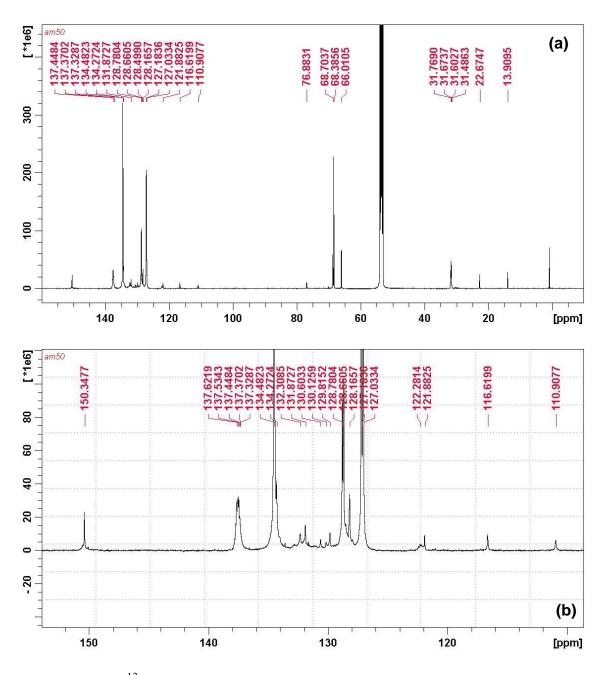
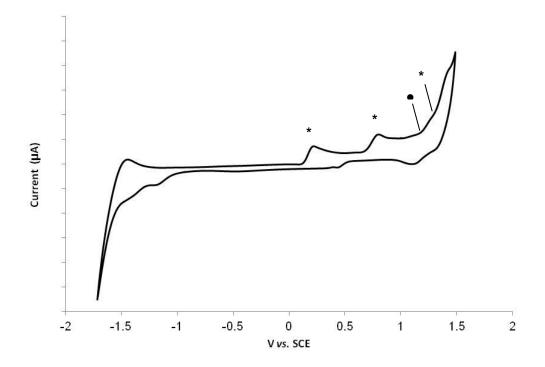
Appendix A. Supplementary data

Areej Merhi, ^{a,b} Guillaume Grelaud, ^{a,c} Nicolas Ripoche, ^{a,c} Adam Barlow, ^c Marie P. Cifuentes, ^c Mark G. Humphrey, *^c Frédéric Paul*^a and Christine O. Paul-Roth*^a

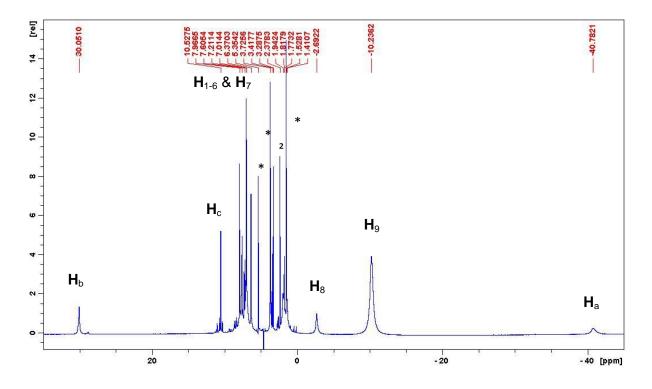

A Zinc(II) Tetraphenylporphyrin Peripherally Functionalized with Redox-Active "*trans*-[(η^5 -C₅H₅)Fe(η^5 -C₅H₄)C=C](κ^2 -dppe)₂Ru(C=C)-" Substituents: Linear Electrochromism and Third-Order Nonlinear Optics

Including:

1. Labelling Scheme in NMR Spectral Assignments and ¹³ C NMR Spectrum	p. S2
2. Cyclic Voltammogram of 4	p. S4
3. ¹ H NMR Spectrum of 2[PF ₆] ₄	p. S5
4. Spectroelectrochemistry of 3	p. S6
5. Z-scan Plots for 4	p. S7


1. Labelling Scheme in NMR Spectral Assignments and ¹³C NMR Spectrum

¹³C{¹H} NMR (δ, 125 MHz, CD₂Cl₂): 150.6 (s, $C_{\alpha-\text{pyrrolic}}$), 137.7 (m, 2 $C_{\text{ipso/dppe}}$), 134.8 (m, 2 $CH_{\text{ortho/Ph/dppe}}$), 134.6 (s, $CH_{\text{Ar}}[C_{\text{b}}]$), 132.2 (s, $C_{\beta-\text{pyrrolic}}$), 130.1 (s, $C_{\text{Ar}}[C_{\text{d}}]$), 129.1 & 129.0 (s, $CH_{\text{para/Ph/dppe}}$), 128.5 (s, $CH_{\text{Ar}}[C_{\text{c}}]$), 127.5 & 127.3 (s, $CH_{\text{meta/Ph/dppe}}$), 123.0 (s, C_{meso}), 116.9 (s, RuC= $C[C_{\text{e}}]$), 112.6 (s, RuC= $C[C_{\text{h}}]$), 78.3 (s, $C_{\text{CpC}=\text{C}}$), 70.2 (s, $CH_{\text{CpC}=\text{C}}$), 70.0 (s, $C_{5}H_{5}$), 67.5 (s, $CH_{\text{CpC}=\text{C}}$), 33.1 (m, $CH_{2/\text{dppe}}$); 2 RuC= $C[C_{\text{f-g}}]$ and 1 $C_{\text{Ar}}[C_{\text{a}}]$ not observed, possibly overlapped. Proposed attribution based on HMBC and HMQC-type polarization transfer.


Fig. S1. (a) Full ¹³C NMR spectrum of **4** in CD_2Cl_2 at 300 K. (b) Expanded part of spectrum (a).

2. Cyclic Voltammogram of 4

Fig. S2. Cyclic voltammogram of compounds **4** in the -1.8 V/1.6 V range, showing the Feand Ru-centered redox processes and another intense redox event (*). The second oxidation of the ZnTPP core is indicated by a dot (•). Conditions: CH_2Cl_2 , 20 °C, $[n-Bu_4N][PF_6]$ 0.1 M, scan rate: 0.1 V/s. Potential values given *vs.* SCE.

3. ¹H NMR Spectrum of 2[PF₆]₄

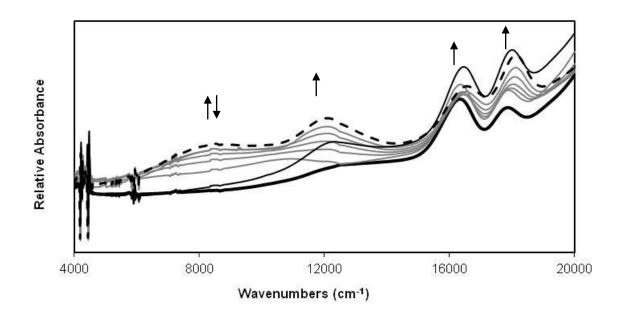
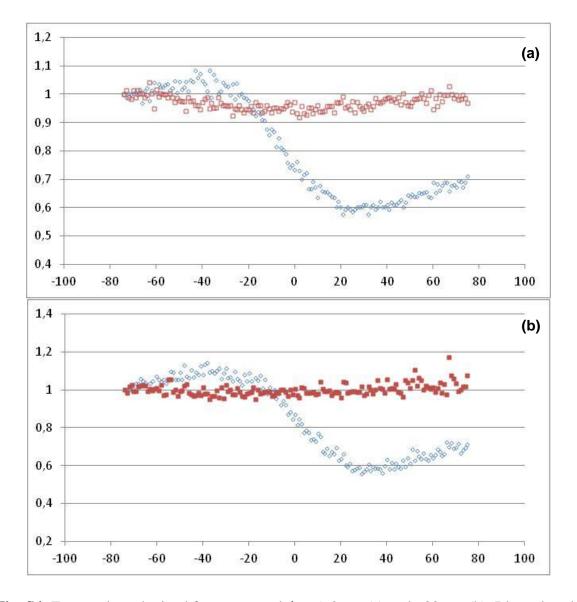


Fig. S3. ¹H NMR spectrum of $2[PF_6]_4$ in CD₂Cl₂ at 300 K. Numbering of selected protons according to Chart S1 (below). Signals corresponding to solvents are designated by asterisks (*).


Chart S1. ¹H nuclei numbering corresponding to the proposed assignment for 2[PF₆]₄.

4. Spectroelectrochemistry of 3

Fig. S4. Spectroelectrochemistry of compound **3**. The oxidized state is shown with a dotted line and the state recovered after back-reduction is given with a thin black line. Conditions: CH_2Cl_2 , 20 °C, [*n*-Bu₄N][PF₆] 0.3 M, starting potential: -0.6 V, applied potential: 0.9 V *vs*. SCE. The region of the spectrum to higher energy of 20,000 cm⁻¹ is only marginally affected by redox changes.

5. Z-Scan Plots for 4

Fig. S4. Z-scan plots obtained for compound **4** at 560 nm (a) and 630 nm (b). Blue: closed-aperture traces. Red: open-aperture traces.