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Abstract 24 

Models of isolation-by-distance formalize the effects of genetic drift and gene flow in a spatial 

context where gene dispersal is spatially limited. These models have been used to show that, at an 26 

appropriate spatial scale, dispersal parameters can be inferred from the regression of genetic 

differentiation against geographic distance between sampling locations. This approach is compelling 28 

because it is relatively simple and robust, and has rather low sampling requirements. In continuous 

populations, dispersal can be inferred from isolation-by-distance patterns using either individuals or 30 

groups as sampling units. Intrigued by empirical findings where individual samples seemed to 

provide more power, we used simulations to compare the performances of the two methods in a 32 

range of situations with different dispersal distributions. We found that sampling individuals 

provides more power in a range of dispersal conditions that is narrow but fits many realistic 34 

situations. These situations were characterized not only by the general steepness of isolation-by-

distance but also by the intrinsic shape of the dispersal kernel. The performances of the two 36 

approaches are otherwise similar, suggesting that the choice of a sampling unit is globally less 

important than other settings such as a study's spatial scale. 38 

 

Introduction 40 

Genetic data can inform us about dispersal patterns. But that information can be obtained only 

when a number of biological and methodological conditions are fulfilled. At one end of a 42 

methodological continuum, the direct identification of dispersal events (e.g. using population or 

parentage assignment) can provide detailed and accurate dispersal data. But because of its reliance 44 

on intensive sampling, this approach is constrained in terms of study systems, time frame, and study 

area. At the other end, indirect estimates of migration rates obtained from measurements of spatial 46 

genetic structure and demogenetic models depend critically on models' refinement and assumptions 
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(Marko & Hart 2011; Whitlock & McCauley 1999). A sustained interest in this field of research has 48 

produced a wealth of alternative potential solutions for inferring dispersal (e.g. reviewed in Broquet 

& Petit 2009 and other references therein), but finding a good fit between biological settings and 50 

methodological options is rarely obvious. 

Inferring dispersal from isolation-by-distance (IBD) patterns is one approach that seems to 52 

stand out by its (relatively) wide applicability. The dynamics of genetic variation in populations along 

a gradient of spatial proximity were first formalized by Wright (1943), Malécot (1949), and Kimura & 54 

Weiss (1964). These and following IBD theoretical developments have set ground for several 

inference methods that aim at estimating dispersal from genetic data (reviewed in Guillot et al. 56 

2009). We focus here on the method proposed by Rousset (1997, 2000), which uses a regression of 

genetic distances on geographic distances among pairs of samples to infer the product Dσ2, where D 58 

is the effective density and σ2 is the mean squared parent-offspring distance. If D can be 

independently estimated then σ2 gives a synthetic descriptor of dispersal that can be compared 60 

across populations or species (e.g. Pinsky et al. 2010; see also Vekemans & Hardy 2004 using a 

related approach), and possibly compared with field-based estimates (e.g. Watts et al. 2007). The 62 

product Dσ2 itself is also of interest as it informs us on the increase of differentiation with distance. 

This approach is not free from drawbacks. Most importantly, the parameter σ is not intuitive (see 64 

discussions in Broquet & Petit 2009; Rousset 2004; Sumner et al. 2001), some preliminary 

knowledge of dispersal scale is needed to set an appropriate study scale, and data interpretation 66 

requires some understanding of the effect of departure from mutation-migration-drift equilibrium. 

But the method's robustness or behavior has been assessed in various aspects (e.g. Broquet et al. 68 

2006b; Leblois et al. 2003; Leblois et al. 2004; Vekemans & Hardy 2004; Watts et al. 2007), and it 

relies on manageable sampling requirements. Accordingly, interpretations of isolation-by-distance 70 

patterns are frequent in the literature, including several estimations of the dispersal parameter σ 

(reviewed in Table S1, supplementary material. See also Fig. 1). 72 



4 
 

Rousset proposed to calculate distances between individuals in a continuous population 

(Rousset 2000) or between groups of individuals (either because the population under study is sub-74 

divided into discrete units, or because discrete groups of individuals were sampled from an 

otherwise continuous population; Rousset 1997, 2000). Hereafter we will use the words "individual" 76 

and "group" to refer to the sampling unit of each approach. The two methods are based on the same 

theoretical background (detailed in Rousset 2004) and aim at estimating exactly the same quantity. 78 

Importantly, the two methods should be used at the same spatial scale, considering samples at 

distances not greater than ca. 0.56𝜎/√2𝜇, where μ is the mutation rate of the loci considered 80 

(Rousset 2004). Because the regression method based upon groups can be applied in a continuous 

population, some empirical case studies compared the results provided by the two methods with the 82 

same species in the same population (Broquet et al. 2006a; Suni & Gordon 2010; Watts et al. 2007). 

These studies repeatedly found that the group approach has less power, in some cases to the point 84 

that only the individual approach could be used to infer σ. The correlation of genetic and geographic 

distances is tested using Mantel's test, which is not particularly powerful (Legendre & Fortin 2010), 86 

and the number of pairwise comparisons is easily two orders of magnitude greater when using 

individuals as sampling units. The difference in power observed in case studies could thus be due 88 

simply to the number of data points, giving an advantage to individuals as sampling units. On the 

other hand, individual-based genetic distances may suffer from more sampling variance and more 90 

variable effect of genetic drift than group-based statistics. Differences in power remain to be 

investigated and complemented with results for the precision, bias, and coverage of confidence 92 

intervals obtained with each approach. The performances of IBD-based dispersal inference have 

been thoroughly evaluated in simulation studies that used individuals as sampling units (Leblois et 94 

al. 2003; Leblois et al. 2004). However, individual- and group-based sampling schemes have not yet 

been compared to one another in controlled conditions. Such a comparison could be useful for 96 

planning field studies and for interpreting empirical patterns, particularly in situations where 

samples are not easily collected individually. Such comparisons are also timely because of the 98 
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growing interest in using pooled samples (mixtures of individuals) that develops in parallel with 

modern sequencing protocols (Davey et al. 2011; Futschik & Schlotterer 2010; Gautier et al. 2013). 100 

Our objective is to determine whether there is an advantage in using one or the other method in 

situations where the two methods could be applied. 102 

 

Methods 104 

Using IBDSim (Leblois et al. 2009) we simulated a continuous population composed by a square grid 

of 110×110 units with one diploid individual per node. Each individual was characterized by a 106 

multilocus genotype made of 10 microsatellites. IBDSim simulates the demography (coalescence and 

dispersal) backwards in time before adding in mutations. The life-cycle is as follows: i) gamete 108 

production and death of adults. ii) gamete mutation following a generalized stepwise model with 

rate μ=5×10-4 as described in Leblois et al. (2004) with a maximum number of alleles set to 100 per 110 

locus (a value large enough to be uninfluential here). iii) gamete dispersal according to a predefined 

distribution of dispersal distances (see below). iv) constitution of diploid individuals. v) regulation of 112 

the population to n=1 individual per node. 

We defined 36 simulation scenarios (Table S1) differing only in dispersal conditions. Dispersal 114 

distances followed a truncated Pareto distribution, where the probability of dispersing k steps in 

each dimension is given by 𝑓𝑘 = 𝑀 𝑘𝑛⁄  for 𝑘 ≤ 𝑘𝑚𝑎𝑥, as discussed by Rousset (2000). We varied M 116 

(total dispersal rate in one dimension), n (a parameter that controls the shape of the distribution) 

and kmax (maximum dispersal distance) to obtain a range of dispersal situations with simulated σ 118 

values (𝜎𝑠𝑖𝑚
2 , range 1.12 – 47.01) comparable to that estimated from empirical case studies (𝜎𝑒𝑠𝑡

2 : we 

found estimates for 62 plant and animal species, Fig. 1 and Table S1). Simulations thus differed in the 120 

values taken by σ2 (giving the strength of IBD) but also in the nature of the dispersal kernels -

characterized by M, n and kmax - that yielded these values. 122 
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Dispersal inference under IBD should consider samples at distances smaller than ca. 

0.56𝜎/√2𝜇 (Rousset 2004), which is approximately equal to 18σ given our mutation rate. The total 124 

size of the simulated population (110×110) was large enough to contain the optimal sampling design 

for any simulation scenario with some extra space to limit edge effects. At grid edges we used 126 

"absorbing" boundaries in IBDSim whereby "the probability mass of going outside the lattice is 

equally shared on all other movements inside the lattice" (as defined by R. Leblois in IBDSim user 128 

manual). The total simulated population was kept constant but samples were taken from within a 

smaller area and defined as a square of side length 13σ (that is, with diagonal ≈18σ, Fig. 2). A 130 

different sampling grid was thus potentially associated with each simulation scenario. 

To test for IBD and infer σ2 we randomly sampled 99 individuals and 11 disjoint clusters of 9 132 

individuals from within the defined sampling grid (Fig. 2). These samples were analyzed in Genepop 

V4.0 (Rousset 2008) using the estimator â for pairwise genetic distances among individuals (Rousset 134 

2000) and FST/(1-FST) for groups (Rousset 1997). The mean genetic distance among pairs of samples 

and the global FST are shown in Table S2 and Fig. S1. The slope (b) of the regression of pairwise 136 

genetic distances and ln-transformed geographic distances among samples (individuals or groups) 

was used to infer σ2 from the relationship 𝑏 = 1/(4𝐷𝜋𝜎2) with D=1. We also recorded approximate 138 

95% confidence intervals calculated using the ABC procedure implemented in Genepop (Leblois et 

al. 2003; Rousset 2008; Watts et al. 2007). Each simulation was replicated 200 times (a number large 140 

enough to capture most of the variance across replicates, data not shown), giving 36×200=7200 

simulations overall. 142 

The power of the regression method based upon groups and individuals was calculated for the 

36 simulation conditions as the proportion of replicates yielding a significant Mantel test (using 10 144 

000 permutations and a significance threshold α=5%). The relative error was estimated as 

(𝜎𝑒𝑠𝑡
2 − 𝜎𝑠𝑖𝑚

2 )/𝜎𝑠𝑖𝑚
2  for each replicate, and we defined the bias and the precision of σ2 estimates as 146 

the median and the dispersion of the relative error, respectively. Finally, the coverage was defined 
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as the proportion of replicates where 𝜎𝑠𝑖𝑚
2  was included within the confidence interval of 𝜎𝑒𝑠𝑡

2 . These 148 

statistics were computed using only the replicates where a significant IBD was detected (5045 and 

5357 replicates for the group and individual methods), because σ2 would not be inferred from a 150 

dataset otherwise. 

We used generalized linear models to test for i) differences in power, bias, and coverage 152 

between methods, and ii) the effect of parameters M, n, and kmax on the power, bias, and coverage 

of each method (with adequate transformation of data or binomial error structure when necessary). 154 

We included 𝜎𝑠𝑖𝑚
2  as an explanatory variable in these models because it is directly linked to the 

strength of IBD and thus should be a primary determinant of a method's performances. All results 156 

reported in the main text are thus independent of the value taken by 𝜎𝑠𝑖𝑚
2 . To control for the fact 

that different simulation conditions were associated with different sampling grids (i.e. different 158 

spatial scales), we also included the median of the Euclidean distances among pairs of samples as an 

explanatory variable. Finally, the models were of the form < response ~ 𝜎𝑠𝑖𝑚
2  + Med.dist + Method > 160 

when we compared the two methods (Med. dist is the median of distances among samples) and of 

the form < response ~ 𝜎𝑠𝑖𝑚
2  + Med. dist + n × M × kmax > when we assessed the effects of simulation 162 

parameters, where response was either power, bias, or coverage. 

 164 

Results 

The power of the two methods, measured as the proportion of replicates yielding a significant 166 

Mantel test, dropped from 100% to ca. 20% in our two most extreme situations in terms of 

simulated dispersal (Fig. 3a, 𝜎𝑠𝑖𝑚
2 =1.12, and Fig. 3i, 𝜎𝑠𝑖𝑚

2 =47.05). However, the group approach lost 168 

power at an earlier stage as the strength of IBD decreased (Figs. 3d-e). Interestingly, this effect was 

primarily due to the shape parameter n (e.g. Figs. 3a,d,g), which had a significant effect 170 

independently of the value taken by 𝜎𝑠𝑖𝑚
2  (p<0.001). When n was large (meaning that long-distance 
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dispersal was rare, first row in Fig. 3) the two methods performed well, and M and kmax took no 172 

effect. With low n the effect of kmax became critical (last row of Fig. 3) but the two methods were 

equally affected. When n was intermediate (middle row of Fig. 3) the group approach was more 174 

strongly affected than the individual approach by an increase in kmax (e.g. in Fig. 3d the power 

decreased from 100% to 80% for the individual approach vs 60% for the group approach when kmax 176 

was increased from 10 to 50). These results convey the following information: i) the two methods 

have comparable power except in a restricted set of conditions, ii) those dispersal conditions where 178 

individuals outperformed groups resulted in 𝜎𝑠𝑖𝑚
2  in [3.89-11.83], a range of values that fits well 

empirical estimates from real case studies (Fig. 1), including one study where IBD was detected with 180 

individuals only (Broquet et al. 2006a), and iii) these conditions are not determined solely by σ2 but 

also by the shape of the underlying dispersal kernel (e.g. the range of 𝜎𝑠𝑖𝑚
2  mentioned above is also 182 

spanned by simulations 25-32, and yet with these simulations the two methods have nearly identical 

power, Fig. 3c&f). 184 

Besides power, we looked at the bias and the precision of σ2 estimates with the median and 

the dispersion of the relative error, respectively. We found that the two methods generally 186 

underestimated the true σ2 by a small proportion (Fig. 4) and that this bias was slightly more 

pronounced with the individual approach (-15% and -9% for individuals and groups overall 188 

simulations, p<0.001). This slight underestimation is in agreement with simulation results obtained 

by Leblois et al. (2003; 2004) when the sampling design was not too far from theoretical optimum 190 

(e.g. simulations 1 and 2 in Table 2 of Leblois et al. 2003, note that the bias is calculated for the 

regression slope). In agreement with results for the power, the two methods showed decreasing 192 

performance (increasing bias) with decreasing IBD strength (down to ca. -60% with 𝜎𝑠𝑖𝑚
2 =47.05, Fig. 

4i). Irrespective of 𝜎𝑠𝑖𝑚
2 , the bias also appeared to be influenced by the shape of the dispersal kernel, 194 

and particularly by parameter kmax (p<0.001). Increasing kmax resulted in deeper negative bias 

whatever the values taken by the other parameters. Surprisingly, the precision of estimates followed 196 

an opposite trend (Fig. 4): the dispersion of estimated values around the median was greatest when 
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IBD was strong, and this effect was particularly visible for small values of kmax (left box-plot of each 198 

panel in figure 4). As a result, the situations where the bias was minor were generally not favorable 

in terms of precision. This observation is valid for the two methods, which showed no systematic 200 

difference in precision. Yet a difference can be noted regarding the replicates producing the worst 

estimates. Overall simulations with significant IBD, 17 such replicates (out of 10 402) produced 202 

estimates with a relative error larger than 150% (Fig. 4). These cases were all characterized by a 

near-zero slope estimate, yielding large relative errors. Interestingly, only 3 such cases were 204 

produced by the individual approach. 

Finally, we did not find any difference in coverage between methods (p>0.05): the proportion 206 

of replicates where the 95% confidence interval of the estimate (𝜎𝑒𝑠𝑡
2 ) included the true value (𝜎𝑠𝑖𝑚

2 ) 

amounted to 86% using groups and 85% using individuals (Fig. S2). In the specific cases where a 208 

difference in coverage was visible the method with the best coverage also appeared to have larger 

confidence intervals (data not shown). Note that the coverage values reported here for each method 210 

independently may be overestimated, because the ABC procedure used to approximate 95% 

confidence intervals generally underestimates the upper bound for 𝜎𝑒𝑠𝑡
2  (Leblois et al. 2003). 212 

 

Discussion 214 

Our simulations were parameterized so that the product Dσ2 fits real situations where IBD patterns 

had been analyzed (Fig. 1 and Table S1). Yet the conditions of dispersal inference varied widely 216 

between simulations for the following reason: the number of samples was kept constant across 

simulations (99 genotypes) while the sampling scale was set with respect to 𝜎𝑠𝑖𝑚
2  in order to fit the 218 

methods' requirements (distance between samples < 0.56𝜎𝑠𝑖𝑚 √2𝜇⁄ ). It means that the density of 

the sampling effort decreased with increasing 𝜎𝑠𝑖𝑚
2 , giving us a range of conditions where the 220 

inference of dispersal went from being very favored (when 𝜎𝑠𝑖𝑚
2  is small and IBD is steep with 
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respect to the sampling scale) to very limited (with larger 𝜎𝑠𝑖𝑚
2 ). This variation allowed us to explore 222 

potential differences between the individual-based and group-based methods. 

We find that there is only a small region of parameters where individual sampling 224 

outperformed group sampling, and this advantage bears upon power only (we found no sizeable 

differences in accuracy, precision, and coverage between the two approaches). However, we note 226 

that intermediate situations, where the power of the individual-based regression approach was 

greater than that of the group approach, appeared to cover the range of situations most commonly 228 

encountered in natural situations, at least in terms of 𝐷𝜎2 (Fig. 1, exactly half of the reviewed 

empirical estimates fall in the 𝐷𝜎2region where the individual approach can outperform the group 230 

approach, depending on dispersal distributions). 

Interestingly, the difference in performances between methods is due to particular conditions 232 

of 𝜎𝑠𝑖𝑚
2  but also to the shape of the dispersal kernel (decreasing n significantly affected the 

difference in power between methods independently of 𝜎𝑠𝑖𝑚
2 , see Figs. 3a,d,g). Based upon empirical 234 

finding for a forest-dwelling mammal, the American marten, we had the intuition that dispersal 

kernels characterized by a fat tail of long distance events could affect IBD patterns based upon 236 

groups more than individuals (Broquet et al. 2006a). But this idea is not supported by theory 

(Rousset 2000), and our simulation results suggest that although there really is some effect of the 238 

shape of the dispersal kernel on the power of the two methods, it is not particularly due to long 

distance dispersal. 240 

We also found a slightly reduced risk to get extremely biased estimates with the individual approach 

(considering those few estimates that were off by 150% or more, most came from group sampling). 242 

Furthermore, the accuracy of each method increased with the proportion of simulation replicates 

where the two methods yielded a significant IBD pattern. This means that when one method yields a 244 

significant result but the other one does not then there is a higher risk of bias using either approach. 

In other words, with adequate datasets that fulfill the methods' assumptions, the power difference 246 
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that may favor the individual-based approach occurs in situations where the risk of bias is anyways 

higher on average. 248 

There are a number of relevant issues that were not considered here, such as the effects of 

spatial and temporal heterogeneity in population density on the relative performances of each 250 

approach (the density was set to 1 individual per node in all our simulations, see Leblois et al. 2003; 

Leblois et al. 2004 for different conditions with individual sampling). Whether or not such factors 252 

could interact with our findings is difficult to tackle, even using simplified simulations. Moreover, all 

our simulations fulfilled one critical assumption of IBD-based inferences (Rousset 1997, 2000): 254 

migration and drift are stable in space and time, and the pattern of increase of differentiation with 

geographic distance has reached equilibrium. The results presented here do not apply to other 256 

situations, which are irrelevant for inferring dispersal from IBD slopes, though the method seems 

robust to some disequilibrium situations (Leblois et al. 2004). Finally, we did not explore the effect of 258 

the number of samples (e.g. the number and the composition of groups). We chose to use rather 

small groups to get conservative results with the group approach, and because it is difficult to design 260 

simulation conditions that harmonize the requirements for sampling scale, useful 𝜎𝑠𝑖𝑚
2 , and 

simulation and analysis time. In a pilot study we found nonetheless that increasing the total number 262 

of individuals sampled for each method benefited more to the group approach (data not shown). 

Our findings suggest that when the methods are properly applied in continuously distributed 264 

populations there is only a slight advantage in using individuals as the sampling unit. Other 

considerations might thus be more important, such as the spatial scaling of IBD studies. As shown by 266 

previous work, the study scale should be large enough so that dispersal becomes spatially limited 

(unlike in the island model, which may apply at a shorter scale, e.g. see Kerth & Petit 2005), and, 268 

more critically, local enough so that the effect of gene flow does not faint out in front of mutation 

and is not blurred by non-equilibrated patterns (such as signatures of past colonization, e.g. Austin 270 

et al. 2004). Hence priority should be given to identifying the right study scale and choose the 
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sampling unit based upon the spatial distribution of individuals (Rousset 2000) and sampling 272 

possibilities rather than intrinsic properties of the methods. We emphasize that our conclusions 

about the detailed effect of dispersal parameters should not be extrapolated without caution to 274 

systems more complex than the simulations described here. But one robust result of this study is 

that in any case the choice of adequate spatial and temporal scales seems much more important 276 

than the sampling unit in continuously distributed populations. 

 278 

Acknowledgements 

We thank Raphaël Leblois for insightful discussions and comments, and for answering our questions 280 

regarding the software IBDSim. We are grateful to Glenn Yannic, Editor O. Gaggiotti and two 

anonymous reviewers for their constructive comments on the manuscript. We also thank Christophe 282 

Caron for his help with using the computer cluster in the biological station of Roscoff. TB was 

supported by the "Marine Aliens and Climate Change" program funded by AXA Research Funds. 284 

 

References 286 

Austin JD, Lougheed SC, Boag PT (2004) Controlling for the effects of history and nonequilibrium 

conditions in gene flow estimates in northern bullfrog (Rana catesbeiana) populations. 288 

Genetics 168, 1491-1506. 

Broquet T, Johnson CA, Petit E, et al. (2006a) Dispersal and genetic structure in the American 290 

marten, Martes americana. Molecular Ecology 15, 1689-1697. 

Broquet T, Petit E (2009) Molecular estimation of dispersal for ecology and population genetics. 292 

Annual Review of Ecology, Evolution and Systematics 40, 193-216. 

Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006b) Genetic isolation by distance and landscape 294 

connectivity in the American marten (Martes americana). Landscape Ecology 21, 877-889. 



13 
 

Davey JW, Hohenlohe PA, Etter PD, et al. (2011) Genome-wide genetic marker discovery and 296 

genotyping using next-generation sequencing. Nature Reviews Genetics 12, 499-510. 

Futschik A, Schlotterer C (2010) The Next Generation of Molecular Markers From Massively Parallel 298 

Sequencing of Pooled DNA Samples. Genetics 186, 207-218. 

Gautier M, Foucaud J, Gharbi K, et al. (2013) Estimation of population allele frequencies from next-300 

generation sequencing data: pool- versus individual-based genotyping. Molecular Ecology 

22, 3766-3779. 302 

Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Molecular 

Ecology 18, 4734-4756. 304 

Kerth G, Petit E (2005) Colonization and dispersal in a social species, the Bechstein's bat (Myotis 

bechsteinii). Molecular Ecology 14, 3943-3950. 306 

Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of 

genetic correlation with distance. Genetics 49, 561-576. 308 

Leblois R, Estoup A, Rousset F (2003) Influence of mutational and sampling factors on the estimation 

of demographic parameters in a "continuous" population under isolation by distance. 310 

Molecular Biology and Evolution 20, 491-502. 

Leblois R, Estoup A, Rousset F (2009) IBDSim: a computer program to simulate genotypic data under 312 

isolation by distance. Molecular Ecology Resources 9, 107-109. 

Leblois R, Rousset F, Estoup A (2004) Influence of spatial and temporal heterogeneities on the 314 

estimation of demographic parameters in a continuous population using individual 

microsatellite data. Genetics 166, 1081-1092. 316 

Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for 

detecting complex multivariate relationships in the spatial analysis of genetic data. 318 

Molecular Ecology Resources 10, 831-844. 

Malécot G (1949) Les processus stochastiques en génétique de population. Publication de l'Institut 320 

de statistiques de l'Université de Paris I: Fasc 3, 1-16. 



14 
 

Marko PB, Hart MW (2011) The complex analytical landscape of gene flow inference. Trends in 322 

Ecology & Evolution 26, 448-456. 

Pinsky ML, Montes Jr. HR, Palumbi SR (2010) Using isolation by distance and effective density to 324 

estimated dispersal scales in anemonefish. Evolution 64, 2688-2700. 

Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation 326 

by distance. Genetics 145, 1219-1228. 

Rousset F (2000) Genetic differentiation between individuals. Journal of Evolutionary Biology 13, 58-328 

62. 

Rousset F (2004) Genetic structure and selection in subdivided populations Princeton University 330 

Press, Princeton. 

Rousset F (2008) GENEPOP ' 007: a complete re-implementation of the GENEPOP software for 332 

Windows and Linux. Molecular Ecology Resources 8, 103-106. 

Sumner J, Rousset F, Estoup A, Moritz C (2001) Neighbourhood size, dispersal and density estimates 334 

in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and 

demographic methods. Molecular Ecology 10, 1917-1927. 336 

Suni SS, Gordon DM (2010) Fine-scale genetic structure and dispersal distance in the harvester ant 

Pogonomyrmex barbatus. Heredity 104, 168-173. 338 

Vekemans X, Hardy O (2004) New insights from fine-scale genetic structure analyses in plant 

populations. Molecular Ecology 13, 921-935. 340 

Watts PC, Rousset F, Saccheri IJ, et al. (2007) Compatible genetic and ecological estimates of 

dispersal rates in insect (Coenagrion mercuriale : Odonata : Zygoptera) populations: analysis 342 

of 'neighbourhood size' using a more precise estimator. Molecular Ecology 16, 737-751. 

Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration : FST1/(4Nm+1). 344 

Heredity 82, 117-125. 

Wright S (1943) Isolation by distance. Genetics 28, 114-138. 346 

 



15 
 

  348 



16 
 

Data accessibility 

Three types of data are available on Dryad (entry doi:10.5061/dryad.mq8n5): i) parameter files for 350 
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inferences. 354 
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Figure legends 360 

Figure 1 – Comparison of the frequency distribution of empirical (plotted as positive frequencies, in 

grey) and simulated (represented by negative frequencies, in white) values of the product Dσ2. 362 

Empirical values were obtained from a literature survey of significant IBD patterns for animal and 

plant case studies that investigated two-dimensional spatial genetic structure (the product Dσ2 has a 364 

different scale in 1D studies, Rousset 1997). These values were either taken directly from the papers, 

or calculated from related statistics, such as Sp (Vekemans & Hardy 2004). When more than one 366 

value was available for a given species in a specific paper, only one was retained for drawing the 

histogram. Most empirical values included in this comparison are taken from the review by 368 

Vekemans and Hardy (2004), completed with results from additional papers reviewed in our Table 

S1 (supplementary material). Vertical lines show the lower and upper limits of the region in which 370 

individual-based analyses can outperform group-based analyses (see results). Note that the x axis is 

log-scaled for a better visualization of the distributions. 372 

 

Figure 2 – Principle of the sampling design. The actual simulations used a 110×110 grid, large enough 374 

to contain a square of side length 13σ for any of the conditions listed in Table S1. Ninety-nine 

individuals or 11 groups of 9 individuals were randomly sampled from within this grid to infer σ2 376 

using isolation-by-distance patterns. 

 378 

Figure 3 – Power of Mantel test in detecting a correlation between genetic and geographic distances 

among pairs of individuals (dashed black lines) or groups (solid grey lines) sampled from simulated 380 

datasets. The power was calculated as the proportion of replicates (n=200 replicates per simulation 

scenario) where a significant correlation was detected. Simulations differ in the distribution of 382 

dispersal distances (parameters M, n, and kmax of a truncated Pareto distribution). 
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Figure 4 –Relative error in σ2 estimated from the regression of genetic- vs geographic distances 384 

between pairs of individuals (white boxes) or groups (grey). Data from 200 replicates per simulation 

are shown (simulation conditions as in Figure 3). The solid line in each box shows the median of the 386 

error distribution, the box shows the 25% and 75% quantiles, and the whiskers show the full range of 

the errors. In cases where the whiskers extend beyond the plotting region, 1 to 3 replicates (out of 388 

200) had a relative error greater than 1.5 and are not shown here. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Supplementary material 

 

Table S1: Literature survey of empirical Dσ
2
 values estimated from significant IBD patterns for animal and plant case 

studies that investigated two-dimensional spatial genetic structure (the product Dσ
2
 has a different scale in 1D 

studies, Rousset 1997). These values were either taken directly from the papers, or calculated from related statistics, 
such as Sp (Vekemans& Hardy 2004). When more than one value was available for a given species in a specific paper, 
only one was retained for drawing the histogram (see footnotes). 

       Species Taxon Sampling unit Density Unit Dσ
2
 Reference 

Homo sapiens Mammal group 24 ind/km² 17 (Rousset 1997) 

Dipodomys spectabilis Mammal individual 0.0002 ind/m² 2.6 (Rousset 2000) 

Gnypetoscincus queenslandiae Reptile individual 0.0136 ind/m² 6.7 (Sumner et al. 2001) 

Chamaecrista fasciculata Fabaceae group - - 10.7 (Fenster et al. 2003) 

Ostrinia nubilalis Insect group - - 4.9 (Martel et al. 2003) 

Crassostrea virginica Mollusc group 0.24 ind/km² 113.7 (Rose et al. 2006) 

Martes americana Mammal individual 0.46 ind/km² 6.6 (Broquet et al. 2006) 

Coenagrion mercuriale
a
 Insect individual 0.0022 ind/m² 30.7 (Watts et al. 2007) 

  
group 0.0023 ind/m² 31.3 

 
Plethodon cinereus Amphibian group 2.82 ind/m² 9.9 (Cabe et al. 2007) 

Microtus arvalis Mammal individual 1000 ind/km² 16.6 (Gauffre et al. 2008) 

Bonasa bonasia Bird individual 5.5 ind/km² 5 (Sahlsten et al. 2008) 

Milicia excelsia
b
 Moraceae (tree) individual 4.96 ind/km² 12.3 (Bizoux et al. 2009) 

Corrallium rubrum
c
 Cnidaria group - - 8 (Ledoux et al. 2010) 

       (a) Based upon the data used to compare group- and individual-based approaches. (b) Computed from Table 2 for 
population Mindourou. (c) Computed from the slope value given in Fig. 2 for population Catalonia. 
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Table S2: Simulation conditions. The parameters M, n, and kmax set the shape of the distribution of dispersal 
distances in the simulations. The values taken by these parameters result in a range of dispersal conditions 

characterized by 𝜎𝑠𝑖𝑚
2 . The genetic structure observed at equilibrium is given by the mean pairwise genetic distance 

between sampled individuals (a) or groups (FST/(1-FST) and the global FST averaged over 200 simulation replicates. 

Simulation M n Kmax 𝜎𝑠𝑖𝑚
2  

mean genetic distance 

a FST/(1-FST) FST 

1 0.4 2.8 10 1.12 0.202 0.103 0.093 

2 0.4 2.8 25 1.53 0.201 0.101 0.091 

3 0.4 2.8 50 1.83 0.203 0.103 0.093 

4 0.4 2.8 100 2.01 0.200 0.103 0.093 

5 0.4 2.2 10 1.99 0.159 0.071 0.066 

6 0.4 2.2 25 3.89 0.151 0.064 0.060 

7 0.4 2.2 50 6.03 0.151 0.063 0.059 

8 0.4 2.2 100 7.85 0.154 0.064 0.060 

9 0.4 1.8 10 3.08 0.133 0.050 0.047 

10 0.4 1.8 25 7.93 0.120 0.040 0.038 

11 0.4 1.8 50 15.23 0.115 0.037 0.036 

12 0.4 1.8 100 23.13 0.119 0.037 0.035 

13 0.6 2.8 10 1.68 0.101 0.074 0.068 

14 0.6 2.8 25 2.30 0.101 0.074 0.068 

15 0.6 2.8 50 2.75 0.104 0.075 0.069 

16 0.6 2.8 100 3.02 0.104 0.075 0.069 

17 0.6 2.2 10 2.99 0.071 0.051 0.048 

18 0.6 2.2 25 5.85 0.065 0.043 0.041 

19 0.6 2.2 50 9.08 0.063 0.042 0.040 

20 0.6 2.2 100 11.83 0.064 0.042 0.040 

21 0.6 1.8 10 4.63 0.050 0.035 0.034 

22 0.6 1.8 25 11.95 0.041 0.026 0.025 

23 0.6 1.8 50 22.99 0.038 0.023 0.022 

24 0.6 1.8 100 34.98 0.041 0.023 0.023 

25 0.8 2.8 10 2.24 0.077 0.057 0.054 

26 0.8 2.8 25 3.08 0.072 0.052 0.049 

27 0.8 2.8 50 3.68 0.075 0.053 0.050 

28 0.8 2.8 100 4.03 0.076 0.055 0.052 

29 0.8 2.2 10 4.00 0.047 0.036 0.034 

30 0.8 2.2 25 7.83 0.040 0.030 0.029 

31 0.8 2.2 50 12.16 0.039 0.028 0.027 

32 0.8 2.2 100 15.84 0.039 0.029 0.028 

33 0.8 1.8 10 6.20 0.031 0.024 0.023 

34 0.8 1.8 25 16.02 0.020 0.016 0.016 

35 0.8 1.8 50 30.86 0.018 0.015 0.015 

36 0.8 1.8 100 47.05 0.020 0.015 0.014 
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Fig. S1 Mean pairwise genetic distance among individuals (â, in black) or groups (FST/(1-FST), in grey) averaged 

over all replicates of each simulation. The results are classified according to simulation conditions: the panels 

differ in values taken by M and n, while the dots within each panel correspond to kmax= 10, 25, 50 and 100, 

respectively. The x-axis gives the resulting 𝜎𝑠𝑖𝑚
2  averaged over all replicates of a simulation.  
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Fig. S2 –Coverage probability of 95% Confidence Intervals around σ2 estimates from the regression of 

genetic- vs geographic distances between pairs of individuals (black) or groups (grey). Data from 200 

replicates per simulation are shown (simulation conditions as in Figure S2). 
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