Microwave Spectrum and Conformational Composition of (Azidomethyl)cyclopropane (C3H5CH2N3). - Université de Rennes Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry A Année : 2014

Microwave Spectrum and Conformational Composition of (Azidomethyl)cyclopropane (C3H5CH2N3).

Résumé

The microwave spectrum of (azidomethyl)cyclopropane, C3H5CH2N3, has been investigated in the 26-90 GHz spectral range at a temperature of about -30 °C. Five rotameric forms of this compound, whose spectra can be distinguished by microwave spectroscopy, may exist. The spectra of three of them denoted III, IV, and V were assigned. The ground vibrational state spectra of III and V were assigned, while the ground and six vibrationally excited states were assigned for IV. These three rotamers all have a synclinal orientation of the H-C-C-N chain of atoms, while the C-C-N-N link is either + or - synclinal or antiperiplanar. Conformer IV, having synclinal orientation of the two said dihedral angles, was found to have the lowest energy by relative intensity measurements. Rotamer V has an energy that is 1.6(6) kJ/mol higher than the energy of IV, while the energy of III is 2.1(6) kJ/mol higher than the energy of IV. Quantum chemical calculations were performed at the MP2/cc-pVTZ and CCSD/cc-pVTZ levels of theory. The rotational constants obtained in the CCSD calculations are in good agreement with the experimental rotational constants, while the MP2 centrifugal distortion constants are generally in poorer agreement with their experimental counterparts.
Fichier non déposé

Dates et versions

hal-01063622 , version 1 (12-09-2014)

Identifiants

Citer

Harald Møllendal, Svein Samdal, Jean-Claude Guillemin. Microwave Spectrum and Conformational Composition of (Azidomethyl)cyclopropane (C3H5CH2N3).. Journal of Physical Chemistry A, 2014, 118 (34), pp.6971-8. ⟨10.1021/jp506261a⟩. ⟨hal-01063622⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More