE was
introduced in a step-wise manner as software development went from prototype
vehicles to mass-production. The overall system design is described using AU-
TOSAR1 while the software developed in-house at EPS is implemented using
Simulink2. Simulink is also used for validation and integration purposes. The
interfaces of the Simulink models are generated from the system-wide model.
Besides graphical modelling languages, C is used for low-level details while nu-
merous scripts help in everything from translating between different AUTOSAR-
standards encoded in XML to deploying software on hardware.

Radio-base stations at Ericsson AB has employed different MDE technologies
since the late 1980’s, primarily focusing on UML as a descriptive and prescriptive
modelling language including code generation. Besides using UML for design,
implementation and testing various other languages form the engineers’ tool box;
C is used for functionality relying on optimal hardware performance, Java has a
niche in functionality requiring GUIs, Erlang is regularly used for testing while
home-made domain-specific languages – DSLs [12] – are used for specification,
implementation and testing purposes.

Volvo Group Trucks Technology develops software for the Volvo Group’s
truck brands. While most of the software development is outsourced a few fea-
tures are developed in-house using C. The interfaces of the top-level software
components are automatically generated from the system model which is de-
scribed in a company-specific dialect of EAST-ADL3. The two Volvo companies
are independent in all aspects besides the name space which they share for his-
torical reasons.

1 http://www.autosar.org/
2 http://www.mathworks.se/products/simulink/
3 http://www.east-adl.info/
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2.2 Data Collection and Analysis

The main source of data comes from 25 semi-structured interviews – 12 at Volvo
Cars, nine at Ericsson AB and four at Volvo Trucks. The reason for fewer re-
spondents at Volvo Trucks is that they entered the project later than the two
other companies and have fewer engineers involved in MDE tasks. The interviews
were audio-recorded and then transcribed. The interviews were complemented
by a combination of observations, informal interaction [5] as well as seminars
and regular meetings with representatives from the three companies.

The data has previously been analysed regarding the impact of tools on
MDE adoption [16] as well as for comparing and contrasting MDE at the three
companies [3]. For the purpose of this contribution we re-analysed the data
deductively [14] searching for evidence concerning the technical, organisational
and social aspects of heterogenuous systems and language integration across the
model-driven engineering activities at the three companies.

3 Findings

As seen in the previous section, a variety of languages is used across the software.
The variation comes both in terms of adapting languages depending on the
nature of the included subsystems, but also due to where in the lifecycle the
language is to be applied.

3.1 Technical Aspects of Language Integration

From the interviews a recurring theme is that the tool used for encoding a
solution is just a means for producing low-level code. The following quote is
from Ericsson, “I don’t see Rose RT or another modeling tool as a language. It’s
what they produce that is the language, and mostly it’s always been C++ for us.
So I don’t think – I can consider, for example, Rose RT as a tool like Eclipse
or something. Lets you develop code.” A similar experience was encountered
at Volvo Cars when one interviewee was asked about the impact of changing
implementation language from C to Simulink, “You still have C code.”

The emphasis on the generated language is also dominant in how multiple
languages are to be integrated. Where academic research is focused on compos-
ing modeling languages on a meta-level [4, 7], industrial practitioners prefer to
integrate at the code level. At Ericsson where multiple languages are used in
various combinations, integration is mainly done at the code level through the
build environment. This coincides with our findings from a previous study on
the integration of a graphical modelling language and a textual DSL conducted
within another organisation at Ericsson [2].

Due to the number of suppliers and sub-contractors both Volvo companies
rely on being able to integrate their subsystems in the form of binaries, so that
merging on a meta-level is impossible. However, having access to the source
would still be beneficial but for debugging purposes, not for merging the partial
solutions.
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One of the few examples where two languages are integrated in the same
development environment comes from Ericsson where a DSL for testing was
developed internally, “The reason for it being that it could often take quite long
time to compile some of our models [. . . ] from a few minutes up to a few hours,
depending on how big the model was.” The answer was to define their own testing
language on top of the modeling language and the interviewee was told that the
DSL was developed during all the hours the team sat waiting for the model
compiler to terminate.

3.2 Organisational Aspects of Language Integration

An engineer at Ericsson expressed the need for management to assign tasks
according to the skills of the developers. “In the big systems, we have different
languages. Yes, and that is complex. And that’s a problem. It’s hard to expect
that the software designer or verifier is equally good in all languages. And we’ve
had to handle that in our team.”

While one engineer at Ericsson saw the need for different languages accord-
ing to domain and platform constraints – “so you have all these levels and you
have very different requirements for different parts of this product. It’s so big
that I don’t even think that one solution fits all. You should be able to use sev-
eral approaches” – there is still an organisational wish to limit the number of
languages to limit accidental complexity “you shouldn’t do it without a need. So
you shouldn’t – if you try to solve the same problem, I think you should try to
use similar language or similar ways of working.”

Stable interfaces in the decomposition of complex systems is desirable [4] but
not always possible to obtain due to changing requirements or underspecification
of new and ground-breaking features [6]. In these cases an agile organisation that
lets developers work at both ends of the interface can be a way forward even if
this demands that the developers master more than one language. But as one
engineer at Ericsson said, “using a new language is probably the smaller problem
compared to learning the product and the domain and everything”.

3.3 Social Aspects of Language Integration

“If you go to a different language, like, I don’t know, whatever language, it will
say that the for loop looks like this, but the functionality of it is the same. It
doesn’t matter how you put it in the words. Instead of ’for’, you put like an ’f ’
or whatever. It’s the same functionality. So when you know the base, you don’t
need to learn, like really study the new ones. You only adapt to them. From my
point of view.” The quote is from an engineer at Volvo Cars who explains his
perception of using different languages for similar tasks.

However, not all engineers are interested in learning new languages. One
interviewee from Ericsson described his experiences from developing a customer
interface with a team located in a different town in the following way, “an option
was to do it in C++ because that’s the most cost effective way. And the owner
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said something like ’I don’t think that’s a good idea because the organization
we’re from, people are working there because they want to do Java’.”

At Volvo Trucks a similar sentiment was aired as the topic of introducing a
new modelling language was raised, “we have a lot of people that like to write C
code and they like script languages. And they always do scripts for something.
And they are pretty comfortable. They like writing a code with a blank page just
writing C code.”

4 Conclusions and Future Work

From a technical aspect of heterogenuous language integration there is a dif-
ference between the emphasis of academic contributions and industrial praxis
in that while the former focus on merging languages on a source or meta-level
the latter successfully integrating the target representations. This pragmatic
approach is supported by proven techniques developed for integrating third gen-
eration programming languages. Organisationally the challenge seems to be for
management to assign the right team – with the right skills – to the right task, a
parallel challenge to the challenge of applying the right tools to the right prob-
lem [16]. Finally, from a social aspect it is not just enough that the engineers
have the right skills – they also need to be open for using new languages. This is
due to the fact that learning a new language is not a major obstacle but which
language(s) you use is part of your identity as as software engineer and not all
engineers are willing to redefine their competencies. In relation to Kent’s critique
of MDA [10], it seems that while the technical aspects of language integration
have an important role to play in the development of complex systems, the pos-
sibilities for improved development and product quality can only be realised if
the organisational and social aspects are seen as equally important.

In the case of setting up a simulation environment at Volvo Cars the chal-
lenge is not just to integrate different modelling languages but also agreeing on
the same version of Simulink since different versions imply different properties
in the generated code. Here, the challenge is organisational due to the fact that
the developers want the newest features which enable new solutions while man-
agement responsible for integration need to know that the new version is stable
before updating. Updating legacy models to comply with the newer versions can
be both a time consuming and an error-prone task. With external organisations
submitting their intellectual property in the form of human-readable models or
code the question also becomes an issue of trust – not a technical factor of how
to best compose two or more languages. How to organise an ecosystem [13] of
simulation environments for continuous integration is still an open question we
hope to address in future work by exploring how technical, organizational and
social factors coincode in language integration.
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Abstract. Today, modeling and programming constitute separate activities car-

ried out using modeling respectively programming languages, which are neither

well integrated with each other nor have a one-to-one correspondence. As a con-

sequence, platform and implementation details, such as the usage of existing

software components and libraries, are usually introduced on code level only.

This impedes accurate model-level analyses that take platform-specific decisions

into account as well as the direct deployment of executable models on the target

platform. In this work we present an approach for integrating existing software

libraries with fUML models—an executable variant of UML models for which a

standardized virtual machine exists—not only at design time but also at runtime.

As a result of that, the modeler is empowered with the capabilities provided by

existing software libraries on model level. Our approach is evaluated based on

unit tests and initial case studies available in the ReMoDD repository that assess

the correctness, performance, and completeness of our implementation.

1 Introduction

Back in 1966, the first object-oriented programming language was born. Its name is

SIMULA and it combined modeling and programming in a unified approach, that is

one of the strengths provided by object-orientation [4]. Carrying this idea further, the

language BETA, which was developed based on SIMULA and DELTA, was designed

for supporting both designing and programming systems. It even provided besides a

textual syntax also a graphical notation for representing the same abstract syntax tree,

such that the user could switch between both forms of representation. This was possible,

since they had a one-to-one correspondence. Later, the graphical syntax of BETA was

replaced by UML and, therewith, the one-to-one correspondence was broken referred

to as impedance mismatch [4].

Today, the design of programming languages and modeling languages is largely

separated from each other as it is carried out by different communities. Likewise, in

today’s mainstream object-oriented software development, modeling and programming

are conceived as separate activities. This results in an impedance mismatch between

modeling languages and programming languages. For instance, there is no one-to-one

⋆ This work is co-funded by the European Commission under the ICT Policy Support Pro-

gramme, grant no. 317859 and by the Austrian Federal Ministry of Transport, Innovation and

Technology (BMVIT) under the FFG BRIDGE program grant no. 832160.
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correspondence between the modeling concepts provided by UML and the program-

ming concepts provided by Java.

In model driven engineering, this issue can be overcome by generative software

development approaches utilizing intelligent code generators that are able to bridge

the gap between modeling and programming languages for generating complete and

deployable program code from models. However, these code generators add platform

and implementation details, such as invocations of existing software components and

libraries, to the resulting code, which are not reflected in the models. Hence, in model-

level analyses targeted at validation, verification, or optimization, they cannot be con-

sidered. Therefore, platform and implementation details that are to be considered in

model-level analyses have to incorporated into the model. One approach to achieve this

is envisioned by Seidewitz [10] who proposes to avoid the “programming gap” at all, by

incorporating all implementation details into the model by utilizing UML’s action lan-

guage. While this allows to incorporate algorithmic details into UML models, platform

and implementation details concerning the usage of existing software components and

libraries cannot be incorporated into the model in this approach. For instance, it is not

possible to integrate an existing datastore available in terms of a software library into

a UML model. This impedes accurate model-level analyses taking into account the be-

havior of reused software components and libraries, as well as the direct deployment of

models on the target platform as envisioned by Seidewitz. The need for making existing

software available on model level was also highlighted by Selic [11]. He describes that

one way to accomplish this is by allowing direct calls to such existing software from

within the model.

This paper is concerned with enabling the integration of existing software compo-

nents with UML models. This enables on the one hand to construct more accurate UML

models enabling model-level analyses closer to the target platform, and on the other

hand a direct deployment of models on the target platform. In this work, that emerged

from first ideas by Mayerhofer et al. [5, 6] and subsequent work in Neubauer’s mas-

ter’s thesis [7], we propose the integration of software libraries with executable UML

models developed with fUML—a subset of UML whose execution semantics was stan-

dardized by OMG in terms of a virtual machine (VM). More specifically, at design time,

the software library is reverse-engineered into a UML class model representing the li-

brary’s API structure, which is in the following used by the modeler to reference library

classes and operations. At runtime, these references are used by an Integration Layer to

locate, instantiate, and modify compiled stateful library components. As a result of this,

the modeler can take advantage of the full power provided by already existing libraries

as well as re-use existing software components. Thereby, we aimed at fulfilling the fol-

lowing requirements: (i) making it as natural to the modeler as possible to use existing

software libraries (i.e., the modeler does not need to touch any source code), (ii) mak-

ing the usage of libraries transparent to the modeler (i.e., the modeler can interact with

library components just like with any other natively defined fUML component), and

(iii) not extending the fUML metamodel or modifying the fUML VM as this would

break the conformance to the standard.

The remainder of this paper is organized as follows. First, we introduce fUML in

Section 2. Thereafter, we describe our approach for integrating software libraries with
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fUML models in Section 3. In Section 4, we report on two initial case studies which we

carried out for evaluating our approach. Related work is discussed in Section 5. Finally,

Section 6 concludes the paper and provides an outlook on future work.

2 Foundational UML

fUML, introduced by OMG [8] in 2011, precisely defines the execution semantics of

a subset of UML in terms of a virtual machine capable of executing fUML compli-

ant UML models. Thereby, the UML subset considered by fUML includes UML class

diagrams to define the structural aspects of a software system and UML activity dia-

grams to define its behavioral aspects. With the introduction of fUML, UML can be

used as a programming language, that is nevertheless more abstract than existing third-

generation programming languages [12]. Therewith, it seeks to overcome the model-

code impedance mismatch by replacing source code entirely with fUML models.

However, fUML does neither provide nor foresees a functionality to provide access

to existing software libraries. Instead, it intends to build its own library called Foun-

dational Model Library. This library contains user-level elements, which can be refer-

enced in fUML models. However, it is only composed of packages that define primitive

types, such as Boolean, Integer, Real, and String, and a set of primitive functions for

those data types (e.g., a function to concatenate two String values). While the first ver-

sion of the fUML specification [8] already defines the Foundational Model Library,

the latest version of the specification V1.1 still does not further extend the library’s

capabilities. When comparing the Foundational Model Library with libraries found in

traditional third-generation programming languages, such as Java, the capabilities pro-

vided by, e.g., the Java Class Library (JCL) or any third-party library, are far beyond

those of the Foundational Model Library. By looking at functionality provided by JCL,

one can not only find features to build graphics and sound, access databases, and per-

form math operations, but also sophisticated abstractions on the underlying operating

system and hardware to provide access to resources like the network or file system.

While, from a technical standpoint, it is possible to extend the Foundational Model Li-

brary with the aforementioned functionalities, doing so is infeasible due to the required

effort of adding them by the still rather small community currently using fUML. Fur-

thermore, it is not only desirable to use JCL functionality in fUML models, but also

to re-use already existing software components in fUML models, i.e., to re-use any

existing software library.

3 Library Support for fUML

We presented the initial idea to integrate software libraries with fUML in [6]. In our

approach, required classes of existing software libraries are integrated into the fUML

model during design time by using reverse engineering techniques. During runtime, a

dedicated Integration Layer is employed, which handles calls to any specified software

library. Thus, the Integration Layer extends the fUML VM with the ability to handle

access to software libraries. For this, it makes use of the command and event API de-

veloped for fUML within the moliz project [5]. This command and event API allows the
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Fig. 1: Library support for fUML at a glance

Integration Layer to detect calls to software libraries by fUML models during runtime,

and to re-integrate the result of the performed library call back into the fUML run-

time environment. For performing the actual call to the software library, the Integration

Layer makes use of reflection techniques.

The implementation of our Integration Layer1 originating from Neubauer’s mas-

ter’s thesis [7] currently supports the integration of Java libraries in fUML models.

However, it is also possible to support other programming languages which provide re-

flection capabilities. The primary goal of the prototype is to provide the modeler with

the possibility to instantiate Java library classes using CreateObjectActions of fUML,

to modify Java library class instances using AddStructuralFeatureValueActions, and to

call operations upon them via CallOperationActions. Additionally, the result of a library

call, such as the return value of an operation call, is translated from Java to fUML and

integrated into the fUML runtime environment.

Dynamic Class Loading and Reflection. The two major capabilities required by

the Integration Layer to fulfill its goals are dynamic class loading and the reflection

technique. The former ability builds upon the Java classloader that is part of the Java

runtime environment and enables to dynamically load Java classes into the Java virtual

machine. The reflection technique enables meta programming and hence allows the

Integration Layer to instantiate and modify Java classes during runtime.

Figure 1 visualizes the entire approach in three steps from making libraries available

to be referenced in the fUML model at design time to the point where the fUML model

is executed. In the following, these steps are described in more detail.

Step 1: Preparation. In the Preparation step, the Java library to be used is prepared

for being integrated with fUML models. Therefore, the structural information about the

Java library’s API is reverse-engineered into a UML class model (depicated as “UML

library model” in Figure 1) either from the source code or a compiled JAR file using,

e.g., the Eclipse plug-ins MoDisco2 or Jar2UML3. To reference Java library classes and

operations inside an fUML model, references from the fUML model to the obtained

1
https://github.com/patrickneubauer/fuml-library-support

2
http://www.eclipse.org/MoDisco

3
http://soft.vub.ac.be/soft/research/mdd/jar2uml
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UML library model may be created. Hence, the modeler can use the Java library in a

natural way by referencing the reverse-engineered UML library model and does not

need to deal with source code. To make the Java library usable at runtime, the UML

library model is extended with UML comments indicating library classes as well as the

location of the library’s compiled JAR file.

Step 2: Modeling. Having obtained a UML library model from the Java library that

is annotated with the location of the compiled JAR file, the library can be used in the

development of an fUML model in the Modeling step. For this, any Eclipse-based UML

editor like, e.g., the Eclipse UML Model Editor or the Papyrus UML Model Editor4 can

be used. Whenever the fUML model has to access the Java library, references from the

fUML model to the UML library model are created. In more detail, to create an instance

of a Java library class, a CreateObjectAction may be used having the classifier reference

set to the UML class representing the respective Java class in the UML library model.

Using an output pin, the created object can, e.g., be provided to the target input pin of a

CallOperationAction. Such a CallOperationAction can be defined to call an operation on

the Java library object. For this, the operation reference of the CallOperationAction has

to be set to the respective UML operation representing the Java class’ operation in the

UML library model. To specify the value of an existing Java object’s member field, an

AddStructuralFeatureValueAction can be used referring to the respective UML attribute

in the library model via its structuralFeature reference.

Step 3: Execution. To start the execution of an fUML model in the Execution step,

the Integration Layer passes the fUML model to the fUML VM. Furthermore, using

the command and event API provided by the moliz project [5], it registers itself as a

listener to the fUML VM. Hence, the Integration Layer is notified about any event oc-

curring during the execution of the fUML model and acts upon any required library

access. For example, if the execution of a CreateObjectAction is completed, an activity

node exit event referring to the CreateObjectAction is received. In case the action refers

to a UML class contained by the UML library model, the Integration Layer detects

that it has to instantiate the respective Java class. Similarly, modifications of existing

Java objects via AddStructuralFeatureValueActions and Java operation calls via Call-

OperationActions are detected by the Integration Layer. The result of the library access,

such as the instantiated Java object or the return value of an operation call, is integrated

back into the fUML runtime environment by translating it from Java to fUML and pro-

viding it to the fUML VM. Thus, resulting values can be further processed during the

fUML model execution. This means that an Java object instantiated by the fUML model

via a CreateObjectAction may be modified by the model using AddStructuralFeature-

ValueActions and CallOperationActions. Thus, the Integration Layer makes state full

Java objects accessible at runtime. As an example, we describe the handling of Create-

ObjectActions to instantiate Java classes in more detail. A detailed description of han-

dling AddStructuralFeatureValueActions and CallOperationActions can be found in [7].

Handling a CreateObjectAction. When the Integration Layer receives an activity

node exit event concerning a CreateObjectAction referring to a library class, it interrupts

the model execution and performs the following steps.

4
http://www.eclipse.org/modeling/mdt
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1. fUML Placeholder Object Retrieval. As a result of executing the CreateObject-

Action, the fUML VM created an fUML object of the referenced UML class, which

is contained by the UML library model. This fUML object represents a stub or

placeholder object of the Java object to be instantiated.

2. Java Object Creation. The Java class to be instantiated is determined by exam-

ining the classifier reference of the CreateObjectAction referring to the UML class

that represents the Java class in the UML library model. While the namespace and

name of this UML class uniquely identify the Java class, the location of the JAR

file containing the Java class is captured in a UML comment owned by that UML

class. Being supplied with both the unique identification and location of the Java

class, the Integration Layer uses the reflection technique to create an instance of

that exact Java class.

3. fUML Object Creation. To integrate the instantiated Java object into the fUML

runtime environment, it is first transformed into an fUML object. For this, a new

fUML object is created and its feature values are set according to the Java object’s

member field values. For example, in case the Java member field is of type int, a cor-

responding fUML IntegerValue is assigned to the fUML object. After translation,

the fUML placeholder object retrieved in the first step is replaced by the translated

fUML object.

4. CreateObjectAction Result Assignment. Finally, the fUML object created in the

previous step is assigned to the CreateObjectAction’s result output pin in form of an

object token containing a reference to this fUML object.

5. Object Bookkeeping. In order to use the instantiated Java object in later stages of

the fUML model execution (e.g., by using a CallOperationAction to call a library

operation upon this object), both the Java object and the fUML object are added to

a dedicated map data structure.

4 Critical Discussion

Succeeding the development of the prototype, we carried out initial case studies that

are available in the ReMoDD repository5. Two of them are presented in this section.

Additional case studies are discussed in [7]. The main research questions we aimed to

answer through these case studies are as follows:

– Correctness. Is the developed prototype correct? In particular, does the prototype

work as expected? If not, what causes the malfunction?

– Performance. How is the performance of executing an fUML model accessing a

software library compared to executing a similar plain Java application? How much

overhead is imposed by the prototype on top of the fUML VM performance?

– Completeness. Can every library be used? What are the limitations?

Mail Case Study. In this case study, we built an fUML model that uses a soft-

ware library to compose and send an e-mail to an existing e-mail address. The library

5
http://www.cs.colostate.edu/remodd/v1/sites/default/files/fuml-extlib-examples.

zip
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used in this case is Apache’s Common Email library6. Used fUML action types in-

clude ValueSpecificationAction, CreateObjectAction, and CallOperationAction. Within

the fUML model, a SimpleEmail object is created and multiple calls upon it are made

to specify various e-mail parameters, such as its subject and receiver. The parameter

values itself are specified through multiple ValueSpecificationActions. At the end, the

last operation call finally transmits the created e-mail to the specified recipient.

Petstore Case Study. In the Petstore case study, we developed a model that cre-

ates, stores, and retrieves objects through the Google App Engine datastore. To realize

the access to the datastore, the Objectify API7 was used. The fUML model created for

the Petstore case study behaves as follows. Initially, domain entities, such as Customer,

Address, and Order, are registered through the Objectify service. Then, for testing pur-

poses, the datastore is setup to run on the local machine rather than in the cloud. Next,

both a Customer and Address object are created and multiple of their features (e.g.,

first name, last name, and city) are specified. While all of those features are simple

Strings, assigning the created Address instance to the Customer requires handling a

CallOperationAction receiving a complex input parameter. Afterwards, the created Cus-

tomer instance is saved in the datastore. In order to verify the success of the previous

operation, the same Customer is looked up in the same datastore.

Correctness Results. To ensure the correctness of the prototype, we built unit tests

for the individual prototype components. The correctness was also confirmed by the

case studies. For the case studies, we built a Java application that implements the same

functionality as the respective fUML model, and compared the results obtained by ex-

ecuting both. On one hand, in the Mail case study, the composed e-mail was correctly

sent and received by the specified recipient. On the other hand, in the Petstore case

study, both the instance of the Customer and Address were created, the Address was

added as a complex field to the Customer, and the Customer was populated to the lo-

cal datastore. Finally, the same Customer was retrieved from the datastore showing the

Integration Layer’s correct treatment of the Petstore case study. Hence, the developed

prototype successfully obtains the desired result in both case studies.

Performance Results. Since the performance of the Mail case study heavily de-

pends on the current state of the network, the performance has been evaluated with the

Petstore case study, in which the datastore is placed on the local machine and, hence, is

not liable to network interference. Table 1 shows the performance results of executing

both the fUML model and a corresponding Java implementation. Every benchmark has

been performed five times and the visualized results represent the median of all exe-

cutions. When looking at both execution time and memory one can see that executing

the fUML model takes up a considerable longer time and larger amount of memory.

However, the Integration Layer implementation only imposes a very small additional

overhead on top of the fUML VM. In case of 50 consecutive executions, the measured

overhead amounts to approximately 3% in terms of execution time and less than 1 MB

in terms of memory (not depicted in the table) constituting less than 1% in overall mem-

ory overhead. The remainder of the overhead is imposed by the model execution, i.e.,

the fUML VM itself resulting from the fact that the fUML VM is not yet as optimized

6
http://commons.apache.org/proper/commons-email

7
https://code.google.com/p/objectify-appengine
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as the Java virtual machine. For example, while the fUML standard foresees concurrent

threading of the execution, the Java implementation of the fUML VM does not (yet)

provide such capabilities.

Completeness. The implemented prototype currently supports only a subset of

fUML’s actions. In detail, the following fUML actions have been taken into consid-

eration during the development of the prototype: CreateObjectAction, CallOperation-

Action, and AddStructuralFeatureValueAction. While the prototype supports all kinds of

primitive data structures offered by the fUML standard, complex data types are only

supported in a subset of possible use cases. Moreover, for example, the Java reflection

library as well as Java libraries making use of dependency injection cannot be directly

used as there are no corresponding concepts in the fUML standard. Additionally, static

field and static operations are not supported. A list of explored limitations can be found

in [7].

# of Executions Time

(Java)

Time

(fUML)

fUML

Overhead

Integration

Layer

Overhead

Memory

(Java)

Memory

(fUML)

1 583 ms 830 ms 42.37% 2.08% 5 MB 75 MB

10 936 ms 1260 ms 34.62% 4.03% 2 MB 77 MB

50 1199 ms 2541 ms 111.93% 2.75% 2 MB 88 MB

Table 1: Performance Results

5 Related Work

As discussed in Section 2, fUML defines its own library called Foundational Model

Library. With this library, fUML provides primitive data types and associated primitive

behaviors. Furthermore, this library can be extended by implementing for each data type

or function to be added, a dedicated interface and registering this implementation at the

fUML VM. Considering the vast amount of existing software libraries, which have to

be added to the Foundational Model Library, in order to enable the development of

fUML models executable on the target platform, and the still rather small community

using fUML, this approach is currently infeasible from a practical point of view. Fur-

thermore, re-using existing software components would require considerable additional

implementation effort in this approach.

Nevertheless, some extensions of the Foundational Model Library exist. The Alf

standard [9] provides a textual notation for fUML models and extends fUML with an

additional library that provides further data types (e.g., Natural and Collection types)

and corresponding functions (e.g., Collection functions). Cuccuru et al. [1] propose

an extension of Alf with the Value Specification Language (VSL). VSL is a language

standardized by the OMG for defining the values of non-functional properties of real-

time and embedded systems in UML models. As part of this extension, additional data

types and functions for these data types were added to Alf’s library.
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The Cameo Simulation Toolkit provided by No Magic, Inc. constitutes a commer-

cial implementation of fUML. In this tool, it is possible to access software libraries in

fUML models by embedding Java source code in the body of fUML OpaqueActions.

This approach fundamentally differs from our approach as it requires the modeler to

write actual source code. Furthermore, the result of executing source code embedded

in the fUML model can only be accessed by source code embedded in another part of

the fUML model. However, it is not possible to further process the result using (other)

native fUML actions, such as the AddStructuralFeatureValueAction. A similar approach

as the one implemented by the Cameo Simulation Toolkit is also provided by the com-

mercial UML tools IBM Rational Rhapsody, IBM Rational Software Architect, and

Enterprise Architect. While they do not fully conform to fUML, they support embed-

ding source code in UML actions and thus enable access to software libraries.

A different approach is taken by the UML execution and debugging tool Pópulo [3].

In this tool, the supported action language can be extended using UML profiles. There-

fore, the execution semantics of the introduced stereotypes have to be implemented by

Java classes inheriting from dedicated classes of Pópulo’s API. This approach is very

similar to the approach of extending the fUML Foundational Model Library.

Another related approach we want to mention is Umple [2], which is a model-

oriented programming language provided with a user interface that allows both graph-

ical and textual modeling as well as programming in parallel. For modeling, Umple

supports many UML modeling concepts used in UML class diagrams and UML state

machines. Imperative code to be added to the model, such as code for class operation

bodies, is written in one of the target programming languages supported by Umple,

such as Java and PHP. In a code generation step, code for the respective target language

may be generated. This approach differs from our approach in that it creates code from

models which is then compiled and executed, while in our approach executable models

are directly interpreted by the fUML VM.

6 Conclusion

In this work, we have presented an approach to integrate software libraries with UML

models. In this approach, an existing software library can be integrated with fUML

compliant UML models at design time, as well as at runtime during model execution.

Therefore, the library to be used is reverse-engineered into a UML library model that

represents the library’s API structure. This UML library model can be referenced by

an fUML compliant UML model through CreateObjectActions for creating stateful in-

stances of library classes, AddStructuralFeatureValueActions for modifying these in-

stances, and CallOperationActions for calling operations on these instances. During the

fUML model execution, a dedicated Integration Layer operating on top of the fUML

VM handles accesses to compiled stateful library class instances using the reflection

technique and dynamic class loading.

The conducted initial case studies evaluated the feasibility of the approach partic-

ularly focusing on correctness, performance, and completeness. The correctness of the

prototype has been successfully evaluated by unit tests and confirmed by the case stud-

ies. Regarding performance, we found that the total overhead caused by the Integration
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Layer sums up to approximately 3% in execution time and less than 1% in memory. The

remaining overhead is caused by the fUML VM, which suggests an optimization of the

fUML VM. In terms of completeness, it was found that the implementation supports a

subset of available fUML actions and libraries. As future work we plan to increase the

set of supported fUML actions in the prototype, to conduct new case studies eventually

discovering further limitations, and to revise the implementation for overcoming these

limitations.

With our approach, fUML is enhanced with the rich power of existing software

libraries. In particular, it enhances fUML with further capabilities, such as accessing

operating system functionality as well as reusing existing software components. Thus,

it allows to build more accurate models that are closer to the target platform and, hence,

enables more accurate model-level analyses for validation, verification, or optimiza-

tion purposes. Furthermore, our approach enables to develop fUML models that are

executable on the target platform, such that the compilation of models to source code

through code generation becomes obsolete.
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Abstract. This paper proposes a declarative approach to multi-mode
heterogeneous DSLs based on term rewriting. The paper presents a data
model and algorithm for processing syntax structures. It has been val-
idated by an implementation that supports a range of languages. The
paper includes an example language that supports both game construc-
tion and execution.

1 Introduction

Domain Specific Languages (DSLs) [25, 17] are motivated by the need to define
languages that match specific use-cases, as opposed to General Purpose Lan-
guages (GPLs). Whilst GPLs are usually supported by standard text editors,
DSLs, by their nature, often contain a range of more exotic syntax elements
that are arguably better supported by syntax-aware editors. This has led to the
development of a range of technologies to support DSL development and that
generate tools for each DSL. Where the DSL is limited to text, languages such as
EMFText [8], MontiCore [15, 16], TCS [10], and XText [6], MPS and Spoofax [11]
allow a DSL to be quickly and conveniently defined and the associated tooling
generated. These technologies are mainly based on grammarware [12] that inte-
grate language parsers with editors in order to achieve a workbench. Many of the
technologies integrate static and dynamic analysis of the resulting DSL. These
technologies have become quite mature and the term Language Workbench [7]
has been coined to describe this type of engineering tool.

Whilst languages used for programming or scripting tend to be exclusively
text-based, modelling languages have included a much wider palette of elements.
UML for example, has a number of sub-languages that are based on graphs, but
also includes text in the form of OCL and action languages. Relatively few
technologies support the definition and tooling of DSLs containing graphical
syntax elements. Exceptions include Eugenia [13, 14], GMF [9], MetaEdit+ [23].

There has been increasing attention to heterogeneous (mixing graphical and
textual notations) [1, 21, 5, 20]. Intentional Software and MPS are both develop-
ing tools that support projectional editors [22]. A recent model-based approach
to mixing text and graphical languages is described in [2] that uses projectional
editing techniques over a model. Whilst most of the reported work agrees on the
general principles and proposed approaches, there has been little work on pro-
viding a concrete heterogeneous approach. In addition, most language use-cases

33



Fig. 1: Defining the Game

involve multiple modes, minimally definition and subsequent use. Other modes
include debugging and using a language from the perspective of different stake-
holders. Most DSL technologies do not support multi-mode interaction within
the same tool-set.

This paper presents a novel declarative approach to the definition and associ-
ated tooling for heterogeneous multi-mode DSLs. The contribution is to propose
that simple term rewriting can be used as the basis of this approach. This paper
describes an algorithm that is suitable for this purpose and demonstrates how the
declarative approach can be used to define a multi-mode heterogeneous DSL for
building and playing a game. The approach has been validated by implementing
the algorithm and the associated tool can be downloaded with examples.

2 Example

Consider a game that involves a collection of rooms that are connected by corri-
dors. A room is either empty or contains a locked cage. The cage is painted red,
green or blue. Inside the cage is a painted key. A key can be used to unlock a
cage of the same colour and get the key inside. The player starts off in a room
with a red key. The aim of the game is to visit all the rooms and unlock all the
cages. Figure 1 shows the definition of a dungeon using the language editor for
game construction. Rooms are created as nodes and corridors as labelled edges.
The text in a room-node shows the colour of the room, the colour of a cage
and the colour of the key in the cage. The blue dot at the top-left corner of
the tool is used to access a room-creation menu. Edges between room-nodes are
created by dragging the mouse from a source node to the target (a menu is used
to select a direction). When a room-node is created, its colour and contents are
uninitialised: the mouse is used to select from pre-defined colours for the room,
cage and key.

The language operates in two modes: creation and play, it is possible to
switch between the modes by pressing p and c on the keyboard. Figure 2 shows
play mode. The player starts in the blue room with a red key. The player makes
a move by pressing the first letter of the direction on the keyboard. Since the
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player does not have a green key they must move from the starting room; they
press n to go north and arrive at a green room with a red cage. The player can
open the cage since their key matches the cage colour. This is done by pressing
u on the keyboard. Finally, the player goes back south.

The game shows a number of features of the projectional editor. Interaction
with the language can be moded; in this example there are two modes, but in
general there can be any number. The abstract syntax can be projected on to
graphs and text. In addition, language features can be created by menus made
available as blue-dots. Figure 1 shows a blue dot that is used to create room-
nodes, but in general a language may offer many different types of item. Figure
2 shows that the state of the game is projected to become formatted text. Figure
3 shows how the editor that is generated from the language definition supports
creation of language elements: (a) creation of a new room element; (b) selection
of a room colour; (c) selection of a type of edge between rooms.

3 Declarative Language Definition

The approach uses a simple term representation for both concrete and abstract
syntax, and uses term rewriting as the technology to support all language modes.
Section 3.1 describes the data representation and an rewriting algorithm, section
3.2 describes how concrete syntax is represented as trees in normal forms, and
section 3.3 describes how rules are used to define the terms used to represent
abstract syntax.

3.1 Syntax Trees and Transformations

The DSL editor manages a syntax tree. A tree is in one of a number of forms:
atomic in which case it is a string, number, char or boolean; term in which case
it has the form f[i1,...im](t1,...,tn) where f is the term-functor which is a

(a) Starting State (b) Move ’n’

(c) Unlock ’u’ (d) Move ’s’

Fig. 2: Playing the Game
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(a) Room Creation (b) Setting Room Colour (c) Edge Creation

Fig. 3: Editor Interactions

name, i1,...,im is the identity of the term, and ti are sub-trees. The identity of
a term is used to associate a term with layout information. Where the identity
of a term is not important it is omitted and assumed to be unique.

The editor works by creating an initial tree referred to as abstract syntax.
The abstract syntax tree is transformed into a concrete syntax tree by applying
pattern directed transformation rules. Concrete syntax is a tree whose term-
functors are pre-defined.

The editor displays a concrete syntax tree, and then waits for a user-event.
The set of user-events is pre-defined; each event is mapped on to a term whose
functor designates the type of event: key, selected, drag, etc. The abstract syntax
tree t and the new event-term e are combined into a new term whose functor is
←, written t ← e. The transformation process is repeated, allowing rules that
process e to transform t appropriately.

Transformation rules have the form p → e where p is a pattern and e is an
expression. A pattern is a tree that contains variables. A variable is just a name
that starts with an upper-case letter. An environment E associates variables
with either trees or lists of trees, and associates functors with functions. An
environment that contains no lists is applied to a pattern to create a tree E(p)=t.
For example, {X 7→ 10}(f[0](X))=f[0](10).

Patterns may be repeated. Such a pattern must be nested within a par-
ent pattern and is followed by ... The informal meaning of such a pattern is
‘match as many elements as possible then continue’. For example, the pattern
f[0](p...,10) will match a term whose functor is f, whose identity is 0 and whose
children end with 10, providing that all other children each match pattern p.

An environment that applies to a pattern containing repeated sub-patterns
will contain mappings between variables and lists of trees. For example,
{X 7→[1,2,3]}(f(X...,10))=f(1,2,3,10). Repeated patterns need not be atomic
as in the following example: {X 7→[1,2,3]}(f(g(X)...,10))=f(g(1),g(2),g(3),10).

Expressions are patterns that can refer to local variables and local function
definitions. A local function definition is a collection of rules that are selectively
applied to part of a tree. For example, if L=10 and f(A)=g(A) are local definitions
then the term x(f(L)) in the context of these definitions will be transformed to
x(g(10)).
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1 proc transition(tree,locals,transformations,reductions,table) {
2 while(true) {
3 tree := transform(transformations,locals,tree);
4 let tree’ := transform(reductions,tree) such that tree’ ∈ N
5 table := display(tree’,table);
6 tree := get_event(tree’,tree,table);
7 }
8 }
9 fun transform(rules,locals,tree) {

10 while ∃ p → e ∈ rules and ∃ E ∈ E such that I ⊆ E and E(p) = tree do {
11 tree := E(e)
12 }
13 let f[i1, . . . , in](t1, . . . , tn) = tree

14 tree’ = f[i1, . . . , in](t
′

1
, . . . , t′

n
) where t′

i
= transform(rules,locals,t′

i
)

15 if tree’ = tree
16 then return tree
17 else return transform(rules,locals,tree’)
18 }

Fig. 4: Projectional Editor Algorithm

A rule r is a pattern and an expression p → e. Given a tree, t, and some
local definitions L, r is applicable when there is an environment E that contains
L for which E(p)=t. The result of applying the rule to t is then E(e).

The behaviour of the editor is defined in figure 4. The procedure transition

performs a loop that transforms the abstract to the concrete syntax tree, displays
the concrete syntax tree and then waits for a user event. The arguments of
transition are: the abstract syntax tree, the local definitions, two sets of rules
transformations and reductions, and a table that maps term identities to layout
information.

Line 3 uses the transformation rules to change the current abstract syntax
tree. This allows events to be change the state of the tree. Line 4 uses the
reduction rules to transform the tree into a normal form, i.e., a member of the
set of trees N that can be drawn by the editor. The resulting concrete syntax
tree’ is displayed by the editor in line 5 using the table to remember the layout
information on each loop within the procedure transition.

Line 6 waits for a user event. Such an event will occur with respect to the
concrete syntax, so the table is used to make the correspondence between ele-
ments in tree’ and in tree, resulting in a new abstract syntax tree of the form
t ← e.

The procedure transform is used to apply rules to a tree in the context of
some local definitions. Lines 11-13 continually select a rule that is applicable and
updates the tree. Once there are no more applicable rules, line 15 transforms the
children of the tree. If any children have changed then the process is repeated
(line 18) otherwise no more rules are applicable to any part of the tree and it is
returned (line 17).

3.2 Normal Forms

The set N of normal forms contains trees whose functors and structure cor-
respond to concrete syntax elements that can be drawn on a screen and that

37



can respond to user events. Different editors may define different sets of normal
forms, for example a text-only editor may only support trees that correspond
to string layout, whereas a graph editor may only support trees representing
collections of nodes and edges.

This paper uses a game to explain the key features of the projectional editor
approach to heterogeneous DSLs. The normal forms used by the game are:

atom Any atomic value is a normal form.
seq(t1,...,tn) The sub-tree normal forms are displayed in sequence.
nl Produce a new-line.
graph(etypes,nodes-and-edges) The graph is displayed on the screen and sup-

ports selection, new edge, movement, resize, and mouse click events. The
identities of the nodes and edges are used to ensure that the layout is con-
sistent; therefore, a node with a fresh identity will cause a new node to
appear on the screen. The etypes define the permissible edge types, and
nodes-and-edges is a mixed sequence of nodes and edges.

edge-types(t1,...,tn) each ti is of the form type(source,target) where type

is the type designator for edges that can be drawn from nodes of type source

to nodes of type target.
node(ntype,i,display) where ntype designates the type of node, i is the iden-

tity of the abstract syntax element represented by the node (for passing back
events on this node), and display is a normal form that is displayed when
this node is drawn.

edge(source,sdec,target,tdec,label) where source and target are the source
and target node identities, sdec and tdec are the edge-end decorations for
the source and target, and label is a label on the edge.

vbox(pelements) A vertical box of elements that are all of the form l(e) where
l is one of the layout designators: centre; left ; right.

3.3 Abstract Syntax

The editor must start with an initial abstract syntax structure. This is defined
by an abstract clause in the language definition that corresponds roughly to
a type definition for abstract syntax trees. The clause consists of a number of
rules of the form name → element where element is one of: a term of the form
f(e1,...,en) where each ei is an element; str in which case the element denotes
an editable string in the concrete syntax; e* where e is an element in which
case the abstract syntax denotes a sequence of e’s of arbitrary length, and is
manifest in the concrete syntax in the form of a hole that can be selected and
incrementally extended via a menu; a disjunction e1 | e2 which will manifest
itself in the concrete syntax as a hole associated with a menu that allows the
user to choose between filling the hole with e1 or e2. For example:

1 abstract {
2 numbers → number*
3 number → zero | add(number)
4 }
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represents an abstract syntax tree that is generated from the first rule (numbers).
Since the first rule is number* we do not know how many instances of number to
generate, so a hole is displayed allowing the user to generate a number followed
by another hole, or to delete the hole (completing the sequence). A number also
generates a hole allowing the user to choose between replacing the hole with a
zero or a tree containing another number. Although the display of the holes is
fixed, the actual representation of terms of the form add(add(zero)) will depend
on the reduction rules that map it into a normal form.

4 Game Implementation

This section describes the game implementation in terms of the abstract syn-
tax definition, the locals, the transformation rules and the reduction rules. The
abstract syntax for the game is:

1 abstract {
2 game → game(construct,map(rooms(room*),exits),player)
3 room → room(colour,empty | cage)
4 colour → red | green | blue
5 cage → cage(colour,colour) }

The game is initially in construct mode which means that it will be displayed
as a graph and allow new rooms and exits to be added. The map contains an
extensible sequence of rooms and empty exits and player terms. A room has a
colour and is either empty or contains a cage. A cage term contains two colours,
one for the cage-lock and the other for the key in the cage.

The locals defines the edge types used between room-nodes and a function
called exits-from that is used to map a room id and a list of all exits from all
rooms, to just the exits from the designated room:

1 locals {
2 E = edge-types(n(room,room),s(room,room),e(room,room),w(room,room))
3 exits-from(I,Exits) =
4 case Exits {
5 exits → nil
6 exits(exit(D,I,_),Exit...) → cons(D,exits-from(I,exits(Exit...)))
7 exits(_,Exit...) → exits-from(I,exits(Exit...)) } }

The transformation rules are used to handle user events and use pattern match-
ing to dispatch on the state of the game:

1 transform {
2 game(_,map(rooms(Room[I](Colour,Contents),R...),Exits),_) ← ↓p →
3 game(play,map(rooms(Room[I](Colour,Contents),R...),Exits),player(I,red))
4 game(_,map(Rooms,Exits),Player) ← ↓c → game(construct,map(Rooms,Exits),Player)
5 game(play,map(Rooms,exits(X1...,exit(n,S,T),X2...)),player(S,Carrying)) ← ↓n →
6 game(play,map(Rooms,exits(X1...,exit(n,S,T),X2...)),player(T,Carrying))
7 game(play,map(Rooms,exits(X1...,exit(s,S,T),X2...)),player(S,Carrying)) ← ↓s →
8 game(play,map(Rooms,exits(X1...,exit(s,S,T),X2...)),player(T,Carrying))
9 game(play,map(Rooms,exits(X1...,exit(e,S,T),X2...)),player(S,Carrying)) ← ↓e →

10 game(play,map(Rooms,exits(X1...,exit(e,S,T),X2...)),player(T,Carrying))
11 game(play,map(Rooms,exits(X1...,exit(w,S,T),X2...)),player(S,Carrying)) ← ↓w →
12 game(play,map(Rooms,exits(X1...,exit(w,S,T),X2...)),player(T,Carrying))
13 game(play,map(rooms(R1...,Room[I](C,cage(C-Col,K-Col)),R2...),X),player(I,C-Col)) ← ↓u →
14 game(play,map(rooms(R1...,Room[I](C,empty),R2...),X),player(I,K-Col))
15 game(construct,map(R,exits(E...)),Player) ← new-edge(Type,S,T) →
16 game(construct,map(R,exits(exit(Type,S,T),E...)),Player)
17 }
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If the user presses the p key at any time (line 2) then the game changes state
to play. If the user presses n when the game is in play (line 5), and if there is
an exit north from the player’s current location S then the abstract syntax tree
transforms into a new state where the player’s current location is T. The player
can unlock a cage using key u (line 13). Finally, if the game is in construct

mode and the user drags an edge between two graph nodes, then the message
new-edge(t,s,t) is send to the tree causing a new exit to be added to the map
(lines 15,16). The reduction rules transform the current state of the game into
a normal-form ready for display by the editor:

1 reduce {
2 game(play,map(rooms(R1...,Room[I](Col,Contents),R2...),exits(Exit...)),player(I,Carry)) →
3 player2str(Carry,Col,Contents,exits-from(I,exits(Exit...)))
4 game(construct,map(rooms(R...),exits(X...)),_) → graph(E,room2n(R)...,exit2e(X)...)
5 player2str(Carry,Col,Contents,X) →
6 seq(’You are in a ’,Col,’ room.’,nl,carry(Carry),contents(Contents),exits(X))
7 carry(Key-Colour) → seq(’You are carrying a ’,Key-Colour,’ key.’,nl)
8 contents(empty) → seq(’There is nothing in the room.’,nl)
9 contents(cage(C-Col,K-Col)) →

10 seq(’There is a ’,C-Col,’ cage here that contains a ’,K-Col,’ key.’,nl)
11 exits(nil) → ’No more exits.’
12 exits(cons(Exit,Exits)) → seq(’There is an exit ’,Exit,nl,exits(Exits))
13 exit2e(Exit[I](Type,S,T)) → edge[I](S,none,T,arrow,label[’direction’,I](target,Type))
14 n → ’north’
15 s → ’south’
16 e → ’east’
17 w → ’west’
18 room2n(Hole[I](H)) → node[’new-room’,I](new-room,I,H)
19 room2n(Room[I](Col,Stuff)) →
20 node[’room’,I](room,I,vbox[’b’,I](centre(seq(’A ’,Col,’ room.’)),centre(Stuff)))
21 red → ’red’
22 green → ’green’
23 blue → ’blue’
24 empty → ’empty’
25 cage(Cage-Colour,Key-Colour) → seq(’cage = ’,Cage-Colour,nl,’key = ’,Key-Colour)
26 }

Lines 1 - 4 show the two rules that detect whether the game is being constructed
or played. If played, then the game state is translated into text. If constructed
then the game state is translated to a graph.

5 Implementation

The editor described in this paper has been implemented in the programming
language Racket and used to define a range of heterogeneous languages. An im-
plementation pack accompanies this paper1. The pack includes a Mac disk image
stand-alone-editor.dmg of the editor implementation, several saved languages
(*.xml) and the source code of the language definitions language-definitions.rkt.
Once you have installed the editor, navigate to the bin directory and start the
tool before dragging any of the xml files onto the editor pane to load up the
language definition. The pack includes the game language definition, an exam-
ple adventure, a use-cases implementation of hotel booking and a library class
diagram. See the language definitions for more details.

1 http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/projectional_

editor_demo.zip
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6 Conclusion and Future Directions

This paper has proposed a declarative approach to multi-mode heterogeneous
DSLs. The approach freely mixes graphical and textual syntax and an algorithm
has been presented to process the syntax structures. The algorithm has been
validated by an implementation, but leaves room for future development. The
approach is structural whilst other approaches integrate text parsing with pro-
jectional editing (e.g., [4]); it may be possible to integrate both approaches. The
meta-language described in this paper provides no support for error handling
and will simply go wrong if the rules fail to produce a normal-form or if a lo-
cal rule definition produces a tree of an unexpected type. One way to address
this is to have a separate category of rules that are used for checking and er-
ror reporting. Related to this, the language does not support static checking.
For example, it should be possible to detect the use of unbound identifiers and
undefined functors. Some aspects of static checking should be easy to achieve,
however it would also be desirable to define a type system so that the use of syn-
tax structures can be checked before use. There is interest in the modularity and
composition of languages and DSLs in particular [24, 3, 18, 19]. A key challenge
to achieving engineered integration is posed by concrete syntax. By inverting
the focus of attention to abstract-syntax, a projectional editor does not suffer
from such problems. However, there are still significant issues to be addressed
and this could be a fruitful area for future work.
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Abstract. We present an infrastructure for the management of models of 
heterogeneous meta-models in model-based development environments. The 
infrastructure consists of a Global Model Management (GMM) modeling 
language, which allows the capture of the meta-models used in a modeling 
environment. Relations between meta-models and subsets of these meta-models 
can be  declared and interpreted during model evolution for automated global 
model management. The infrastructure is implemented in an Eclipse EMF 
based EDA (Electronic Design Automation) tool. Its use is demonstrated by the 
generation and synchronization of AADL and VHDL code targetting an FPGA 
to control a self-balancing toy car. 

Keywords: Global Model Management, Model Coordination, Model 
Transformations / Synchronization, Triple Graph Grammars, EDA Tools 

1 Introduction 
Model-based engineering makes use of many models of different kinds to capture all 
aspects of a system. As presented in [1], a significant proportion of design errors are 
due to inconsistencies between the heterogeneous models used to develop the evolv-
ing system. Mechanisms are required to ensure consistency of models is automatically 
maintained, and that proper traceability links can be established between models and 
maintained during model evolution. Such mechanisms should be at the heart of every 
model-based development tool, and it should be extensible so that modeling tools can 
be easily configured to target new domains making use of other modeling languages 
and types of relations between models. 

In this paper, we present a Global Model Management (GMM) infrastructure to 
solve these problems. It is inspired from state of the art research and from experience 
gained in developing the Kaolin EDA (Electronic Design Automation) tool [2], which 
makes use of several rich modeling languages such as AADL (Architecture Design 
and Analysis Language, [3]) and VHDL (VHSIC (Very High Speed Integrated Cir-
cuits) Hardware Description Language, [4]). The tool aims at simplifying the devel-
opment of electronic systems implemented on FPGAs (Field Programmable Gate 
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Arrays) by generating automatically the platform-specific models and VHDL imple-
mentation code from abstract functional AADL models. Our GMM language includes 
the concept of meta-model subset as introduced in [5], to declare sets of constraints 
restricting the use of complex and rich languages such as AADL and VHDL. Valida-
tion of subset constraints ensure given activities can be performed on models. In addi-
tion, automated model synchronization is provided through an extension of the core 
GMM language making use of an enhanced version of MoTE [6], which is based on 
Triple Graph Grammars (TGG) [7]. 

The rest of this paper is divided as follows: the next section introduces the GMM 
language and its interpretation semantics. Then, section 3 demonstrates the use of the 
GMM infrastructure through an example consisting of a self-balancing radio con-
trolled car whose implementation code is automatically generated using interpreted 
GMM relations. Related work is then presented in section 4, followed by the conclu-
sion and perspectives in section 5. 

2 The GMM Infrastructure 

2.1 The GMM Modeling Language 
Many approaches to GMM include the concept of mega-model, for which several 
definitions can be found. A unified definition is provided in [8], which has the advan-
tage of being free of implementation details, and can be extended to make use of spe-
cific transformation tools and other artifacts. Our core GMM language (Fig. 1) is 
inspired from this work. It includes the central concepts of model and relation. A 
model is defined as an element that contains models and relations between models. It 
is hierarchical, meaning that it can contain other models as children. This allows for 
better structuring of models. For instance, and as explained in [8], large languages 
such as UML would benefit from such structuring by having some of their model 
elements declared as models (e.g. class diagrams, sequence diagrams, etc.).  

Models need to be related to each other, so a mega-model must be able to contain 
relations between its contained models. A relation also owns an intention, which de-
scribes the intended use of the relation. Inspired from [9], we further distinguish be-
tween factual and obligation relations. A factual relation must be deleted as soon as 
its intention is not satisfied anymore. For example, if the intent of the relation is to 
provide traceability between two models, then if one model is deleted, the relation 
must be deleted because its intention is not satisfied anymore. On the opposite, an 
obligation relation defines that something should always hold but does not necessarily 
do so between the related models. Therefore, obligation relations should not be de-
leted when their intention does not hold, but provide means for (re-)establishing the 
validity of the relation. This is represented by the establish validity operation, which 
takes as input a modeling environment and an execution context. The modeling envi-
ronment provides all models concerned by the relation, so that they can be processed 
to (re-)establish validity. The execution context describes the context in which the 
validity of the relation should be established. It captures the type of operation that was 
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performed on a source model of the modeling environment that was changed thus 
requiring validity to be re-established. Predefined types of operation follow the basic 
CRUD (Create, Read, Update and Delete) types used for database persistence. The 
establish validity operation returns a collection of models of the environment that 
have been updated as a consequence of (re-)establishing the validity of the relation. 

 
Fig. 1. The core GMM language 

A model may be in an error state. For example, a model concerned by a relation 
may not be valid, and this information stored in the model can be processed by an 
obligation relation when re-establishing validity. In addition, the relation can itself 
update the error state on the models to indicate for example what prevents the validity 
of the relation to be established. This error information can then be displayed to users 
of the modeling tool, for instance through markers of the Eclipse environment. 

The models that are concerned by a GMM relation must be determined in some 
way. For this purpose, the relation policy class is introduced. Subclasses can provide 
specific ways of relating models, for example, by determining that two models of 
different meta-models are related only when the file names of their resources have the 
same base file name, with meta-models being identified by file extensions. 

A relation between models does not necessarily exist in isolation. Some relations 
may require other relations to hold. For example, a transformation chain can be seen 
as a set of chained obligation relations that must be executed one after the other to 
establish the validity of the chain of concerned models. For this reason, a GMM rela-
tion can declare chained relations. 

A meta-model (Fig. 2) represents a specific type of model to which a model can be 
related through a conformance relation. It is also a place where useful information can 
be stored to be used by tools processing models of the meta-model. For instance, 
model comparison, which often needs to be customized per meta-model, can be speci-
fied by attaching model comparison settings to a meta-model. 

Rich modeling languages such as UML or AADL often support a large number of 
activities (performance analysis, code generation, etc.). As pointed out in [5] for 
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AADL, guidance on how a language should be used for a given set of activities to be 
performed is essential to ensure tools interoperability. The authors of [5] proposed a 
DSML to capture subsets of modeling languages, and a revised version of this DSML 
is integrated in our GMM language, which introduces the concept of meta-model 
subset (Fig. 2). It consists of a set of constraints expressed in terms of the cardinality 
of a set of model elements of a given model. Various ways can be provided to con-
struct sets of model elements, but this is still an ongoing work. The objective is to 
express subsets in a way that their constraints can be interpreted by tools without 
evaluation on a specific model, for customization according to a given subset. For 
example, the AADL graphical editor used in Kaolin can interpret a subset to automat-
ically hide any element of the palette whose classifier is forbidden by the subset. 

 
Fig. 2. The GMM concepts for meta-models and meta-model subsets 

Following [5], meta-model subsets can be related to each other according to four 
types of relationships (inclusion, incompatibility, equivalence and intersection). A 
subset can be composed of other subsets through inclusion relations. It can also be 
associated with a given set of activities, thus allowing the analysis of tools interopera-
bility according to their associated activities and subsets compatibility and equiva-
lence. 

A meta-model subset can be associated with a subsetted meta-model declared for a 
given meta-model. Models conformed to a subsetted meta-model are first validated 
against the meta-model, and then against the constraints provided by the associated 
meta-model subset. 

2.2 Extension for Model Synchronization.  
Model transformations are first class entities in model-based development. In 

GMM, they are represented as specific relations between models. Other types of op-
erations between models could also be represented such as merge and refactoring, but 
it remains to be explored. Most model transformations are unidirectional and work in 
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a batch mode, i.e. from a set of input models they can only create an output model 
instead of updating an existing model. This is not sufficient since once generated, a 
model may need to be modified as it provides a different view of the system that may 
need to be updated by users. Hence, modifications must be reflected back in the 
source model to maintain consistency. Often this must be performed without re-
instantiating the source model, since it may contain information that is not represented 
in the target model. Incremental transformations, which update only parts of a model, 
are therefore required. This is called model synchronization. 

Only a few model transformation tools can currently satisfy these requirements. 
Among these tools, MoTE [6] can transform models in either directions using batch 
or synchronization mode. In addition, an enhanced version of MoTE has recently 
been developed [10], providing several improvements required for synchronize mod-
els of rich languages such as AADL. Being fully EMF-based, MoTE can be easily 
integrated into our GMM infrastructure in the form of a language extension (Fig. 3).  

 
Fig. 3. The GMM extension for model synchronization with MoTE 

The extension consists of a MoTE synchronization relation, which factually relates 
two models through their meta-models (binary meta-model related relation). At the 
same time, it is also an obligation relation establishing that the two related models 
must be maintained valid by ensuring their consistency. This is achieved by a MoTE 
TGG engine used by the MoTE synchronization relation. 

2.3 GMM Model Interpretation 
Our GMM language and its interpreter are deployed in the Eclipse Integrated Devel-
opment Environment (IDE) as depicted in Fig. 4. A mega-model declaring the meta-
models, their subsets and their relations is stored in the workbench configuration di-
rectory. A GMM controller listens for model change or read events (e.g. editor open-
ing) sent by the Eclipse platform. For a given model source of a received event, the 
controller instantiates a modeling environment containing the models in the work-
space and an execution context whose operation type reflects the type of the event. It 
then calls the GMM engine that interprets all relations declared in the mega-model 
that concern the models of the modeling environment. Obligation relation is currently 
the only type of relations interpreted in our GMM language. The GMM engine calls 
the establish validity operation passing the created modeling environment and execu-
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tion context objects. For a MoTE synchronization relation, the operation consists of 
calling the appropriate operation on the associated MoTE TGG engine according to 
the specified execution context and for each target model of the modeling environ-
ment. For an execution context with a read operation, this means that the model 
loaded in memory may be updated in a next operation. If the model corresponding to 
the source model does not exist, the relation calls the engine to perform a batch trans-
formation to create the model. Otherwise, a check consistency operation on the TGG 
engine is performed. Both of these operations cause a TGG correspondence model to 
be created between the models and stored in the TGG engine’s memory. Later on, 
when the model is updated, a resource change event is sent to the GMM controller, 
which is translated into an execution context of type Update sent to the GMM engine. 
The MoTE relation then calls the TGG engine to synchronize the target models of the 
modeling environment. When a model is deleted, the corresponding model may be 
deleted or not, as specified by the relation‘s deletion properties. 

 
Fig. 4. The GMM infrastructure integrated in the Eclipse platform 

The MoTE synchronization relation also takes care of creating appropriate errors 
carried by the models in case inconsistencies are detected during the creation of the 
TGG correspondence model. Model objects that are not mapped by the correspon-
dence model are inspected according to a model elements coverage policy associated 
with the relation, which determines if unmapped elements should have been mapped 
or not. In the former case, this indicates that the models are inconsistent, and appro-
priate errors are set for the model elements. The MoTE relation will not process mod-
els until the inconsistencies are resolved through manual update of the models. The 
relation makes use of a cache of the model objects, which are linked by the corres-
pondence models stored in the TGG engine memory. Changes made by any tool to a 
model are first merged into the cache, which preserves the object instances, thus en-
suring the links of the correspondence model used to synchronize the models remain 
valid. The merge layer is implemented with EMF Compare [11], using comparison 
settings defined per meta-model declared in the mega-model. 

3 Example 
This section presents an example illustrating the use of the GMM infrastructure, 
where many details are omitted due to lack of space. It consists of an electronic sys-
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tem implemented on an FPGA to control a self-balancing toy car (hereafter RC Car) 
from a smart phone (lower left part of Fig. 5). AADL is used to specify PIM and PSM 
models for the system. From the AADL PSM, a VHDL model is generated, which can 
be taken as input by FPGA vendor tools for synthesizing the circuit in the FGPA. 

AADL is a component-based language for modeling both the software and hard-
ware parts of embedded systems. It supports the specification of systems as an assem-
bly of software and hardware components divided into categories. Software categories 
are thread, thread group, data, process and subprogram. Hardware categories are pro-
cessor, virtual processor, memory, device, bus and virtual bus. Hardware and software 
component classifiers can be declared in libraries or hierarchically organized in sys-
tems for reuse. AADL components interact through features (interaction points) and 
connections, which together model data or control flows between components. 

The first step to design a system in Kaolin is to create an AADL functional model 
independent of any execution platform (diagram of Fig. 5). It is then transformed into 
an AADL PSM, which describes the FPGA chosen by the user and the synthesized 
functions taking into account execution platform-specific details. The GMM language 
is used to specify the AADL and VHDL meta-models, including three subsetted meta-
models for the AADL PIM and PSM, and for a subset of VHDL that can be handled 
by FPGA synthesis tools (synthesizable VHDL). 

 
Fig. 5. The self balancing toy car and an AADL functional diagram for its control system 

The objective of the AADL functional subset is to ensure AADL is used correctly 
for PIMs to be transformed into AADL PSMs, The functional subset includes a first 
subset that restricts the AADL language to its software part, which consists of forbid-
ding the use of hardware constructs (processor, virtual processor, memory, bus, de-
vice and bus access). Additional constraints are then added to the functional subset to 
ensure only AADL threads and data subcomponents are used and contained in a sin-
gle AADL process (Fig. 5).  

From a functional AADL model, an AADL PSM is generated, conformed to an ex-
ecution platform subsetted meta-model ensuring execution platform models are prop-
erly defined to be transformed into synthesizable VHDL code. Similar to the PIM 
subset, the PSM subset includes a subset restricting the constructs to hardware AADL 
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elements. Then, another subset describing how FPGAs must be modeled with AADL 
is provided, following an AADL extension developed to model FPGAs [12]. It in-
cludes the AADL hardware subset. Finally, the last required subset is Synthesizable 
VHDL, which cannot be described here due to the lack of space. Other VHDL subsets 
ensuring simulatability, testability and reusability, and as implemented by tools such 
as the Leda RTL checker [13] could also be modeled with our GMM language. 

Once the required subsetted meta-models have been created, relations between 
models conformed to these subsetted meta-models can be declared to transform / 
synchronize the models. These relations are implemented as MoTE synchronization 
relations, allowing to maintain the consistency of models as they are updated, but also 
to check their consistency. The most complex relation is the functional to FPGA ex-
ecution platform relation, which generates from an AADL PIM (Fig. 5) an AADL 
PSM  (Fig. 6) describing the content of the synthesizable component of the specific 
FPGA platform selected by the user. 

 
Fig. 6. An AADL execution platform model generated from the RC Car functional model 

Each thread of the functional model is transformed into a processor subcomponent, 
which exhibits execution platform details such as clock and reset signals. The gener-
ated AADL FPGA component extends a template for the selected FPGA target. Grey 
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elements on the diagram are inherited from the template, which in this case includes a 
clock. Green elements on the diagram have been added after the transformation to 
take into account requirements for the specific FPGA. In this case, 2 UART (Univer-
sal Asynchronous Receiver/Transmitter) controllers (in green) have been added to fix 
communication incompatibility between the brain controller and FPGA ports pre-
defined in the template. Adding these controllers is currently performed by a Java 
procedure called at the end of the transformation, but the intent is to implement this as 
a GMM relation. In this way, new refinement relations can be integrated in the mega-
model to target other execution platform specific needs. 

4 Related Work 
Several approaches have been proposed for GMM, most of them making use of mega-
models. A summary is presented in [8], with our GMM language derived from the 
proposed unified definition. In [9], dynamical traceability management is proposed 
through the categorization of relations into factual and obligation types, which was 
also introduced in our language. In [14], another infrastructure for GMM is proposed 
and implemented in Eclipse, which combines mega-models with model weaving. 
However, it only supports basic functionality such as model navigation through tra-
ceability links. Automated production of the links and model synchronization are not 
supported. Our work enhances these approaches with meta-model subsets and model 
synchronization based on automated traceability link production. Our approach is also 
extensible so that new relations and tools can be integrated as needed. 

A difficulty in GMM is to identify the relationships that are needed between mod-
els. The GEMOC initiative [15] proposes an initial categorization of relations in three 
different forms: interoperability, collaboration, and composition. Interoperability 
supports the exchange of information across models with minimum coupling between 
the models. It seems similar to model weaving proposed in [14]. Collaboration rela-
tionships support coupled development of models, where the development of a model 
directly influences the form of other models. This is similar to our synchronization 
relation, which influences the form of the associated models by maintaining their 
consistency during model evolution. Finally, composition relationships combine in-
formation from several models to create new forms of models. This is similar to EMF 
views [16], where several meta-models can be combined to provide new views on 
models, similar to database views. 

5 Conclusion and Perspectives 
Our experiment in using GMM for our EDA tool shows that several benefits can be 
obtained through explicit representation of the used meta-models and subsets, along 
with relations between models. Interpretation of relations ensures models are properly 
managed during their evolution to prevent errors introduced early in the development 
process. We think every model-based IDE should include a GMM infrastructure. One 
advantage of our GMM is that it was developed using rich and realistic modeling 
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languages, which revealed important needs such as meta-model subsets and improved 
automated model synchronization.  

However, many aspects of our infrastructure require improvements. Despite our 
enhancements, the TGG language would benefit from a complete review to improve 
aspects such as reuse of TGG elements across several TGGs. The study of other types 
of relations as proposed in [15] is also of interest, and in particular the integration of 
EMF views in GMM implementing meta-model composition relations. Finally, model 
to meta-model conformance could be enforced during meta-model evolution, 
represented as a conformance relation of obligation type, making use of frameworks 
such as Edapt [17]. 
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Abstract.  The overall goal of our approach is to relate models - of a given do-
main - that are designed by different actors in different Domain Specific Lan-
guages, and thus are heterogeneous. Instead of building a single global model, 
we propose to organize the different source models as a network of models, 
which provides a global view of the system through a correspondence model. 
This latter, conform to a correspondence meta-model is built via a manual 
matching process. In this paper we explore the possibility of representing mod-
els as  ontologies and take advantage of an automated process to match them.in 
order to enhance the automation of the matching process. 

Keywords: DSL, heterogeneity, correspondence, matching, refine, ontology 

1 Introduction 
Models manipulated by different actors within the design process of complex systems 
are by nature heterogeneous. One common way to describe such models is to use 
Domain Specific Languages (DSLs) [21]. Matching these models is one of the key 
tasks for ensuring the consistency of the overall system. However, due to the specific 
way these models are represented, correspondences between heterogeneous models 
are generally established manually by the domain expert [3]. Approaches for automat-
ing the matching process usually consist in transforming the input models to other 
representations, such as tree models [7] or directed labeled graphs [1], before the 
matching step itself. In this paper, we propose to take advantage of ontologies, which 
provide a formal representation of the knowledge about a given domain [19], and 
automated ontology matching approaches [12], in order to automate and optimize the 
model matching process. Our proposal extends a previous work on matching models 
through a correspondence model [13]. Correspondences link two or more elements 
belonging to different models. They are first established at meta-model level, and are 
then instantiated (refined) at model-level. We distinguish domain independent rela-
tionships (e.g., “dependency”, “generalization”, “aggregation”, and “similarity”) from 
domain specific ones. In our previous proposal, the first step of the matching process 
consists in automatically refining a set of correspondences at model-level, from corre-
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spondences established by the domain expert at meta-model level. The second step 
consists in filtering out potential incorrect correspondences from the set of instantiat-
ed ones. In [3], we have proposed to refine the correspondences from meta-model 
level to model level in a semi-automatic way, the expert being in charge of filtering 
(with the help of a tool) the correspondences that have been generated at model level. 
In this paper, we propose to exploit ontology-based matching approaches for enhanc-
ing the automation of the matching process at model level. We illustrate our approach 
with a case study extracted from a Conference Management System (CMS). We focus 
in this paper on the similarity relationship between two model elements. 

The rest of this paper is organized as follows. Section 2 introduces the case study 
that was chosen to illustrate our approach. Section 3 presents our correspondence 
meta-model and the matching process between meta-models and models. Section 4 
discusses how correspondences at model level can be established through refinement 
of correspondences at meta-model level.  Section 5 presents how we use ontologies in 
our approach. Section 6 evaluates the performance of our proposal. Section 7 com-
pares our proposal to related work, and finally Section 8 concludes and draws per-
spectives. 

2 Running example: Conference Management System (CMS) 
CMS is a software system aiming to automate functions needed in the management of 
a scientific conference: call for papers, paper submission, paper assignment for evalu-
ation, notification of the final decision, registration, etc.  Even if it is not really a 
complex system, the CMS has been chosen because it is firstly well known to most of 
researchers; secondly, it is relevant because it involves different actors, working with 
different points of view. We consider that there are three business domains in the 
CMS, covering various aspects of modelling. Each business domain is described by a 
dedicated model, conform to a dedicated meta-model, and is manipulated by actors 
with specific roles: (a) Software Architect: responsible for the conference manage-
ment design; he creates a model – called softwareDesign – expressed through a spe-
cific software design meta-model; (b) Database Administrator: responsible for storing 
data; he creates a model – called persistence –  expressed through a persistence meta-
model; (c) Process Engineer : responsible for the way to conduct a CMS; he creates a 
model – called businessProcess – expressed through a business process meta-model. 
Due to lack of space the CMS meta-models are not described in this paper. Fig.1, 
Fig.2 and Fig.3 show fragments of the partial models of CMS.  

3 Meta-model and Model Matching Process 
Meta-model for representing correspondences (MMC).  Establishing correspond-
ences between models is a way to ensure and to maintain consistency of the whole 
system. Our approach consists in analyzing input (meta)-models in order to identify 
correspondences that exist among them. These correspondences are then stored into a 
model of correspondences (M1C) which is conform to a meta-model of correspond-
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ences (MMC). It expresses links among meta-elements of distinct meta-models as 
well as links among elements of distinct models. MMC is composed of a generic part 
common to all the domains, and of a specific part which depends on the specific do-
main modeled (Fig.4).  The main meta-classes of this correspondence model are : (a) 
CorrespondenceModel: represents all the correspondences established among at least 
two (meta)-elements belonging to different (meta)-models; (b) Correspondence: 
composed of a relationship and its extremities, which represent elements from input 
models; (c) Relationship: abstract meta-class that defines relationships among (meta-) 
elements of different (meta-)models and allows for defining n-ary correspondences 
connecting more than two elements at once. Its definition is done through specializa-
tion of ”Relationship”, by introducing two sub-meta-classes:   “DomainIndependen-
tRelationship” and “DomainSpecificRelationship”; (d) DomainIndependentRelation-
ship: abstract meta-class that represents the generic relationships that may exist in 
different domains; and (e) DomainSpecificRelationship: abstract meta-class represent-
ing relationships among models in a specific domain. New relationships are specified 
by specialization of this meta-class according to the studied domain. The other meta-
classes will be described progressively in subsequent sections. 

Persistence model

-articleId
-authorId

ArticleByAuthorDAO
-reviewsId
-reviewerId
-articleId
-reviews
-decison

ArticleReviewsDAO

-articleId
-writtenDate
-headline
-body
-status
-conferenceId

Article DAO
-conferenceId
-location
-sbmissionDate
-startDate
 endDate
 reviewDate

ConferenceDAO
-authorId
-password
-fullName
-phoneNumber
-adress
-organization

AuthorDAO

-reviewerId
-fullName

ReviewerDAO

 
Fig. 1. Extract of the persistence model 

Software design model

-paperId
-absract
-keywords
-submissionDate
-category
-title
-body

+loadPaper( paperId : int )
+downloadPaper( paperId : int )

Paper

-firstName
-lastName
-street
-phone
-city
-country
-organization

+Login()
+updateAccount()

«Participant»
User

-nameConf
-accronymConf
-reaserchAreas
-city
-country
-year
-notificationDate
-submissionDeadline

+create()
+addPaper()

Conference

+reviewPaper( paperId : int )

Reviewer
+InstalattionConference()

Organizer

-details

+associateCom()

Review

-idCom

+createCom()
+editCom()

Comment

+AddAuthor()

AuthorAttendant

concerns

1

0..*

0..*

writes
1..*

0..*

esatblishes

1

+reviews 0..*

+assignedPapers 1..*

1..*organizes1
1..*

0..11

 
Fig. 2. Extract of the software design model 

 
Fig. 3. Extract of the business pro-

cess model 

Global matching process. The correspondence model (M1C) is created via a “match-
ing process”. This process, described in [13], involves two actors, namely, a domain 
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(design) expert who can be seen as an orchestrator of the system, and a tool to support 
the automated phases. The process takes as input the various models, their respective 
meta-models and the kernel of the meta-model of correspondences (the generic part). 
It begins by identifying correspondences between meta-elements so as to produce an 
intermediate correspondences model called M2C. Correspondences stored in M2C are 
called High Level Correspondences (HLCs). HLCs are then refined in order to pro-
duce Low Level Correspondences (LLCs) at model level. 

 
Fig. 4. Overview of the generic part of the meta-model of correspondences (MMC) 

4 Defining correspondences on the CMS case study 
HLCs stored in the M2C model are defined only once during the modelling cycle. 
Fig.5 shows examples of HLC correspondences using 5 types of relationships. For 
example, a correspondence encompasses a link between the meta-element “Task” on 
one side and the meta-element “Operation” on the other side through a “Contribution” 
relationship. A “Similarity” is defined between the meta-elements “Property” and 
“Column”, but also between the meta-elements “Table”, “Entity” on one side and 
“Table” and “DataObject” on the other side. The last type of relationship, called “Ag-
gregation”, is used to relate the meta-elements “Property” and “Column”.  

HLCs are exploited to generate LLCs stored in the M1C. Actually, LLCs are ob-
tained by refinement of HLCs. In software and system engineering, refinement is a 
classical way to reuse [9] [10] [4].  It can be seen as a way of crossing different levels 
of abstraction with the purpose of adding details when passing from a given level to a 
more concrete one. According to [8], even though refinement is a key concept in 
MDA (Model Driven Architecture), it is loosely defined, and open to misinterpreta-
tion. The refine notion has also been defined in UML [6] as a stereotype for “Abstrac-
tion” - a directed relation from an element to another one stating that the dependent 
element (concrete) depends on the other one (abstract). A transition from HLC to 
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LLC is similar to a transformation of a PIM (platform independent model) into a PSM 
(platform specific model) in the context of MDA. 
In this work we consider refinement as a transformation between HLCs and LLCs. 
This is done by projecting abstract correspondences on the concrete level. The princi-
ple consists in defining a HLC and then to reuse it each time it is needed at the model 
level. Cx=[Similarity(Entity, Table)], Cy=[Similarity(Paper, ArticleDAO)] are re-
spectively examples of a HLC and the corresponding refined LLCs. 
Thus, we define Refine (denoted by Rf) as follows: Ci Rf Cj, where Ci and Cj are two 
correspondences, iff Ci is defined from Cj which means that Ci is an upgrading of Cj 
by adding details in order to precise the correspondence.  Fig.6 describes some LLCs 
created by refining HLCs presented in Fig.5. 

Task
{from business process DSL }

Role
{from business process DSL }

DataObject
{from business process DSL}

Property
 {from software design DSL}

StereotypedEntity
{from software design DSL}

Entity
{from software design DSL}

Operation
{from software design DSL}

Column
{from persistence DSL}

Table
{from persistence DSL}

Similarity

Similarity
Contributionplaying Similarity

Similarity

Use

Similarity

Similarity

Similarity
Aggregration

 
Fig. 5. Example of HLCs from CMS system 

Role:Author
 {from business process model}

DataObject:comment
{from business process model}

Task:Edit review
{from business process model}

DataObject:review
{from business process model}

Role:Reviewer 
{from business process model}

Task:Outsource paper
{from business process model}

Task:Enter comment
{from business process model}

DataObject:paper to review
{from business process model}

Entity:Review
{from software design model}

Operation:createCom()
{from software design model}

StereotypedEntity:Author
{from software design model}

Entity;reviewPaper()
{from software design model}

StereotypedEntity:Reviewer
{from software design model}

Entity:Comment
{from software design model}

Property:submissionDate
{from software design model}

Entity:Paper
{from software design model}

PrimaryKey:authorId
{from persistence model}

Column:fullName
{from persistence model}

Column:decision
{from persistence model}

Column:reviews
{from persistence model}

Table:ReviewerDAO
{from persistence model}

Table:AuthorDAO
{from persistence model}

PrimaryKey:articleId
{from persistence model}

Table:ArticleDAO
{from persistence model}

ForeignKey:articleId
{from persistence model}

Column:submissionDate
{from persistance model}

Column:password
{from persistance model}

Property:lastName
{software design model}

Property:paperId
{software design model}

Property:firstName
{software design model}

Property:details
{software design model}

Task:log in
{from process model}

Similarity

Similarity

Similarity

Similarity

Similarity Similarity

Similarity

Similarity

Similarity

Similarity

Similarity

Aggregation

Contribution

playing

Contribution

Contribution

playing

Aggregation

Use

 
Fig. 6. Example of LLCs from CMS system 
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5 Ontology based approach 
Ontologies are an explicit, formal specification of a shared conceptualization of a 
domain of interest [19]. They provide a model of the concepts of a domain and how 
these concepts are related to each other. In our proposal, we first automatically trans-
form a set of Ecore (meta-)models into OWL ontologies and then we exploit ontology 
matching strategies in order to filter out potential incorrect LLCs.  
The transformation process is carried out with the help of  TwoUse (Transforming 
and Weaving Ontologies and UML in Software Engineering)[5]. In this process, each 
meta-class is represented as an OWL concept and the meta-properties are represented 
as OWL object properties (relating two objects) or OWL data properties (relating an 
object to a data value). We refer to these elements as terminological components 
(TBox) of ontologies.  For the models, the instances of meta-models are represented 
as OWL individuals. Each individual is related to a type (meta-class) and is described 
by a set of OWL object and data properties, which are defined at meta-model level. 
We refer to the instances as assertional components (ABox) of ontologies. 
The correspondence model (Fig.5) is also represented as an OWL ontology (TBox), 
where HLCs and LLCs are represented as OWL individuals (ABox). While HLCs are 
manually established by the domain expert before the transformation step, LLCs will 
be automatically generated within our matching process.  
 The first step of the matching process consists in automatically generating a set of 
OWL LLCs from the set of OWL HLCs (refining process). From each OWL HLC 
relating a  source and a target elements (OWL individuals), one OWL LLC is auto-
matically created. The second step consists in automatically filtering out potential 
incorrect correspondences from the initial set of OWL LLCs, with the help of ontolo-
gy matching strategies. For each source and target elements (“RefElement” in Fig.6) 
of a LLC, we retrieve the value of the data property describing them (i.e., following 
the correspondence model, the “name” data property of a “RefElement” describes this 
element at model level, e.g., “conferenceId”). These values are then compared using 
different syntactic metrics. Correspondences that do not match using these metrics are 
removed from the initial set of LLCs.  
In fact, MMC serves as a contextual basis for the matching process at model level, 
limiting the generation of a correspondence to elements whose type participates in a 
HLC. Even if the contextual information helps avoiding the creation of correspond-
ences between elements of types that do not match (e.g., an “Operation” and a “Prop-
erty”), it does not guarantee the generation of correct correspondences. Although 
many different ontology matching approaches have been proposed in the literature 
[11][12], and most of them exploit the Tbox level of ontologies. Here, we work essen-
tially at the ABox level, adopting syntactic strategies for comparing data properties of 
OWL individuals. This first choice is due to the fact that we are working in a domain-
specific set of ontologies where the terms used to describe the elements at model level 
through different models is supposed to be similar. Finally, external resources as 
WordNet do not cover the vocabulary of a particular domain, as the one we consider 
here. 
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6 Preliminary evaluation 
We have conducted our experiments using the CMS case study.  In this first series of 
experiments, we focused on the “similarity” relationship. The correspondences at 
meta-model level (HLC) were manually established by a domain expert. Manually 
created correspondences at model level (LLC) were used as reference alignments to 
evaluate our approach. As evaluation metrics, we applied well known metrics such as 
precision (the ratio of correctly found correspondences over the total number of re-
turned correspondences), recall (the ratio of correctly found correspondences over the 
total number of expected correspondences, i.e., number of correspondences in the 
reference alignment) and f-measure (the harmonic mean of precision and recall). As 
depicted in Fig. 5, the alignment at meta-model level is composed of 7 HLCs involv-
ing the similarity relation. From these HLCs, through a projection process, for each 
pair of models (sofwareDesign-persistence, BusinessProcess-SoftwareDesign, and 
BusinessProcess-Persistence), we automatically generated the set of all possible LLCs 
(i.e., a LLC is generated between elements whose types are involved in a HLC). We 
refer to this set as “projection” in the following. In order to filter out incorrect corre-
spondences from this projection set, we syntactically compare the values of the data 
properties of each ontology individual using equality of strings and Levenshtein edit 
distance [17]. This metric measures the effort to transform a string into another. We 
have also run LogMap [18], a publicly available ontology matching system that is 
able to deal with the ABox level of ontologies. LogMap is based on reasoning and 
inconsistency repair techniques.  
Table 1 presents the results for the 4 sets of correspondences (“projection”, “equali-
ty”, “edit distance”, “LogMap”), which have been generated independently of each 
other. For SofwareDesign-Persistence (SD-PS), the projection set contains 462 corre-
spondences. As expected, the precision for this set is very low (many incorrect corre-
spondences have been generated), while recall is high (many correct correspondences 
were retrieved). An expected behavior has also been observed for the equality set, 
where precision is quite high and recall is low. Using the Levenshtein distance, we 
obtain intermediary values of precision and recall (and the best F-Measure). For 
LogMap, although having good values of precision, it was not possible to deal with 
the very specific way individuals are represented in our models. For BusinessProcess-
SoftwareDesign (BP-SD), although projection still generates the best recall, equality 
performed better than edit distance, especially in terms of precision.  
 Projection Equality Edit distance LogMap 
 P F R P F R P F R P F R 
SD-PS 0.01 0.02 0.63 0.50 0.26 0.18 0.26 0.33 0.45 0.28 0.22 0.18 
BP-SD 0.06 0.12 1.00 0.40 0.50 0.66 0.18 0.28 0.66 0.00 0.00 0.00 
BP-PS 0.01 0.03 1.00 0.00 0.00 0.00 0.11 0.18 0.50 0.00 0.00 0.00 
Table 1. Precision (P), Recall (R) and F-measure (F) for the sets of correspondences generated 
It is due to the fact that most correspondences in the reference alignment are charac-
terized by an equality between their data property values. Log-Map was not able to 
found any correspondence for this pair (we do not distinguish empty alignments from 
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wrong ones – these alignments are indicated with zeros in Tables 1 and 2). Finally, for 
BusinessProcess-Persistence (BP-PS), an opposite behavior was observed, where edit 
distance outperforms equality. This is due to the fact that correspondences in the ref-
erence alignment do not involve equality and very few ones that can be detected by 
the metrics we apply in this paper (e.g., "paper to review" and "ArticleDAO").  
When considering the intersection between the sets (Table 2), i.e., combining con-
textual information from projection and a syntactic metric on data property values, for 
SofwareDesign-Persistence (SD-PS), the best values where obtained when combining 
projection and edit distance. For BusinessProcess-SoftwareDesign (BP-SD) and Busi-
nessProcess-Persistence (BP-PS), a similar behavior was observed. Although our 
initial approach is naive, we obtain better results when combining projection and syn-
tactic metrics. Our process could also include a pre-processing step in order to treat 
compound terms (e.g., “Article DAO” instead of “ArticleDAO”). Furthermore, the 
use of other syntactic metrics [20] is envisaged. 

 Projection+equality Projection+edit Projection+LogMap 
 P F R P F R P F R 
SD-PS 0.50 0.26 0.18 0.65 0.52 0.45 0.50 0.26 0.18 
BP-SD 1.00 0.80 0.66 0.66 0.66 0.66 0.00 0.00 0.00 
BP-PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 2. Precision, Recall and F-measure when combining projection and syntactic measures 

7 Related Works 
Model matching. Several research works related to models matching have been dis-
cussed in a previous work [13]. Among identified shortcomings of existing approach-
es, one can note that they manage only binary correspondences and therefore cannot 
establish n-ary ones that relate a model element to a set of elements belonging to other 
models. In addition, studied approaches lead to produce a correspondence model be-
tween each pair of input models whereas we build a unique model of correspondences 
among input models. Several approaches consist in transforming the input (meta-
)models  to other formats in order to  apply  their matching techniques.  For example, 
MatchBox [7] transforms input meta-models into a tree model called AMC (Auto 
Mapping Core). The process continues by applying a set of matching strategies to 
produce the model of correspondences. Another approach, described in [10], consists 
in transforming the meta-models to directed labeled graphs. The correspondences are 
then obtained by applying the Similarity Flooding algorithm.  We could not use those 
approaches in our work because they propose to apply matching techniques only at 
meta-model level and they do not consider the model level.   Furthermore they are not 
appropriate with meta-models which have a big semantic gap between them because 
in this case, according to [2], this results in a very low precision and in a very poor 
recall (mostly below 0.10). The result is satisfactory only when it comes to matching 
techniques between a former meta-model and a new version such as UML 1.4 and 
UML 2.4 as they share the same properties. 
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Ontology matching. Many approaches to the matching problem have been proposed 
in literature since the last decade [14][11][12]. These approaches can be classified 
along the many features that can be found in ontologies (labels, structures, instances, 
semantics), or with regard to the kind of disciplines they belong to (e.g., statistics, 
combinatorial, semantics, linguistics, machine learning, or data analysis). While ter-
minological and syntactic methods lexically compare strings (tokens or n-grams) used 
in naming entities (or in the labels and comments concerning entities), semantic 
methods utilize model-theoretic semantics to determine whether or not a correspond-
ence exists between two entities. Approaches may consider the internal ontological 
structure, such as the range of their properties (attributes and relations), their cardinal-
ity, and the transitivity and/or symmetry of their properties, or alternatively the exter-
nal ontological structure, such as the position of the two entities within the ontological 
hierarchy. The instances (or extensions) of classes could also be compared using ex-
tension-based approaches. In addition, ontology matching systems rely not on a single 
approach. Finally, using domain ontologies [15] and different knowledge sources [16] 
as background knowledge within the matching process has been exploited in the liter-
ature. One initiative for evaluating ontology matching approaches for model matching 
was proposed in the context of the Ontology Alignment Evaluation Initiative (OAEI) 
campaigns. The aim was to compare classical model matching approaches and ontol-
ogy-based approaches. Each test case consisted of a pair of Ecore meta-models, a pair 
of OWL ontologies, and a reference alignment. However, no system participating in 
that campaign was able to deal with this data set, showing that there is room left for 
exploiting this kind of approach. 

8 Final remarks and Future Work 
Our general goal is to related heterogeneous models corresponding to different 

points of view on a complex system. In this paper, we have put the emphasis on the 
use of ontology matching strategies to automate the production of correspondences at 
model level. Based on a common set of correspondences at meta-model level, a set of 
correspondences at model level is generated, and then refined with the help of syntac-
tic matching approaches. Although we focus on the similarity relationship, as most of 
existing approaches in model matching, our work is a gateway that will enable us to 
exploit other kinds of relationships.  The novelty with respect to other approaches is 
the use of correspondences at meta-model level, which serve as a context to produce 
correspondences at model level.  

As future work, we have identified several directions to improve the approach pro-
posed in this paper. First, we intend to exploit other relationships than similarity (i.e., 
dependency, aggregation), what is marginally treated in both models and ontology 
matching areas. Secondly, we plan to use matching approaches, in particular those 
based on background knowledge (e.g., using domain ontologies). This approach can 
be interesting in order to find the non-trivial relations between models. Third, we plan 
to apply other syntactic metrics and combine them with semantic ones. 
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Abstract. Model-Driven Engineering has emerged as a software development

paradigm that can assist in separating the issues of the problem space of a soft-

ware system from the complexities of implementation in the solution space. As

software systems have become more complex, a need for multiple abstractions to

describe a single system has emerged. The development teams of these massive

systems are also often geographically distributed. These emerging concerns for

MDE systems have led to a need for a heterogeneous, and potentially globally

distributed, modeling environment. As these modeling environments are being

explored, new challenges are being uncovered. In this paper, we discuss the need

for debugging support in heterogeneous, globally distributed modeling systems

and identify a number of challenges related to debugging that must be overcome

to support this evolving paradigm for software development.

1 Introduction

Model-Driven Engineering (MDE) has emerged as a software development paradigm

that can assist in separating the issues of the problem space of a software system from

the accidental complexities of implementation in the solution space. MDE approaches

often use customized domain-specific modeling languages (DSMLs) that capture the

intent of a particular group of users through abstractions and notations that fit a spe-

cific domain of interest. Through the application of DSMLs, various stakeholders in a

project are enabled to view and edit the system using an abstraction most appropriate

to their needs and expertise. However, the disparate abstractions introduced can create

barriers between components in the same project by separating these concerns into dis-

tinct DSMLs without the ability to describe interactions between components [1]. An

electrical engineer may produce a wiring diagram while a software engineer produces

a component diagram. If the two engineers are both working on a shared project then

the implementation of these designs will impact each other. This scenario indicates a

need for shared reasoning, analysis, and communication between these two groups to

enhance the cohesiveness of the final design and resulting implementation.

As the development of support for heterogeneous, globally distributed modeling

environments progresses, a key concern is what support is expected in these new envi-

ronments. Debugging is a common task that all software developers encounter across

different software artifacts [2]. Though debugging has been a consistent aspect of the

software development process, debugging tool support has changed little over the past
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half century [2]. Several novel approaches to debugging have been introduced in the re-

search literature, such as omniscient debugging [3] and query-based debugging [4,5,6],

each claiming to improve efficiency and effectiveness of developers. However, com-

mercial tool support available to programmers focuses primarily on stepwise execution

of code, typically with break-points [5]. MDE tools are typically less mature than tools

available for traditional general-purpose programming languages (GPLs). With respect

to MDE research, Mannadier and Vangheluwe observed there has been little concern for

the state of debugging support [7]. However, over a decade ago, Bran Selic commented

that if developers are not satisfied with the “day-to-day” application of MDE, then MDE

will be rejected by developers [8]. One of the most common tasks undertaken by soft-

ware developers is debugging. Therefore, we believe improved debugging support will

aid adoption of MDE, especially for complex systems described by multiple DSMLs.

2 Background and Related Work

Like all software systems, evolution also occurs in software models. In MDE, the evo-

lution of models is commonly defined using model transformation languages (MTLs),

which can be used to specify the distinct needs of a requirements or engineering change

at the software modeling level. Model transformations are also a type of software ab-

straction that can be subject to human error. Thus, traditional approaches to bug local-

ization may also be applied to assist in locating errors in model transformations.

2.1 Stepwise Execution with Breakpoints

The most commonly implemented debugging approach is stepwise execution, which

enables the developer to observe hidden state information dynamically during exe-

cution. A stepwise execution environment generally possesses the following features:

play, pause, stop, and step. Play allows for continuous execution; pause suspends exe-

cution at the current state; stop terminates execution. Most tools support three types of

step (i.e., stepOver, stepIn, and stepOut) enabling developers to incrementally progress

the execution. Numerous MDE tools (including TROPIC [4], GReAT [9], ATL [10],

and more) provide support for stepwise execution.

2.2 Query-based Debugging

Query-based debugging (QBD) promotes the use of queries to aid a developer in locat-

ing the source of a bug. These queries aid a developer in gaining a better understanding

of the underlying system. Most QBD techniques have promoted the use of a rich, ex-

pressive query language [4,6]. However, some approaches focus on a smaller range of

query options. The Whyline [5] focuses on queries designed to lead from a point of

error to the fault that generated the observable error. These queries are termed “why

did” queries (e.g., “why did attribute x have value y?”) [5]. QBD has been empirically

evaluated and demonstrated to improve developer efficiency and effectiveness during

debugging tasks [5,6].
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We are only aware of one MDE tool, TROPIC [4], that supports query-based debug-

ging. TROPIC provides an interactive query console that enables developers to specify

OCL queries. TROPIC supports debugging by converting transformations to a Trans-

formation Net (TN), a specialized colored Petri-net. TROPIC supports many modeling

languages, but converts all models to a common TN representation. TROPIC is intended

for a single developer and does not support collaborative distributed development.

2.3 Omniscient Debugging

We are not aware of any MDE tool supporting omniscient debugging, which can be

considered an extension of stepwise execution that provides the ability to traverse back

through the execution of a debugging session dynamically at run-time. Current work in

the area of omniscient debugging is focused on GPLs. However, the technique would

also be beneficial in the MDE context. MTs are a software abstraction subject to error

similar to GPLs [3]. An error may manifest at a point later in execution than the source

of the defect, the fault. A concern common to both an MDE and GPL context is the

time and effort required to reach a portion of the system’s execution that exercises the

defect. The developer may target the location of an error and thereby miss the location

of the fault. In a traditional stepwise execution environment, the developer would need

to restart the system and target a new location. This process of restarting to inspect

new target locations may even be repeated multiple times. Restarting may require a

nontrivial amount of time to reach the desired location, and may require significant

manual input from the developer. Omniscient debugging enables full traversal of the

execution history thereby eliminating this concern.

3 Challenges and Potential for Global Debugging Tool Support

Though the various debugging techniques can be applied to an MDE context, the ap-

plication of these techniques to a globally distributed, heterogeneous modeling system

brings new challenges that must be overcome. In this section, we discuss challenges

unique to this paradigm.

3.1 Supporting an Extensible Debugging Environment

In a heterogeneous modeling environment, the underlying system natively supports a

variety of DSMLs. This requirement is not a consideration in GPL design where a sin-

gle language is supported. The more versatile MDE system must be able to represent

information in the most appropriate formalism. However, the developers of these sys-

tems cannot always anticipate the unique concerns and features of future developers.

The issue of supporting debugging for the variety of DSMLs available encounters sim-

ilar concerns. To address these concerns, a heterogeneous modeling system must be

extensible, and may require developers to provide the debugging support appropriate

to their formalism with no support from the underlying tool. However, this creates a

scenario where future developers will often duplicate effort for common concerns. An

alternative is to provide an extensible base of support that future developers may extend.
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This base of support should handle simple concerns including the ability to manually

control execution of the system, visualize and explore state information, and collect

state information as the system progresses. Providing these three basic features enables

stepwise execution, omniscient debugging, and query-based debugging. An extension

to these that would enrich debugging tool support is the ability to reload transforma-

tions and alter model elements at runtime. This extension would enable a developer to

freely explore and modify the system in order to identify faults and test alterations.

A heterogeneous modeling environment may also enable the execution of multi-

ple MTLs providing a range of potential features. Consider a system that includes

a distinct MTL for both inplace and outplace transformations. These scenarios each

create a unique concern for debugging support. The inplace transformation displays a

single model (or set of models), but the outplace transformation must provide facili-

ties for identifying input and output models. If providing traceability features, the in-

place transformation would link elements from a previous version of the same model(s),

whereas the outplace transformation would link elements from input model(s) to out-

put model(s). These differences can lead to a varied implementation of the same con-

cerns, but a heterogeneous environment may need to consider either or both. Such an

environment must also enable defining the basic characteristics of stepwise execution

(e.g., what constitutes a step or scope). A step in a GPL is a statement. However, MTLs

are typically defined by rules. A rule may be a simple graph transformation or a more

complex component that can contain other rules (e.g., ATL pre and post conditions

[10]). The definition of step may therefore occur at various levels of granularity. Fu-

ture designers should be able to define precise semantics for this concern that match

most closely with the intended MTL environment. Similarly, defining what constitutes

a scope is vital to a stepwise execution environment.

3.2 Supporting Many Formalisms in a Consistent Debugging Interface

Query-based debugging (QBD) is a promising debugging technique that provides de-

velopers with facilities to ask questions directly to the system. Query languages are

typically strongly coupled with the target language. The target language may have con-

cepts of classes and inheritance or functions and return types. However, in a heteroge-

neous modeling environment the target language is not fixed. The system allows (and

encourages) developers to use a wide array of DSMLs to facilitate the goal of using

the most appropriate abstraction. This design results in a system that may or may not

possess a vast and varying set of concepts and structures. Applying QBD in a hetero-

geneous environment must therefore provide some design to handle the variability of

DSMLs without the designers of the system making any assumptions regarding the spe-

cific terminology and structures available to future developers. This concern is further

exacerbated by the inclusion of graphical query languages.

A modeling system is not always designed with the intention to limit the system to

a single view. The system may include multiple metamodels and even multiple concrete

syntax for the same metamodel. For example, a vehicle may contain many varied sub-

systems such as brakes, steering, power windows, blinkers, and many more. A vehicle

is also a single unit where many subsystems have a direct impact on others. A prime

example is how electrical wiring directly impacts the functioning of the power window
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subsystem. If the power windows exceed the capacity for the electrical wiring system

then the windows will fail to open and close properly. However, these two systems may

be designed using different DSMLs and in a typical modeling environment would be

in separate models. However, a heterogeneous modeling environment would enable de-

velopers to view these systems either together or separately as needed. This leads to

further concerns when applying QBD. If the developer of the car system were to pose

a query such as “why did the power window not rise?” the system may need to search

through models defined using several DSMLs to provide the answer. However, current

work in the area of QBD has always assumed a single language and there is no existing

technique that is concerned with searching across multiple languages.

A primary concern for omniscient debuggers is the collection of trace information

required to revert the system to previous states of execution. This collection of trace

information forms a history of execution for the system. In a heterogeneous modeling

environment, the collection of trace information is complicated by the varying struc-

tures. An omniscient technique must collect the smallest units of information for each

modification in order to minimize the space consumption of the history structure. How-

ever, an omniscient debugger must also collect information relevant to the structure of

the model in order to ensure proper application of any change. For example, assume

a model element ‘a’ relies on model element ‘b’ and both are deleted. When revert-

ing the delete operation, the system must ensure there is never a state where ‘a’ exists

without ‘b’ to avoid violating constraints of the modeling environment. Similarly, if el-

ement ‘a’ is always altered to match any modification in ‘b’, the underlying execution

environment may capture these modifications independently, but upon replaying these

modifications may incur an additional modification to element ‘a’ (both when ‘b’ is re-

verted causing ‘a’ to be automatically altered and when ‘a’ is directly altered to revert

the recorded modification). However, these structural concerns may vary depending on

the specific formalisms used.

3.3 Supporting Debugging in a Globally Distributed Environment

A global software engineering system is concerned with geographically distributed de-

velopment teams. A natural implication of this environment is that developers will uti-

lize separate physical machines even while actively collaborating. However, the impli-

cations of separate machines accessing a common environment can be more subtle. The

typical debugging environment includes a single machine and therefore assumes a sin-

gle point of control for the debugging environment. The introduction of more points

of access to control the environment creates a more complex scenario. Consider the

following scenario: James is inspecting the state of execution at a specific point, and

Elizabeth (unaware of James’s intent) progresses the transformation to a state she is

interested in investigating. In this scenario, James and Elizabeth are each intent on ex-

ploring distinct points in history. A simple solution is to provide facilities for James to

express his intent to explore the current state and even possibly lock the system to the

current state. However, this solution restricts Elizabeth from following her own thread

of investigation. A global omniscient debugging system could also offer facilities for

both parties to independently explore the system while simultaneously enabling the

two developers to share an environment. Thus, Elizabeth and James could work both
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collaboratively on a single issue and in parallel on separate related issues within the

same environment.

4 Conclusion and Future Work

We have discussed the current state of debugging for MDE. We then summarized the

challenges presented when applying these techniques in a globally distributed, hetero-

geneous modeling environment. Several challenges were discussed for each technique.

Some challenges were caused by the application of many formalisms to describe a sin-

gle system, contrasting with the existing work that typically focuses on a single formal-

ism. Other challenges were the result of applying these techniques to a distributed envi-

ronment. In these environments, the system must support both collaborative processes

where models and control is shared for a common goal, and parallel processes where

both models are shared and control is independent simultaneously. These concerns were

presented and discussed, but left as future work to solve. We believe debugging support

is a requirement in a modern software development environment and these issues are

therefore of vital concern for the future of this growing and evolving paradigm.
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Abstract. There are many software languages which are not exposed
protocols, exchange formats, interfaces and storage formats, and are
only used for intermediate representation, runtime data manipulation
and tool-specific serialisation. Yet, they can be important for technology
comprehension, since such internal implementation details may have in-
direct impact on some aspects of the externally observed behaviour of
the system. In this paper, we show a concrete example of how various
tools and their technological differences can be explained based on one
abstract megamodel and its different renarrations.

1 Introduction

Megamodels are used for modelling complex systems involving many artefacts,
each of which is also in turn a model or a transformation [3,4]. For instance, they
can help represent an entire technological space or a technical space in order to
expose its components and to explain them to previously unaware audience (such
as students) [6,10]. The main focus of megamodelling is usually on externally ob-
servable (meta)languages: communication protocols, data interchange formats,
application programming interfaces, algebraic data types, public library inter-
faces, serialisation formats, etc. Yet there are a lot of (meta)language used behind
the scenes for internal presentation of data structures — and we all know very
well how much of an impact can a different data structure have on performance
of an algorithmically nontrivial application. As it turns out, megamodelling can
be very helpful here as well.

Megamodels (also called linguistic architecture models [6,10], macromod-
els [15], technology models, etc) come in a great variety of forms and approaches
and are theoretically useful for solving many problems of different stakehold-
ers. However, one of the main showstoppers is their overwhelming complexity:
not only a typical megamodel requires considerable investment in deep domain
analysis, exploratory experimentation, modelling and metamodelling; but also
the result thereof is a towering monolith easily intimidating any possible users.
At the same time, simplification is possible yet often undesirable, for the devil
lurks in the details. One of the existing solutions is investing in packaging the
megamodel as well as in its development. We can slice the megamodel into di-
gestible parts and navigate stakeholders through them, possibly through various
itineraries depending on the priorities — this process is referred to as megamodel

renarration [18].

69



A renarration of a megamodel is a story that traverses the elements of this
megamodel in order to guide the users through it and to gradually introduce
them to the model elements and thus to domain concepts. Formally, a renar-
ration relies on operators for addition/removal, restriction/generalisation, zoom
in/zoom out, instantiation/parametrisation, connection/disconnection and can
make use of backtracking [11]. In prior work we have shown renarrations as anno-
tated megamodel transformations, but have not used them in multiple scenarios
based on one original model.

The approach we propose in this paper involves investing in a global meg-
amodel of an entire technical space, and then using renarrations of it to demon-
strate each existing technology. Thus, the contribution of the paper is mainly
the focus on using one baseline white box megamodel for establishing a common
ground for explaining various subtly different technologies of the same domain
by renarrating it repeatedly.

Specifically in the context of the GEMOC initiative, megamodelling addresses
the second focus (integration of heterogeneous model elements), while renarra-
tion treats the first issue (catering various stakeholder concerns). So far this
material has been (in a more volatile form) used in teaching courses on soft-
ware language engineering [2], software evolution, software construction and in
supervision of Master students.

2 Parsing with many faces

For a demonstration of the proposed approach let us consider a megamodel for
parsing in the broad sense that we presented in earlier work [21]. The model in-
cludes twelve kinds of artefacts commonly found in software language enginering
(as well as commonly encountered mappings among them, see Figure 1):

♦ Str — a string, a file, a byte stream.
♦ Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
♦ TTk — a finite sequence of typed tokens, possibly with layout removed, some

classified as numbers, strings, etc.
♦ Lex — a lexical source model [19] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
♦ For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

♦ Ptr — an unambiguous parse tree where the leaves can be concatenated to
form Str.

♦ Cst — a parse tree with concrete syntax information. Structurally similar to
Ptr, but abstracted from layout and other minor details. Comments could
still be a part of the Cst model, depending on the use case.

♦ Ast — a tree which contains only abstract syntax information.
♦ Pic — a picture, which can be an ad hoc model, a “natural model” or a

rendering of a formal model.
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Tok Ptr
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DiaAstLex

Fig. 1. A megamodel of parsing in a broad sense — see [21] for detailed definitions and
descriptions of these kinds of software artefacts and mappings.

♦ Dra — a graphical representation of a model (not necessarily a tree), a
drawing in the sense of GraphML or SVG, or a metamodel-indepenent syntax
but metametamodel-specific syntax like OMG HUTN.

♦ Gra — an entity-relationship graph, a categorical diagram or any other prim-
itive “boxes and arrows” level model.

♦ Dia — a diagram, a graphical model in the sense of EMF or UML, a model
with an explicit advanced metamodel.

The megamodel from Figure 1 provides a unique uniform view on parsing,
unparsing, formatting, pretty-printing, disambiguation, visualisation and related
activities — it is a big step from heterogeneous discordant papers originating
from relevant technical spaces toward general understanding of the field. Yet,
as we have claimed before [18,11], a monolithic megamodel can play a role of a
knowledge container, but cannot be used directly as the deployed artefact. (As a
side remark, this corresponds to the claim by Bézivin et al that a megamodel as
a model of models should not be used as a reference model [3]). Hence, we need
a renarration of a megamodel to successfully deliver the knowledge behind it. A
renarration can happen naturally (e.g., as a lecture for students) or be formally
inferred with megamodel transformation operators for addition, connection, in-
stantiation, etc [11].
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(a) lex and yacc (b) ANTLR
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(c) Rascal (d) Iterative lexical analysis

Fig. 2. Four illustrated renarrations of the (slices of the) megamodel from Figure 1

In this paper, we use English for the narrative, and the models themselves are
available at ReMoDD: http://www.cs.colostate.edu/remodd/v1/content/

renarrating-metalanguage-integration. In the following sections, we demon-
strate several renarrations of the megamodel from Figure 1.

2.1 Parsing in a narrow sense: lex + yacc

One of the textbook approaches to parsing is using two tools to obtain a parse
tree from the input string: one for lexical analysis and one for syntactic analy-
sis. In many classic compiler construction courses lexical analysis is done with
lex [12] or one of its successors. The tokens that are obtained by lexical analysis,
are in fact typed, but the type information is not necessarily used for anything,
so we can model the result of the lexical analysis with Tok. The next step is han-
dled by a compiler compiler like yacc [7] or its more modern counterparts (but
not too innovative — we want to stick to the classic DragonBook-like view [1]).
This syntax analysis tool consumes Tok and produces a parse tree — Ptr. This
can be seen on a rather simple Figure 2(a).
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2.2 Advanced parsing technology: ANTLR

Consider ANTLR [14], a state of the art compiler compiler that can be used for
the same purpose as lex+yacc, but incorporates the results of several decades of
research on parsing, compiler construction and interactive programming environ-
ments. Both a lexer and a parser are generated from the uniform syntactic defi-
nition (grammar). Lexical nonterminals, usually written in CAPSLOCK, define
a grammar used for lexical analysis. Most of them are preterminals — their def-
initions contain only terminals, combined sequentially, with disjunction, Kleene
closure and other combinators typical for regular expressions [8]. As shown on
Figure 2(b), the output of the lexer is TTk, a stream of strongly typed tokens
— each token has to either belong to one of the lexical categories (be parsed
as a lexical nonterminal) or match one of the terminal symbols used in the rest
of the grammar — they are turned into preterminals automatically by ANTLR.
The untyped version of the same representation (Tok) is not available directly:
if needed, one could possibly either disregard the typing information (e.g., by
using code duplicates inside semantic actions) or plug in into the internals of the
generated lexer.

A typed token stream is processed by a parser which ANTLR generates from
the input grammar. The result is Cst, a parse tree that abstracts from some
details like layout and comments. It is important to note that ANTLR generates
the definition of the Cst and provides means to traverse them. However, if one still
desires to use an abstract syntax tree, both Ast itself and the mapping from Cst

to Ast need to be programmed explicitly in the base language of ANTLR (Java,
C++, C#, Python, etc). The mapping can be scattered among the nonterminal
definitions directly in the grammar (as semantic actions), or it can be written
as a separate program that traverses the ANTLR Cst with the ANTLR visitor
and constructs a specific Ast. The class structure of the Ast itself always needs
to be defined and processed independently from ANTLR.

2.3 Rascal metaprogramming language

Rascal [9] is another state of the art piece of grammarware — however, an im-
portant difference from ANTLR is that Rascal is advertised as a “one-stop-shop”
for software analysis, transformation and visualisation. Let us try to understand
this difference from Figure 2(c).

Rascal uses generalised parsing (more specifically, GLL), which yields a parse
forest instead of a parse tree, if the grammar is ambiguous. Such parse forests
(For) are represented internally with the same structure — a term representation
that is allowed to explicitly contain ambiguity node. Thus, in order to decide if a
given tree is For or Ptr, we need to perform a deep match on an amb(_,_) pattern
(since pattern matching is one of the basic constructions in Rascal, this operation
is trivial to express, even though it might become a performance bottleneck).

By Rascal design, there is no observable distinction between Ptr and Cst. All
trees are stored internally as Ptr, but all pattern matching behaves as if both
the pattern and term is Cst (with the pattern allowed to be incomplete). Each
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unambiguous tree conforms to the grammar (a syntax specification) that was
used to parse it. A grammar is defined in Rascal within the same module or
imported as a separate one. Relying on such grammatical structure can simplify
pattern matching immensely: instead of checking for a term which is an applica-
tion of a particular production rules with certain arguments, we write the same
intent down with a term on the left hand side, typed to a particular nonterminal
and thus fully conforming to its structure (modulo intended gaps to be skipped
during unification).

A Cst can be mapped to Ast explicitly by writing a pattern-matching visitor,
which is done in some cases that require sophisticated compulations as a part
of the mapping. However, an easier way is to use an implode() library function
that has a set of stable heuristic rules for finding bidirectional correspondence
between a given syntax definition and a given algebraic data type. The ADT itself
(the structure of Ast) must still be programmed manually, which is traditionally
not considered to be a burden since one wants to have full control about the
way abstract syntax is defined. (When this is not the case, it can be inferred
from the grammar by grammar mutations [20] of GrammarLab, a Rascal library
for manipulating grammars in a broad sense1). implode() is not shipped with
a reverse function, so any derivation from Ast to Cst/Ptr, if needed, must be
programmed manually.

High level abstract diagrams (Dia) are also modelled in Rascal by algebraic
data types managed by the (meta)programmer. A universal yet still a high level
visual model (Gra) is provided in the standard Rascal library and contains el-
ements like boxes, grids, graphs, trees, plots. A render() function, however,
positions all these elements automatically and only outputs the final picture
(Pic) on screen or to a file, effectively skipping over Dra — for a Rascal program-
mer it means having no control over the exact positioning of most elements on
canvas, except for general constraints which are a part of the metamodel of Gra.

2.4 Semiparsing: building lexical models with ILA

Semiparsing [19] is an umbrella term for techniques of imprecise manipula-
tion of source code (its variations are known as agile modeling, robust pars-
ing, lightweight processing, error repair, etc). They are inherently very differ-
ent because usually come into existence for solving a very particular practical
problem — we have claimed recently that Boolean grammars [13] and parsing
schemata [16] can be helpful in modelling all possible variations of semiparsing.
However, as useful as these two formalisations could be in deep understanding
of the methods, relating them and positioning among themselves, they are not
always as effective for their implementation-driven comprehension, especially by
software engineering practitioners without background in formal methods.

Consider Figure 2(d), which demonstrates a semiparsing technique called
iterative lexical analysis [5] (a similar technique has recently emerged in a more
modern framework called TEBA for analysis of tokenised syntax trees [17]). The

1 GrammarLab: http://grammarware.github.io/lab.
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technique relies mainly on patterns which are classified in levels: the higher the
level, the more unstable and the less desirable the pattern is. So, on the first
level there are strict matches for terminals such as keywords, and on the last
level there are “desperate” heuristics that are meant more to ensure that the
process produces some kind of result than to actually claim any correctness.
Hence, we only work with the left column of our megamodel: the higher we are
in the model, the more abstract and imprecise patterns are applied. There is
no direct correspondence between pattern levels and layers of the megamodel,
but for each concrete pattern we can easily find a place. For example, a pattern
that detects strings and demotes the role of tokens inside a string from possible
metasymbols (e.g., so that a curly bracket in a = "b{"; is never used for block
identification) clearly works on TTk, while a pattern that matches an identifier
followed by a bracketed comma-separated list of identifiers followed by a block
of statements and promotes it to a function definition, naturally produces Lex.

Operations for descending from Lex to TTk to Tok to Str are not explicitly
described in the paper about iterative lexical analysis, but are certainly available
in any sensible framework: we need to flatten (unfold) all hierarchical constructs
to get down to TTk, disregard type information to get down to Tok and con-
catenate all tokens to get all the way to Str.

3 Conclusion

Megamodels are used as an understanding aid in complex scenarios involving
various technologies, software languages, methodologies, approaches and trans-
formations [3,4]. Renarrations of megamodels improve their usefulness by guiding
megamodel consumers through the forest of immanently complicated artefacts
and mappings [11,18]. Megamodels, whether ad hoc (a sentence “model M con-
forms to a metamodel MM” is in fact a tiny megamodel) or formal (AMMA,
MEGAF, SPEM, MCAST, MegaL, CT), perform undeniably well for teaching
purposes when introducing students to a new technology and explaining subtle
differences between two almost identical technologies. In this paper, we have
claimed that the same approach can be used for internal “languages”, the ones
that are hiding behind the scenes inside our tools. For this purpose, we propose
to have one baseline megamodel of the domain — in a formal sense, it will include
a lot of abstract entities, unbounded elements, constraints based on roles, etc —
and use its refined renarrations for each of the concrete technologies that need
to be explained and understood. We have demonstrated this approach with our
megamodel for parsing in a broad sense [21], which we have used as a baseline
model for four renarrations: classic lex+yacc parsing [1,7,12], ANTLR language
workbench [14], Rascal one-stop-shop [9] and iterative semiparsing [5,17,19].

Beside the obvious future work claims such as promises of (mega)modelling
different domains and perhaps even megamodelling relations among such do-
mains, some other open questions remain. For example, some megamodels re-
quire explicit distinction between kinds of mappings they express (injective, bi-
jective, monomorphic, isomorphic, asymmetric bidirectional, symmetric bidirec-
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tional, etc), and such distinctions would also have to be properly specified and
renarrated. In other cases, the modelling framework may already have a meta-
model suitable for expressing typical renarrations, and the megamodel navigat-
ing arsenal would need to be adjusted with respect to the language it must be
expressed in (instead of the opposite situation which we always assume).

As any other modelling method which introduces unification and heterogenu-
ity, (mega)modelling different technologies with renarrations of the same baseline
megamodel can help not only in explaining the actual state of the art, but also
in spotting singularities. Anything irregular could be a signal of a bug, a not yet
implemented feature or a comprehension mistake. Why is there a mapping from
Cst to Ast in Rascal but no universtal mapping from Ast to Cst? Perhaps we
should include one! Is there a good reason for Dra to not be accessible in Rascal?
Having it explicitly as a (possibly optional) first class entity could allow us to do
things we otherwise cannot! Would it help organising patterns for ILA/TEBA
based not on their “desperation”, but on the kind of artefacts they are actually
dealing with (untyped tokens, typed tokens, grouped tokens)? Exploration of the
extent of usefulness of such conclusions remains future work.
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