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Abstract 

 

The tridentate ONO-donor Schiff base ligand H2L, derived from the condensation of 

1-anisyl-1,3-butanedione and 2-aminophenol, was generated in situ and reacted with 

Cu(NO3)2•3H2O to yield two doubly phenoxo bridged di-copper(II) complexes depending on 

the nitrogenous base used. [Cu2L2] (1) is obtained in 85% and 75% yield in the presence  of 

pyridine or 4-picoline, respectively, and [(py-tBu)2Cu2L2] (2) is isolated in 75% yield in the 

presence of 4-tert-butylpyridine. Compounds 1 and 2 were characterized in the solid-state by 

elemental analysis and FT-IR spectroscopy. Single crystal X-ray diffraction study reveals that 

in 1 the two four-coordinated copper atoms adopt a square planar geometry, whereas in 2 each 

Cu(II) metal ion shows a five coordinate square pyramidal (ONO,N + O) geometry. In each 

dimer, two µ-phenolic oxygen atoms bridge the two half-units forming a planar Cu2O2 core. 

EPR studies in fluid solutions indicate that the dimeric structure of 1 and 2 is destroyed upon 

dissolution. In the solid-state, 1 is EPR silent, whereas 2 presents an unresolved broad 

resonance (H peak-to-peak = 71.5 G) with g = 2.071 at 298 K, along with the triplet state (S 

= 1) signature at g = 4.181. Variable temperature (2-300 K) magnetic susceptibility 

measurements exhibit strong antiferromagnetic interactions between the Cu(II) centers with a 

J value of -397 cm
-1

 for 1, while no interaction operates between the two spins localized on 

Cu(II) metal ions in 2. Ab initio calculations were also performed to supplement the 

experimental results. 

 

Keywords: Copper(II); ONO Tridentate Schiff base ligand; magnetic properties; structure 

determination; EPR study; Ab initio calculation. 

 

 

 

 

 

 

 

 



1. Introduction 

In recent years, there has been continuing interest in using bridging ligands in the 

synthesis of polynuclear complexes of paramagnetic transition metal ions. In particular, 

ligands which contain potentially bridging phenoxo, alkoxo or hydroxo oxygen and nitrogen 

donor atoms have been widely employed to build up multinuclear copper(II) complexes [1-5]. 

Such symmetrically or asymmetrically dibridged complexes with µ-phenoxo, µ-alkoxo or µ-

hydroxo di-copper(II) core have been the subject of a considerable amount of work in terms 

of correlating structure and magnetic properties [1,2,7-11]. Moreover, doubly phenoxo 

bridged binuclear Cu(II) complexes have also considerable interest as they provide the 

simplest case of magnetic interaction including only two unpaired electrons [2,6,11,12]. And 

it is now established that the major factor controlling the singlet-triplet energy gap, J, between 

the metal centers is the Cu-O-Cu angle [8,13-15]. Di-copper(II) derivatives are also of 

importance as precursors in the chemistry of supramolecular [16] and discrete molecular high-

nuclearity copper(II) complexes [17-21]. 

Diprotic Schiff bases are easily prepared by 1:1 condensation of appropriate 

salicylaldehyde or β-diketone reagents with appropriate amino alcohol substrates under mild 

conditions. Upon double deprotonation, they form a group of di-negative tridentate O,N,O-

donor ligands that react readily with cupric salts to produce variable-nuclearity compounds 

depending on the coligand [19,22]. Thus, a N-donor monodentate coligand results in the 

formation of neutral mononuclear square planar ternary copper(II) complexes while square 

pyramidal Cu(II) compounds are obtained in the presence of a N-N chelate coligand [19,23-

27]. Moreover, the very popular bridging ligand 4,4’-bipyridine has been used also to 

construct homobinuclear copper(II) complexes [28], acting as a linear spacer between the 

mononuclear units, thus allowing the investigation of the intramolecular magnetic interaction 

between the magnetic centers [29].  

We were interested in preparing neutral ternary mononuclear metal complexes of the 

type [LCu(II)(py)] with differently substituted di-anionic tridentate ONO Schiff base ligands 

(L
2-

) and pyridine as ancillary ligand, as building blocks for the construction of novel self-

assembled push-pull systems. However, it turned out that the synthesis using three closely 

related nitrogenous bases as coligand, leads to the formation of two different dimeric Schiff 

base complexes than those expected. Herein, we report on the synthesis, spectral and 

structural characterization, magnetic properties and ab initio study of both compounds 

formulated as [Cu2L2] (1) and [(py-tBu)2Cu2L2] (2), where H2L is the mono-condensation 



product of 1-anisyl-1,3-butanedione and 2-aminophenol (see Scheme 1). An EPR study of 

both complexes was also carried out. 

 

2. Experimental  

2.1. Materials  

Manipulations of air-sensitive compounds were performed under Argon atmosphere using 

standard Schlenk techniques. Solvents were dried and distilled according to standard 

procedures [30]. 4-methoxyacetophenone, potassium tert-butoxide, 2-aminophenol, pyridine, 

4-tert-butylpyridine, 4-picoline, Ethyl acetate (99%) and copper(II) nitrate trihydrate were 

purchased from commercial sources and used without further purification. Compound 1-

anisyl-1,3-butanedione was synthesized according to the literature procedure [31]. 

  

2.2. Characterization and instrumentation. 

Infrared spectra were recorded on a Perkin-Elmer, Model Spectrum One, FT-IR 

spectrophotometer as KBr disks in the 4000 to 400 cm
-1

 range. Elemental analyses were 

conducted on a Thermo-FINNIGAN Flash EA 1112 CHNS/O analyzer by the Microanalytical 

Service of the CRMPO at the University of Rennes 1, France. Electron paramagnetic 

resonance (EPR) spectra were recorded at 298 K with a Bruker EMX-8/2.7 (X-band) 

spectrometer. The temperature dependences of the magnetizations for powdered samples have 

been measured with a SQUID magnetometer (Quantum design MPMS-XL5) operating 

between 2 and 300 K at a constant field of 2 kOe. The experimental data have been corrected 

from the sample holder diamagnetism and the intrinsic diamagnetism estimated from the 

Pascal’s tables [32]. Melting points were determined in evacuated capillaries on a Kofler 

Bristoline melting point apparatus and were not corrected. 

 

2.3. Preparations 

2.3.1. Preparation of [{4-MeO-C6H4–C(O)CH=C(CH3)N-o-C6H4-O}Cu]2 (1) 

A Schlenk tube was charged with a magnetic stir bar, 200 mg (1.04 mmol) of 1-anisyl-1,3-

butanedione, 114 mg (1.04 mmol) of 2-aminophenol and 10 mL of toluene, and the mixture 

was refluxed for 2 hours. After cooling, a yellow solid deposited. The precipitate was filtered 

off and washed with a petroleum ether: diethyl ether (1:1 v:v) mixture. Then, 292 mg (2.6 

mmol) of potassium tert-butoxide and 2 mL of THF were added and the reaction mixture was 

stirred at r.t. for 20 min, upon which time it turned dark-red. Pyridine (160 μL, 2.08 mmol) 

was then added, before dropwise addition of a solution of Cu(NO3)2 • 3H2O (252 mg, 1.04 



mmol) in 5 mL of THF. The stirring was continued overnight. The reaction was quenched 

with 15 mL of EtOH, releasing a dark-green microcrystalline precipitate that was filtered off 

and washed with cold EtOH (3 x 10 mL) and diethyl ether (4 x 10 mL). The dark-green solid 

residue was dried under vacuum for 2 hours and dissolved in dichloromethane. The solution 

was subjected to slow evaporation for 5 days, affording 300 mg (0.44 mmol, 85% Yield) of 

black microcrystals. A crystal from this crop was used for X-ray structure determination. M.p. 

215-217 °C. Anal.Calcd for C34H30Cu2N2O6 (681.71 gmol
-1

): C, 59.21; H, 4.38; N, 4.06. 

Found: C, 59.15; H, 4.33; N, 4.16%.  

Under the same conditions, complex 1 was isolated in 75% yield when its preparation was 

carried out with 4-picoline (185 μL, 2.08 mmol) instead of pyridine. 

 

2.3.2. Preparation of [{4-MeO-C6H4-C(O)CH=C(CH3)N-o-C6H4-O}Cu(NC5H4-4-CMe3)]2 (2)  

This complex was synthesized following a similar procedure to that described above for the 

preparation of 1, using in this case, 200 mg (1.04 mmol) of 1-anisyl-1,3-butanedione, 114 mg 

(1.04 mmol) of 2-aminophenol, 292 mg (2.6 mmol) of potassium tert-butoxide, 0.44 mL (3.0 

mmol) of 4-tert-butylpyridine and 300 mg (1.24 mmol) of  Cu(NO3)2 • 3H2O. 

Recrystallization by slow evaporation of a saturated CH2Cl2 solution yielded 506 mg (75%) of 

a dark-green crystalline solid. A crystal from this crop was used for X-ray structure 

determination. M.p. 171-173 °C. Anal. Calcd for C52H56Cu2N4O6 (960.12 gmol
-1

): C, 65.05; 

H, 5.88; N, 5.84. Found: C, 64.74; H, 5.44; N, 5.58%.  

 

2.4. X-ray crystal structure determination 

Well-shaped single crystals of 1 and 2 of suitable dimensions were coated in Paratone-N oil, 

mounted on a Kaptan loop and transferred to the cold gas stream of the cooling device. 

Intensity data were collected at T = 150(2) K on a APEXII, Bruker-AXS diffractometer, Mo-

Kα radiation (λ = 0.71073 Å), equipped with a bidimensional CCD detector and were 

corrected for absorption effects using multiscanned reflections. The two structures were 

solved by direct methods using the SIR97 program [33], and then refined with full-matrix 

least-square methods based on F
2
 (SHELXL-97) [34] with the aid of WINGX

 
program [35]. 

All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. All 

the hydrogen atoms were placed in their geometrically idealized positions and constrained to 

ride on their parent atoms. A summary of the details about crystal data, collection parameters 

and refinement are documented in Table 1, and additional crystallographic details are in the 

CIF files. ORTEP views are drawn using Olex2 software [36].  



Table 1 Crystallographic data, details of data collection and structure refinement parameters 

for compounds 1 and 2 

 1 2 

Empirical formula C34H30Cu2N2O6 C52H56Cu2N4O6 

Formula mass, g mol
-1

 689.68 960.09 

Collection T, K  150(2) 150(2) 

Crystal system Monoclinic Triclinic 

space group        P21/c P ī  

a (Å) 9.0297(2) 9.4434(3) 

b (Å) 14.3356(4) 11.3431(4) 

c (Å) 11.4572(3) 11.4661(4) 

 (°) 90 101.758(2) 

 (°) 109.8300(10) 109.5860(10) 

γ (°) 90 92.739(2) 

V (Å
3
) 1395.15(6) 1123.86(7) 

Z 2 1 

Dcalcd (g cm
-3

) 1.642 1.419 

Crystal size (mm) 0.15 x 0.07 x 0.04 0.41 x 0.11 x 0.06 

Crystal color black black 

F(000) 708 502 

abs coeff (mm
-1

) 1.577 1.002 

 range (°) 3.41 to 27.48 2.96 to 27.48 

range h,k,l -11/11, -17/18, -12/14 -12/12, -13/14, -14/14 

No. total refl 12339 18161 

No. unique refl 3183 5123 

Comp. to max (%) 99.6 99.4 

Max/min transmission 0.939/0.856 0.942/0.807 

Data/Restraints/Parameters 3183/0/201 5123/0/294 

Final R 

[I>2(I)] 

R1 = 0.0285 

wR2 = 0.0691 

R1 = 0.0286 

wR2 = 0.0712 

R indices (all data) R1 = 0.0378 

wR2 = 0.0736 

R1 = 0.0331 

wR2 = 0.0737 

Gof / F
2
 1.016 1.055 

Largest diff. Peak/hole (eÅ
-3

) 0.430/-0.324 0. 365/-0. 406 

 



2.5. Computational details 

DFT calculations [37] were carried out with the Amsterdam Density Functional (ADF) 

program [38]. The Becke approximation for exchange [39] and the Perdew expression for 

correlation [40] (BP) has been chosen with the TZ2P basis set [41]. The optimized geometries 

of both compounds 1 and 2 were characterized as true minima on the potential energy 

surfaces using vibrational frequency calculations.  

To compute exchange couplings in 1 and 2, Complete active space self-consistent field 

(CASSCF) calculations [42], including two electrons in two molecular orbitals (MOs), have 

been performed using the MOLCAS 7.6 package [43] to generate a reference space 

(CAS[2,2]). The dynamical correlation effects were then incorporated by using the dedicated 

difference configuration interaction (DDCI) method [44] implemented in the CASDI code 

[45]. With this approach, one concentrates on the differential effects rather than on the 

evaluation of the absolute energies. DDCI1 (i.e. CAS+S) involves one hole and one particle 

(1h, 1p, 1h1p) single excitations on the full active space. DDCI2 also accounts for the two 

holes or two particles diexcitations (2h, 2p). Finally, the two holes/one particle (2h1p) and one 

hole/two particles (1h2p) excitations are taken into account in DDCI3 (i.e. CAS+DDCI). 

Since the DDCI philosophy relies on the simultaneous characterization of different spin states, 

which share similar spatial descriptions, one has to initially determine a set of common MOs 

to build up the CI space. Computed J values strongly depend on the quality of the magnetic 

orbitals [46]. In the present work, one uses orbitals obtained for the lowest triplet state. 

Calculations have been done with Ci symmetry on model dimers ensuing from the 

crystallographic data without any geometry optimization. All methyl groups have been 

replaced by hydrogen atoms. All atoms have been depicted with ANO-RCC type basis sets. 

The Cu, N, C and H atoms have been described with (21s15p10d6f4g2h)/[5s4p2d1f], 

(14s9p4d3f2g)/[3s2p1d], (14s9p4d3f2g)/[3s2p] and (8s4p3d1f)/[2s] contractions, respectively 

[47]. A (14s9p4d3f2g)/[3s2p1d] contraction has been used for the O atoms directly 

coordinated to copper whereas other O atoms have been described with a 

(14s9p4d3f2g)/[3s2p] contraction. 

 

 



3. Results and Discussion 

3.1. Synthesis and characterization 

The dideprotonated ONO tridentate Schiff base ligand, [4-MeO-C6H4-

C(O)CH=C(CH3)N-o-C6H4-O]
2-

 (L
2-

), employed in this work was generated in a two-step 

one-pot reaction by facile condensation of 1-anisyl-1,3-butanedione with 2-aminophenol, 

in 1:1 molar  ratio, in refluxing toluene for 2 hours, followed  by the double deprotonation of 

the yellow diprotic precipitate formed on cooling, with 2.5 equiv of tBuO
-
K

+
 in THF. Pyridine 

based nitrogenous base (4-NC5H4R, R = H, CH3, C(CH3)3) was then added to the dark red 

reaction mixture before dropwise addition of a THF solution of the copper(II) nitrate salt. The 

solutions were stirred overnight to separate microcrystalline compounds. Subsequent 

recrystallization of the product from dichloromethane solution gave dark green crystals of the 

binuclear ONO Cu(II) Schiff base complexes 1 and 2, respectively  (Scheme 1).  

 

Scheme 1 Preparation of complexes 1 and 2 

 



Whatever the amount of pyridine used (1 to 4 equivalents), the doubly phenoxo 

bridged binuclear complex 1 was always obtained and isolated in excellent yields of 80-85%. 

The same binuclear derivative 1 was also isolated, albeit in a lower yield of 75%, when 4-

picoline (4-C5H4CH3), a more donating ligand, was used under the same conditions in place 

of pyridine. It is worth noting that among the nitrogenous coligands used, only the sterically 

more demanding 4-tert-butylpyridine does coordinate to the metal center to form the 

binuclear Cu(II) Schiff base complex 2 that is isolated in 75% yield (Scheme 1). Addition of 

an excess of 4-tert-butylpyridine to a THF solution of the binuclear compound 1 did not 

afford its mononuclear counterpart 2. The extra stability of compound 1 presumably arises 

from its symmetrical nature which in turn might inhibit its dissociation to generate the 

monomeric species [Cu(II)L].   

Both compounds 1 and 2 are thermally stable, air and moisture insensitive on storage 

under ordinary conditions, exhibiting good solubility in common polar organic solvents but 

are not soluble in ethanol, diethyl ether and hydrocarbon solvents. The molecular identity and 

geometry of both complexes were elucidated by X-ray crystal structure determination (see 

below). Analysis by ESI-MS did not give the parent ions or indeed any useful information, 

except a prominent fragment ion observed at M/z = 345.0429 in the mass spectrum of 1 that is 

assigned to the cation [L
63

Cu-H]
.+

 (M/z = 345.04262). However, satisfactory analytical data 

on crystalline material demonstrates purity of both compounds (see Section 2.3). 

 

3.2. Infrared spectral study 

The solid-state FT-IR spectra of 1 and 2 were assigned on the basis of frequency 

calculations on DFT optimized geometries of 1 and 2 [37-41]. Table 2 gathers both computed 

and experimental major frequencies and their respective attributions, showing a good 

agreement between the calculated and observed spectral data. The most salient feature found 

in the spectra of 1 and 2 is the characteristic strong intensity bands in the ranges 1587-1466 

and 1604-1584 cm
-1

, respectively, assigned to the (C
···

C), (C
···

N), (C
···

O) stretching 

vibrations of the Schiff base skeleton, suggesting that the imine nitrogen and carbonyl oxygen 

atoms coordinate to the Cu(II) metal ion. The weak bands observed at 3049 and 3040 cm
-1

 for 

1 and 2, respectively, are attributed to the aromatic ν(C-H) vibrations, while  the bands found 

at 2932 and 2830 cm
-1

 in the spectrum of 1 and at 2926 and 2864 cm
-1

 in that of 2, are 

characteristic of aliphatic ν(C-H) vibrations. The observed medium intensity band at 1244 and 

1242 cm
-1

 for 1 and 2, respectively, are due to the νasym vibration mode of the CH3-O-aryl 



group. The deformation modes of the C-H bonds in 1 and 2 show up respectively at 772 and 

734 cm
-1

. Thus, the infrared spectral data are consistent with the structural features of both 

compounds (see below Section 3.3).  

 

Table 2 Computed and experimental infrared frequencies
a
 for compounds 1 and 2 

 Computed 1
b
 2

b
 

ν(C–H aryl) 3089(w) 3049(w) 3040(w) 

ν(C–H, -OCH3) 2992(w) 2932(w) 2926(w) 

νsym(CH3) 2949(w) 2830(w) 2864(w) 

ν(C
…

O), ν(C
…

N), ν(C
…

C) 1587(s)-1466(s) 1581(s)-1485(s) 1604(s)-1584(s) 

νasym(C-H, C6H4-O-CH3) 1240(m) 1244(m) 1242(m) 

(C–H) 719(m) 772(m) 734(m) 

a
 in cm

-1
. 

b
 recorded as KBr disk. 

 

3.3. Description of the molecular and crystal structures 

Perspective views of binuclear compounds 1 and 2, including the atom labeling 

scheme, are shown in Figs. 1 and 2, while selected bond lengths and angles are listed in Table 

3. Compound 1 crystallizes in the monoclinic system with space group P21/c, while complex 

2 crystallizes in the triclinic crystal system Pī space group. In both cases, the asymmetric unit 

consists of a neutral centrosymmetric bis(µ-phenoxo)di-copper(II) complex with the 

two halves of the dimeric unit related by a crystallographic inversion center in the middle of 

the four membered Cu2O2 core.  

In each doubly phenoxo bridged dimer, each µ-phenolic oxygen atom bridges in an 

antisymmetric fashion two Cu(II) metal ions leading to a Cu2O2 rhombic core with two 

distinct bridging Cu(1)-O(1) and Cu(1)-O(1’)  bond lengths of 1.9357(14) and 1.9579(13) Å 

in 1, and 1.9247(11) and 2.445(3)Å in 2, respectively, while Cu-O-Cu bridge angles are of 

102.95(6)° in 1 and of 95.506(3)° in 2. In both compounds, the Cu(1)-O(1)-Cu(1’)-O(1’) 

torsion angle is 0.0°, indicating that the Cu2O2 core is strictly planar. Furthermore, the 

intramolecular non-bonding Cu(1)…Cu(1’) distance is 3.0462(4) in 1 and 3.253(3) Å in 2. All 

these bond distances and angles are in good agreement with that recently reported for 

analogous doubly phenoxo bridged square planar and square pyramidal Cu(II) species 

[19,20,24,48,49]. 

 

 

 



 

Fig. 1 Molecular structure of complex 1 showing partial atom numbering scheme. Hydrogen 

atoms are omitted for clarity. Thermal ellipsoids are drawn at 60% probability. 

 

In compound 1, the dinuclear unit presents two tetracoordinated cupric ions in a 

slightly distorted square-planar environment (Fig. 1), with the coordination sphere formed by 

the deprotonated amide nitrogen atom and the carbonyl and phenoxo oxygen atoms of the 

acyclic Schiff base ligand, and the bridging oxygen atom of the second half-unit. The four 

bond lengths span the range 1.8749(14)-1.9579(13) Å (Table 3). The sum of the angles 

around the Cu(II) center is 359.97°, indicating a slightly distorted square-planar geometry 

around the metal atom. The diagonal angles are, indeed, found to be 176.42(6)° [O(1)-Cu(1)-

O(2)] and  161.35(6)° [N(1)-Cu(1)-O(1’)]. Those values deviate somewhat from idealized 

transoid angles of 180° expected for a perfectly square-planar compound. Deviations of the 

coordinating O(1),O(1’), O(2) and N(1) atoms around Cu(II) center from the least-square 

mean planes through them are 0.0224(11), -0.0198(9), 0.0166(8) and -0.0192(9) Å, 

respectively, and that of the Copper atom  from the same plane is 0.0290(6) Å.  

 

Table 3 Selected bond distances (Å) and angles (°) for compounds 1 and 2 

 1 2 

Bond distances 

Cu(1)-O(1) 1.9579(13) 1.9247(11) 

Cu(1)-N(1) 1.9183(16) 1.9729(13) 

Cu(1)-O(2) 1.8749(14) 1.9155(11) 

Cu(1)-X
a
 1.9579(13) 2.0467(13) 

Angles 

O(1)-Cu(1)-O(2) 176.42(6) 174.93(5) 

O(1)-Cu(1)-N(1) 84.30(6) 84.60(5) 

O(2)-Cu(1)-N(1) 97.76(6) 95.20(5) 

N(1)-Cu(1)-X
a
 161.35(6) 162.66(5) 

O(1)-Cu(1)-X
a
 77.05(6) 90.86(5) 

O(2)-Cu(1)-X
a
 100.86(6) 90.78(5) 

aX = O(1)#1 for 1, X = n(2) for 2; #1   Symmetry transformations used to generate equivalent atoms: -x+1,-y,-z+1. 

 



By contrast, the binuclear unit of 2 exhibits two pentacoordinated Cu(II) centers in a 

square pyramidal (4+1) coordination geometry (Fig. 2). The basal plane consists of the same 

tridentate ONO- donor set of atoms as in 1 and the nitrogen atom of the monodentate 4-tert-

butylpyridine, while the apical site is occupied by the phenoxido oxygen atom of another 

ONO-tridentate dianion that is basal to the second copper(II) metal ion of the dimer. The 

copper atom is deviated by 0.1022 Å from the basal plane due to the formation of the axial 

bond. The bond distances of the donor atoms of the tridentate Schiff base ligand to the central 

metal atom are in the range 1.9155(11) to 1.9729(13) Å, and are typical for Cu(II) complexes 

[19,20,23-27,50,51]. The Cu(II)-Npy bond distance of 2.0467(13) Å is slightly longer than 

those observed in related ternary square-planar Cu(II) complexes (1.90-1.96 Å) [23-27]. Such 

a lengthening may explain an easy dissociation of less donating and less sterically demanding 

monodentate N-donor ligand leading to the formation of square planar dimeric complex 1, as 

observed here with pyridine and 4-picoline. Obviously, the Cu(1)-O(1’) axial bond length 

(2.445(3) Å) is much longer than the equatorial distances which may be ascribed to Jahn-

Teller distortion. The Addison parameter (τ) [52] which is an index of distortion from the 

square-pyramidal to the trigonal-bipyramidal geometry is calculated to be 0.072, indicating 

that the pentacoordinated geometry is very little distorted from a perfectly square pyramid (τ 

= 0). The dihedral angle between the bridging Cu2O2 plane and the mean basal plane of the 

copper square pyramid is 80.713(4)°. 

 

 

Fig. 2 Molecular structure of complex 2 showing partial atom numbering scheme and apical 

short contact Cu-O interactions in dashed-line. Hydrogen atoms are omitted for clarity. 

Thermal ellipsoids are drawn at 60% probability. 

 

 



In both complexes, the fused five- and six-membered heterometallacycles formed 

upon the Schiff base condensation of anisoylacetone with aminophenol and subsequent 

chelation of the Cu(II) ion, are essentially co-planar. Moreover, the six-membered 

metallacycle is also co-planar with the anisyl substituent with dihedral angles of 3.202(3) and 

0.868(2)° in 1 and 2, respectively, and of 25.60(3)° with the 4-tert-butylpyridine ligand in 2. 

In addition, interatomic distances and angles (Tables 3 and 4) are indicative of substantial  

delocalization of the electron density through the chelate rings. 

 

3.4. EPR spectroscopy 

The X-band EPR spectra of compounds 1 and 2 have been recorded in fluid solutions 

and as powdered samples at room temperature (298 K). The spectra of compound 1, recorded 

on a polycrystalline powder, do not show any EPR signal. In contrast, EPR spectrum of 2, 

obtained in the polycrystalline state at room temperature (Fig. 3), exhibits unresolved broad-

band resonances, due to exchange coupling between the copper(II) ions, at g = 2.071 with a 

H peak-to-peak values of 71.5 G. Moreover, the spectrum showed a weak MS = ±2 half 

field transition (Fig. 3, insert) at g = 4.181, thus giving unequivocal proof of the existence of 

the triplet state (S = 1) in the solid. 

 

Fig. 3 Experimental EPR spectrum of complex 2 recorded in the solid state at 298 K with an 

expansion of the half-field region.  

The fluid spectrum of compound 1 dissolved in pure pyridine, is typical of 

mononuclear Cu(II) centers and shows a well-resolved hyperfine structure with isotropic g 



value of 2.115 with hyperfine coupling constants ACu of 76 G. This observation suggests that, 

after dissolution, the dimeric structure of 1 is destroyed, as noticed for other polynuclear 

Cu(II) compounds [5b,54].  

On the other hand, at 298 K in CH2Cl2:1,2-C2H4Cl2 (1:1 v:v) solution (Fig. 4), the 

spectrum of compound 2 exhibits partially resolved superhyperfine structure (5 lines, AN = 

11.5 G) superimposed on the quartet hyperfine structure centerd at giso = 2.101 with hyperfine 

coupling ACu value of 90 G. Those data are consistent with a mononuclear copper(II) species 

(S = 1/2), with the Cu(II) ion in a slightly distorted square planar or square pyramidal 

coordination environment [26,50,53,55].  

 

        

 

Fig. 4 X-band EPR spectrum of 2 recorded in CH2Cl2 : 1,2-C2H4Cl2 (1:1 v:v) mixture at 298 

K.  

3.5. Magnetic properties 

The magnetic properties of compounds 1 and 2 have been measured from 

room temperature to 2 K using a constant applied field of 2 kOe. On cooling a powdered 

sample of 1 χMT (χM the magnetic molar susceptibility and T the temperature in Kelvin) 

decreases continuously from 0.375 cm
3
 K mol

-1
 down to almost zero (0.02 cm

3
 K mol

-1
). This 

is a clear indication that very strong antiferromagnetic interaction operates between the two 

spins. The experimental temperature dependence of χMT of two spins interacting through the 

Heisenberg-Dirac-van Vleck Hamiltonian (H = -J SASB) is reproduced by a slightly modified 

Bleaney-Bowers equation [11,56]:  
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N, , g, and k represent the Avogadro number, the Bohr magneton, the Boltzman 

constant and the Zeeman factor respectively, while x represents the fraction of paramagnetic 

impurities in the sample. The best agreement between experiment and theory (Fig. 5) is 

obtained with g = 2.15 and J = -397 cm
-1

. Such a strong antiferromagnetic spin-coupling 

involving two dx
2
-y

2
 orbitals of the metal centers could be expected owing to magnetic 

interactions mediated by equatorial-equatorial bridging ligands with a Cu-O-Cu angle of  

102.95(6)° [8,13-15], agreeing well with those reported for other analogous compounds 

[19,20]. 

 

 

Fig. 5 Temperature dependence of χMT for compound 1 (empty circles) with the best-fitted 

curve (full red line). 

 

Compound 2 behaves differently from 1. Indeed, χMT (χM the magnetic molar susceptibility 

and T the temperature in Kelvin) for compound 2 is constant and equal to 0.87 cm
3
 K mol

-1
 

(Fig. 6) in the whole temperature range which witnesses that no interaction operates between 

the two spins localized on Cu(II) metal ions. With this Curie constant we can determine the 

average Zeeman value g = 2.152 per Cu(II) center. The simulated Brillouin curve for two 

uncoupled Cu(II) perfectly reproduces the field variation of the magnetization at 2 K (inset of 



Fig. 5). Compound 2 shows a slightly distorted square-pyramidal geometry, thus the magnetic 

interactions that are mediated by apical-equatorial bridges are expected to be negligible as the 

dx
2
-y

2
 and dz

2
 orbitals of the Cu(II) centers are orthogonal to each other (see below Section 

3.6), and the axial Cu-O bond is significantly longer (0.5203 Å) than the equatorial ones. 

 

 
Fig. 6 Temperature dependence of χMT for compound 2 with the best fitted curve with a Curie 

law (full line). Inset: field variation of the magnetization for compound 2 at 2 K with the best 

fitted curve with a Brillouin law (full line). 

 

3.6. Theoretical investigations 

To complete magnetic measurements, ab initio calculations of the magnetic 

interactions in 1 and 2 have been performed at the CAS[2,2]SCF/DDCI level (see 

computational details). Such a computational approach usually gives excellent agreement with 

respect to experimental findings [57], even for through-space interactions such as in 2 [58]. 

Of course, DFT (within the broken symmetry (BS) approximation) could have been used 

instead of CASSCF/DDCI approach [59]. However, major drawbacks, among them the spin 

contamination of the BS wavefunction and the choice of the exchange-correlation functional, 

explain the present choice of wavefunction-based multireference approaches. Results are 

gathered in Table 4 and the magnetic orbitals of 1 are given in Fig. 7. At the best level of 

calculation, i.e. CAS+DDCI, the strong antiferromagnetic behaviour of 1 is recovered 

whereas no interaction is calculated in the case of 2 due to a poor through-space overlap 



between the magnetic orbitals. Both results confirm the experimental data although in the case 

of 1, slight discrepancy remains between the measured and calculated exchange couplings.  

 

Table 4 Calculated exchange coupling constant J (cm
-1

) in model complexes of 1 and 2 

 1 2 

CAS[2,2]SCF -40.0 0.5 
CAS -27.5 0.5 

CAS+S -115.3 -0.6 
CAS+DDCI -256.0 3.1 

 

 

Fig. 7 Magnetic MOs extracted from a CAS[2,2]SCF calculation over the triplet state. 

 

4. Conclusion 

In this report, we have shown that treatment of the dianionic ONO-tridentate ligand 

derived from the Schiff base condensation of 1-anisyl-1,3-butanedione and 2-aminophenol, 

with Cu(II) ions leads to the dinuclear complex 1 when the reaction is carried out in the 

presence of pyridine or 4-picoline, while the same reaction carried out in the presence of 4-

tert-butylpiridine results in the formation of the binuclear species 2. Both compounds have 

been authenticated by single crystal X-ray diffraction analysis that showed that dimeric 

complex 1 presents two tetracoordinated Cu(II) centers in a square planar environment and 

that dimer 2 exhibits two pentacoordinated Cu(II) centers with a square pyramidal 

coordination sphere. The two halves of the dimeric unit are related through a planar Cu2O2 



rhombic core in both cases. EPR study in fluid solutions indicates that the dimeric structure of 

1 and 2 is destroyed upon dissolution. In the solid-state, 1 is EPR silent whereas both MS = 

±1 and MS = ±2 transitions are observed for 2. The variable temperature magnetic 

measurements reveal that dimer 1 exhibits a strong antiferromagnetic interaction due to the 

coplanar disposition of the Cu(II) metal ions and acute Cu-O-Cu angle (102°), whereas dimer 

2 shows negligible antiferromagnetic coupling caused by the basal-apical phenoxido oxygen 

bridging mode. The magnetic findings have been corroborated by theoretical Ab initio 

calculations.   

 
Appendix A. Supplementary data 
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