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Models of isolation-by-distance formalize the effects of genetic drift and gene flow in a spatial context where gene dispersal is spatially limited. These models have been used to show that, at an appropriate spatial scale, dispersal parameters can be inferred from the regression of genetic differentiation against geographic distance between sampling locations. This approach is compelling because it is relatively simple and robust, and has rather low sampling requirements. In continuous populations, dispersal can be inferred from isolation-by-distance patterns using either individuals or groups as sampling units. Intrigued by empirical findings where individual samples seemed to provide more power, we used simulations to compare the performances of the two methods in a range of situations with different dispersal distributions. We found that sampling individuals provides more power in a range of dispersal conditions that is narrow but fits many realistic situations. These situations were characterized not only by the general steepness of isolation-bydistance but also by the intrinsic shape of the dispersal kernel. The performances of the two approaches are otherwise similar, suggesting that the choice of a sampling unit is globally less important than other settings such as a study's spatial scale.

Introduction

Genetic data can inform us about dispersal patterns. But that information can be obtained only when a number of biological and methodological conditions are fulfilled. At one end of a methodological continuum, the direct identification of dispersal events (e.g. using population or parentage assignment) can provide detailed and accurate dispersal data. But because of its reliance on intensive sampling, this approach is constrained in terms of study systems, time frame, and study area. At the other end, indirect estimates of migration rates obtained from measurements of spatial genetic structure and demogenetic models depend critically on models' refinement and assumptions [START_REF] Marko | The complex analytical landscape of gene flow inference[END_REF][START_REF] Whitlock | Indirect measures of gene flow and migration : F ST 1/(4Nm+1)[END_REF]. A sustained interest in this field of research has produced a wealth of alternative potential solutions for inferring dispersal (e.g. reviewed in [START_REF] Broquet | Molecular estimation of dispersal for ecology and population genetics[END_REF] and other references therein), but finding a good fit between biological settings and methodological options is rarely obvious.

Inferring dispersal from isolation-by-distance (IBD) patterns is one approach that seems to stand out by its (relatively) wide applicability. The dynamics of genetic variation in populations along a gradient of spatial proximity were first formalized by [START_REF] Wright | Isolation by distance[END_REF], [START_REF] Malécot | Les processus stochastiques en génétique de population[END_REF], and [START_REF] Kimura | The stepping stone model of population structure and the decrease of genetic correlation with distance[END_REF]. These and following IBD theoretical developments have set ground for several inference methods that aim at estimating dispersal from genetic data (reviewed in [START_REF] Guillot | Statistical methods in spatial genetics[END_REF]). We focus here on the method proposed by Rousset (1997Rousset ( , 2000)), which uses a regression of genetic distances on geographic distances among pairs of samples to infer the product Dσ 2 , where D is the effective density and σ 2 is the mean squared parent-offspring distance. If D can be independently estimated then σ 2 gives a synthetic descriptor of dispersal that can be compared across populations or species (e.g. [START_REF] Pinsky | Using isolation by distance and effective density to estimated dispersal scales in anemonefish[END_REF]; see also [START_REF] Vekemans | New insights from fine-scale genetic structure analyses in plant populations[END_REF] using a related approach), and possibly compared with field-based estimates (e.g. Watts et al. 2007). The product Dσ 2 itself is also of interest as it informs us on the increase of differentiation with distance. This approach is not free from drawbacks. Most importantly, the parameter σ is not intuitive (see discussions in [START_REF] Broquet | Molecular estimation of dispersal for ecology and population genetics[END_REF][START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF]Sumner et al. 2001), some preliminary knowledge of dispersal scale is needed to set an appropriate study scale, and data interpretation requires some understanding of the effect of departure from mutation-migration-drift equilibrium.

But the method's robustness or behavior has been assessed in various aspects (e.g. Broquet et al. 2006b;[START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF][START_REF] Leblois | Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data[END_REF][START_REF] Vekemans | New insights from fine-scale genetic structure analyses in plant populations[END_REF]Watts et al. 2007), and it relies on manageable sampling requirements. Accordingly, interpretations of isolation-by-distance patterns are frequent in the literature, including several estimations of the dispersal parameter σ (reviewed in Table S1, supplementary material. See also Fig. 1).

Rousset proposed to calculate distances between individuals in a continuous population (Rousset 2000) or between groups of individuals (either because the population under study is subdivided into discrete units, or because discrete groups of individuals were sampled from an otherwise continuous population; Rousset 1997Rousset , 2000)). Hereafter we will use the words "individual" and "group" to refer to the sampling unit of each approach. The two methods are based on the same theoretical background (detailed in [START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF]) and aim at estimating exactly the same quantity.

Importantly, the two methods should be used at the same spatial scale, considering samples at distances not greater than ca. 0.56𝜎/√2𝜇, where μ is the mutation rate of the loci considered [START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF]. Because the regression method based upon groups can be applied in a continuous population, some empirical case studies compared the results provided by the two methods with the same species in the same population (Broquet et al. 2006a;[START_REF] Suni | Fine-scale genetic structure and dispersal distance in the harvester ant Pogonomyrmex barbatus[END_REF]Watts et al. 2007).

These studies repeatedly found that the group approach has less power, in some cases to the point that only the individual approach could be used to infer σ. The correlation of genetic and geographic distances is tested using Mantel's test, which is not particularly powerful [START_REF] Legendre | Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data[END_REF], and the number of pairwise comparisons is easily two orders of magnitude greater when using individuals as sampling units. The difference in power observed in case studies could thus be due simply to the number of data points, giving an advantage to individuals as sampling units. On the other hand, individual-based genetic distances may suffer from more sampling variance and more variable effect of genetic drift than group-based statistics. Differences in power remain to be investigated and complemented with results for the precision, bias, and coverage of confidence intervals obtained with each approach. The performances of IBD-based dispersal inference have been thoroughly evaluated in simulation studies that used individuals as sampling units [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF][START_REF] Leblois | Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data[END_REF]). However, individual-and group-based sampling schemes have not yet been compared to one another in controlled conditions. Such a comparison could be useful for planning field studies and for interpreting empirical patterns, particularly in situations where samples are not easily collected individually. Such comparisons are also timely because of the growing interest in using pooled samples (mixtures of individuals) that develops in parallel with modern sequencing protocols [START_REF] Davey | Genome-wide genetic marker discovery and genotyping using next-generation sequencing[END_REF][START_REF] Futschik | The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples[END_REF][START_REF] Gautier | Estimation of population allele frequencies from nextgeneration sequencing data: pool-versus individual-based genotyping[END_REF].

Our objective is to determine whether there is an advantage in using one or the other method in situations where the two methods could be applied.

Methods

Using IBDSim [START_REF] Leblois | IBDSim: a computer program to simulate genotypic data under isolation by distance[END_REF]) we simulated a continuous population composed by a square grid of 110×110 units with one diploid individual per node. Each individual was characterized by a multilocus genotype made of 10 microsatellites. IBDSim simulates the demography (coalescence and dispersal) backwards in time before adding in mutations. The life-cycle is as follows: i) gamete production and death of adults. ii) gamete mutation following a generalized stepwise model with rate μ=5×10 -4 as described in [START_REF] Leblois | Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data[END_REF] with a maximum number of alleles set to 100 per locus (a value large enough to be uninfluential here). iii) gamete dispersal according to a predefined distribution of dispersal distances (see below). iv) constitution of diploid individuals. v) regulation of the population to n=1 individual per node.

We defined 36 simulation scenarios (Table S1) differing only in dispersal conditions. Dispersal distances followed a truncated Pareto distribution, where the probability of dispersing k steps in each dimension is given by 𝑓 𝑘 = 𝑀 𝑘 𝑛 ⁄ for 𝑘 ≤ 𝑘 𝑚𝑎𝑥 , as discussed by Rousset (2000). We varied M (total dispersal rate in one dimension), n (a parameter that controls the shape of the distribution)

and k max (maximum dispersal distance) to obtain a range of dispersal situations with simulated σ values (𝜎 𝑠𝑖𝑚 2 , range 1.12 -47.01) comparable to that estimated from empirical case studies (𝜎 𝑒𝑠𝑡 2 : we found estimates for 62 plant and animal species, Fig. 1 and Table S1). Simulations thus differed in the values taken by σ 2 (giving the strength of IBD) but also in the nature of the dispersal kernelscharacterized by M, n and k max -that yielded these values.

Dispersal inference under IBD should consider samples at distances smaller than ca.

0.56𝜎/√2𝜇 [START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF], which is approximately equal to 18σ given our mutation rate. The total size of the simulated population (110×110) was large enough to contain the optimal sampling design for any simulation scenario with some extra space to limit edge effects. At grid edges we used "absorbing" boundaries in IBDSim whereby "the probability mass of going outside the lattice is equally shared on all other movements inside the lattice" (as defined by R. Leblois in IBDSim user manual). The total simulated population was kept constant but samples were taken from within a smaller area and defined as a square of side length 13σ (that is, with diagonal ≈18σ, Fig. 2). A different sampling grid was thus potentially associated with each simulation scenario.

To test for IBD and infer σ 2 we randomly sampled 99 individuals and 11 disjoint clusters of 9 individuals from within the defined sampling grid (Fig. 2). These samples were analyzed in Genepop V4.0 [START_REF] Rousset | GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]) using the estimator â for pairwise genetic distances among individuals (Rousset 2000) and F ST /(1-F ST ) for groups (Rousset 1997). The mean genetic distance among pairs of samples and the global F ST are shown in Table S2 andFig was used to infer σ 2 from the relationship 𝑏 = 1/(4𝐷𝜋𝜎 2 ) with D=1. We also recorded approximate 95% confidence intervals calculated using the ABC procedure implemented in Genepop [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF][START_REF] Rousset | GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]Watts et al. 2007). Each simulation was replicated 200 times (a number large enough to capture most of the variance across replicates, data not shown), giving 36×200=7200 simulations overall.

The power of the regression method based upon groups and individuals was calculated for the 36 simulation conditions as the proportion of replicates yielding a significant Mantel test (using 10 000 permutations and a significance threshold α=5%). The relative error was estimated as (𝜎 𝑒𝑠𝑡 2 -𝜎 𝑠𝑖𝑚 2 )/𝜎 𝑠𝑖𝑚 2 for each replicate, and we defined the bias and the precision of σ 2 estimates as the median and the dispersion of the relative error, respectively. Finally, the coverage was defined as the proportion of replicates where 𝜎 𝑠𝑖𝑚 2 was included within the confidence interval of 𝜎 𝑒𝑠𝑡 2 . These statistics were computed using only the replicates where a significant IBD was detected (5045 and 5357 replicates for the group and individual methods), because σ 2 would not be inferred from a dataset otherwise.

We used generalized linear models to test for i) differences in power, bias, and coverage between methods, and ii) the effect of parameters M, n, and k max on the power, bias, and coverage of each method (with adequate transformation of data or binomial error structure when necessary).

We included 𝜎 𝑠𝑖𝑚 2 as an explanatory variable in these models because it is directly linked to the strength of IBD and thus should be a primary determinant of a method's performances. All results reported in the main text are thus independent of the value taken by 𝜎 𝑠𝑖𝑚 2 . To control for the fact that different simulation conditions were associated with different sampling grids (i.e. different spatial scales), we also included the median of the Euclidean distances among pairs of samples as an explanatory variable. Finally, the models were of the form < response ~ 𝜎 𝑠𝑖𝑚 2 + Med.dist + Method > when we compared the two methods (Med. dist is the median of distances among samples) and of the form < response ~ 𝜎 𝑠𝑖𝑚 2 + Med. dist + n × M × k max > when we assessed the effects of simulation parameters, where response was either power, bias, or coverage.

Results

The power of the two methods, measured as the proportion of replicates yielding a significant Mantel test, dropped from 100% to ca. 20% in our two most extreme situations in terms of simulated dispersal (Fig. 3a, 𝜎 𝑠𝑖𝑚 2 =1.12, and Fig. 3i, 𝜎 𝑠𝑖𝑚 2 =47.05). However, the group approach lost power at an earlier stage as the strength of IBD decreased (Figs. 3d-e). Interestingly, this effect was primarily due to the shape parameter n (e.g. Figs. 3a,d,g), which had a significant effect independently of the value taken by 𝜎 𝑠𝑖𝑚 2 (p<0.001). When n was large (meaning that long-distance dispersal was rare, first row in Fig. 3) the two methods performed well, and M and k max took no effect. With low n the effect of k max became critical (last row of Fig. 3) but the two methods were equally affected. When n was intermediate (middle row of Fig. 3) the group approach was more strongly affected than the individual approach by an increase in k max (e.g. in Fig. 3d the power decreased from 100% to 80% for the individual approach vs 60% for the group approach when k max was increased from 10 to 50). These results convey the following information: i) the two methods have comparable power except in a restricted set of conditions, ii) those dispersal conditions where individuals outperformed groups resulted in 𝜎 𝑠𝑖𝑚 2 in [3.89-11.83], a range of values that fits well empirical estimates from real case studies (Fig. 1), including one study where IBD was detected with individuals only (Broquet et al. 2006a), and iii) these conditions are not determined solely by σ 2 but also by the shape of the underlying dispersal kernel (e.g. the range of 𝜎 𝑠𝑖𝑚 2 mentioned above is also spanned by simulations 25-32, and yet with these simulations the two methods have nearly identical power, Fig. 3c&f).

Besides power, we looked at the bias and the precision of σ 2 estimates with the median and the dispersion of the relative error, respectively. We found that the two methods generally underestimated the true σ 2 by a small proportion (Fig. 4) and that this bias was slightly more pronounced with the individual approach (-15% and -9% for individuals and groups overall simulations, p<0.001). This slight underestimation is in agreement with simulation results obtained by [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF][START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF] when the sampling design was not too far from theoretical optimum (e.g. simulations 1 and 2 in Table 2 of [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF], note that the bias is calculated for the regression slope). In agreement with results for the power, the two methods showed decreasing performance (increasing bias) with decreasing IBD strength (down to ca. -60% with 𝜎 𝑠𝑖𝑚 2 =47.05, Fig. 4i). Irrespective of 𝜎 𝑠𝑖𝑚 2 , the bias also appeared to be influenced by the shape of the dispersal kernel, and particularly by parameter k max (p<0.001). Increasing k max resulted in deeper negative bias whatever the values taken by the other parameters. Surprisingly, the precision of estimates followed an opposite trend (Fig. 4): the dispersion of estimated values around the median was greatest when IBD was strong, and this effect was particularly visible for small values of k max (left box-plot of each panel in figure 4). As a result, the situations where the bias was minor were generally not favorable in terms of precision. This observation is valid for the two methods, which showed no systematic difference in precision. Yet a difference can be noted regarding the replicates producing the worst estimates. Overall simulations with significant IBD, 17 such replicates (out of 10 402) produced estimates with a relative error larger than 150% (Fig. 4). These cases were all characterized by a near-zero slope estimate, yielding large relative errors. Interestingly, only 3 such cases were produced by the individual approach.

Finally, we did not find any difference in coverage between methods (p>0.05): the proportion of replicates where the 95% confidence interval of the estimate (𝜎 𝑒𝑠𝑡 2 ) included the true value (𝜎 𝑠𝑖𝑚 2 ) amounted to 86% using groups and 85% using individuals (Fig. S2). In the specific cases where a difference in coverage was visible the method with the best coverage also appeared to have larger confidence intervals (data not shown). Note that the coverage values reported here for each method independently may be overestimated, because the ABC procedure used to approximate 95% confidence intervals generally underestimates the upper bound for 𝜎 𝑒𝑠𝑡 2 [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF].

Discussion

Our simulations were parameterized so that the product Dσ 2 fits real situations where IBD patterns had been analyzed (Fig. 1 and Table S1). Yet the conditions of dispersal inference varied widely between simulations for the following reason: the number of samples was kept constant across simulations (99 genotypes) while the sampling scale was set with respect to 𝜎 𝑠𝑖𝑚 2 in order to fit the methods' requirements (distance between samples < 0.56𝜎 𝑠𝑖𝑚 √2𝜇 ⁄ ). It means that the density of the sampling effort decreased with increasing 𝜎 𝑠𝑖𝑚 2 , giving us a range of conditions where the inference of dispersal went from being very favored (when 𝜎 𝑠𝑖𝑚 2 is small and IBD is steep with respect to the sampling scale) to very limited (with larger 𝜎 𝑠𝑖𝑚 2 ). This variation allowed us to explore potential differences between the individual-based and group-based methods.

We find that there is only a small region of parameters where individual sampling outperformed group sampling, and this advantage bears upon power only (we found no sizeable differences in accuracy, precision, and coverage between the two approaches). However, we note that intermediate situations, where the power of the individual-based regression approach was greater than that of the group approach, appeared to cover the range of situations most commonly encountered in natural situations, at least in terms of 𝐷𝜎 2 (Fig. 1, exactly half of the reviewed empirical estimates fall in the 𝐷𝜎 2 region where the individual approach can outperform the group approach, depending on dispersal distributions).

Interestingly, the difference in performances between methods is due to particular conditions of 𝜎 𝑠𝑖𝑚 2 but also to the shape of the dispersal kernel (decreasing n significantly affected the difference in power between methods independently of 𝜎 𝑠𝑖𝑚 2 , see Figs. 3a,d,g). Based upon empirical finding for a forest-dwelling mammal, the American marten, we had the intuition that dispersal kernels characterized by a fat tail of long distance events could affect IBD patterns based upon groups more than individuals (Broquet et al. 2006a). But this idea is not supported by theory (Rousset 2000), and our simulation results suggest that although there really is some effect of the shape of the dispersal kernel on the power of the two methods, it is not particularly due to long distance dispersal.

We also found a slightly reduced risk to get extremely biased estimates with the individual approach (considering those few estimates that were off by 150% or more, most came from group sampling).

Furthermore, the accuracy of each method increased with the proportion of simulation replicates where the two methods yielded a significant IBD pattern. This means that when one method yields a significant result but the other one does not then there is a higher risk of bias using either approach.

In other words, with adequate datasets that fulfill the methods' assumptions, the power difference that may favor the individual-based approach occurs in situations where the risk of bias is anyways higher on average.

There are a number of relevant issues that were not considered here, such as the effects of spatial and temporal heterogeneity in population density on the relative performances of each approach (the density was set to 1 individual per node in all our simulations, see [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF][START_REF] Leblois | Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data[END_REF] for different conditions with individual sampling). Whether or not such factors could interact with our findings is difficult to tackle, even using simplified simulations. Moreover, all our simulations fulfilled one critical assumption of IBD-based inferences (Rousset 1997(Rousset , 2000)):

migration and drift are stable in space and time, and the pattern of increase of differentiation with geographic distance has reached equilibrium. The results presented here do not apply to other situations, which are irrelevant for inferring dispersal from IBD slopes, though the method seems robust to some disequilibrium situations [START_REF] Leblois | Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data[END_REF]). Finally, we did not explore the effect of the number of samples (e.g. the number and the composition of groups). We chose to use rather small groups to get conservative results with the group approach, and because it is difficult to design simulation conditions that harmonize the requirements for sampling scale, useful 𝜎 𝑠𝑖𝑚 2 , and simulation and analysis time. In a pilot study we found nonetheless that increasing the total number of individuals sampled for each method benefited more to the group approach (data not shown).

Our findings suggest that when the methods are properly applied in continuously distributed populations there is only a slight advantage in using individuals as the sampling unit. Other considerations might thus be more important, such as the spatial scaling of IBD studies. As shown by previous work, the study scale should be large enough so that dispersal becomes spatially limited (unlike in the island model, which may apply at a shorter scale, e.g. see [START_REF] Kerth | Colonization and dispersal in a social species, the Bechstein's bat (Myotis bechsteinii)[END_REF], and, more critically, local enough so that the effect of gene flow does not faint out in front of mutation and is not blurred by non-equilibrated patterns (such as signatures of past colonization, e.g. [START_REF] Austin | Controlling for the effects of history and nonequilibrium conditions in gene flow estimates in northern bullfrog (Rana catesbeiana) populations[END_REF]. Hence priority should be given to identifying the right study scale and choose the sampling unit based upon the spatial distribution of individuals (Rousset 2000) and sampling possibilities rather than intrinsic properties of the methods. We emphasize that our conclusions about the detailed effect of dispersal parameters should not be extrapolated without caution to systems more complex than the simulations described here. But one robust result of this study is that in any case the choice of adequate spatial and temporal scales seems much more important than the sampling unit in continuously distributed populations. Empirical values were obtained from a literature survey of significant IBD patterns for animal and plant case studies that investigated two-dimensional spatial genetic structure (the product Dσ 2 has a different scale in 1D studies, Rousset 1997). These values were either taken directly from the papers, or calculated from related statistics, such as Sp [START_REF] Vekemans | New insights from fine-scale genetic structure analyses in plant populations[END_REF]. When more than one value was available for a given species in a specific paper, only one was retained for drawing the histogram. Most empirical values included in this comparison are taken from the review by [START_REF] Vekemans | New insights from fine-scale genetic structure analyses in plant populations[END_REF], completed with results from additional papers reviewed in our Table S1 (supplementary material). Vertical lines show the lower and upper limits of the region in which individual-based analyses can outperform group-based analyses (see results). Note that the x axis is log-scaled for a better visualization of the distributions.

Figure 2 -Principle of the sampling design. The actual simulations used a 110×110 grid, large enough to contain a square of side length 13σ for any of the conditions listed in Table S1. Ninety-nine individuals or 11 groups of 9 individuals were randomly sampled from within this grid to infer σ 2 using isolation-by-distance patterns. between pairs of individuals (white boxes) or groups (grey). Data from 200 replicates per simulation are shown (simulation conditions as in Figure 3). The solid line in each box shows the median of the error distribution, the box shows the 25% and 75% quantiles, and the whiskers show the full range of the errors. In cases where the whiskers extend beyond the plotting region, 1 to 3 replicates (out of 200) had a relative error greater than 1.5 and are not shown here. Table S1: Literature survey of empirical Dσ 2 values estimated from significant IBD patterns for animal and plant case studies that investigated two-dimensional spatial genetic structure (the product Dσ 2 has a different scale in 1D studies, Rousset 1997). These values were either taken directly from the papers, or calculated from related statistics, such as Sp [START_REF] Vekemans | New insights from fine-scale genetic structure analyses in plant populations[END_REF]. When more than one value was available for a given species in a specific paper, only one was retained for drawing the histogram (see footnotes). replicates per simulation are shown (simulation conditions as in Figure S2).
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Table S2 :

 S2 Simulation conditions. The parameters M, n, and k max set the shape of the distribution of dispersal distances in the simulations. The values taken by these parameters result in a range of dispersal conditions characterized by 𝜎 𝑠𝑖𝑚 2 . The genetic structure observed at equilibrium is given by the mean pairwise genetic distance between sampled individuals (a) or groups (F ST /(1-F ST ) and the global F ST averaged over 200 simulation replicates.

	Simulation			M	n	K max	2 𝜎 𝑠𝑖𝑚	a	mean genetic distance F ST /(1-F ST )	F ST
	1			0.4	2.8	Taxon 10	Sampling unit Density 1.12 0.202	Unit	Dσ 2 0.103	Reference 0.093
	Homo sapiens 2			0.4	Mammal 2.8 25	group 1.53	24 0.201	ind/km² 17 0.101	(Rousset 1997) 0.091
	Dipodomys spectabilis 3 Gnypetoscincus queenslandiae 0.4 4 0.4 5 0.4	Mammal 2.8 50 Reptile 2.8 100 2.2 10	individual 1.83 individual 2.01 1.99	0.0002 ind/m² 2.6 0.203 0.103 0.0136 ind/m² 6.7 0.200 0.103 0.159 0.071	0.093 (Rousset 2000) 0.093 (Sumner et al. 2001) 0.066
	Chamaecrista fasciculata 6	0.4	Fabaceae 2.2 25	group 3.89	-0.151	-	10.7 0.064	(Fenster et al. 2003) 0.060
	Ostrinia nubilalis 7			0.4	2.2	Insect	50	group 6.03	-0.151	-	4.9 0.063	(Martel et al. 2003) 0.059
	Crassostrea virginica 8		0.4	Mollusc 2.2 100	group 7.85	0.24 ind/km² 113.7 0.154 0.064	(Rose et al. 2006) 0.060
	Martes americana 9 Coenagrion mercuriale	a	0.4 0.4 0.4	Mammal 1.8 10 Insect 1.8 25 1.8 50	individual 3.08 individual 7.93 15.23	0.46 ind/km² 6.6 0.133 0.050 0.0022 ind/m² 30.7 0.120 0.040 0.115 0.037	0.047 (Broquet et al. 2006) 0.038 (Watts et al. 2007) 0.036
				0.4	1.8	100	group 23.13	0.0023 ind/m² 31.3 0.119 0.037	0.035
	Plethodon cinereus		0.6	Amphibian 2.8 10	group 1.68	2.82 0.101	ind/m² 9.9 0.074	(Cabe et al. 2007) 0.068
	Microtus arvalis			0.6	Mammal 2.8 25	individual 2.30	1000 ind/km² 16.6 0.101 0.074	(Gauffre et al. 2008) 0.068
	Bonasa bonasia Milicia excelsia b Corrallium rubrum	c		0.6 0.6 0.6 0.6	Bird Moraceae (tree) 2.8 50 2.8 100 2.2 10 Cnidaria 2.2 25	individual 2.75 individual 3.02 2.99 group 5.85	5.5 0.104 4.96 ind/km² 12.3 ind/km² 5 0.075 0.104 0.075 0.071 0.051 --8 0.065 0.043	0.069 (Sahlsten et al. 2008) 0.069 (Bizoux et al. 2009) 0.048 (Ledoux et al. 2010) 0.041
	(a) Based upon the data used to compare group-and individual-based approaches. (b) Computed from Table 2 for 0.6 2.2 50 9.08 0.063 0.042 0.040
	population Mindourou. (c) Computed from the slope value given in Fig. 2 for population Catalonia. 0.6 2.2 100 11.83 0.064 0.042	0.040
				0.6	1.8		10	4.63	0.050		0.035	0.034
				0.6	1.8		25	11.95	0.041		0.026	0.025
				0.6	1.8		50	22.99	0.038		0.023	0.022
				0.6	1.8	100	34.98	0.041		0.023	0.023
				0.8	2.8		10	2.24	0.077		0.057	0.054
				0.8	2.8		25	3.08	0.072		0.052	0.049
				0.8	2.8		50	3.68	0.075		0.053	0.050
				0.8	2.8	100	4.03	0.076		0.055	0.052
				0.8	2.2		10	4.00	0.047		0.036	0.034
				0.8	2.2		25	7.83	0.040		0.030	0.029
				0.8	2.2		50	12.16	0.039		0.028	0.027
				0.8	2.2	100	15.84	0.039		0.029	0.028
				0.8	1.8		10	6.20	0.031		0.024	0.023
				0.8	1.8		25	16.02	0.020		0.016	0.016
				0.8	1.8		50	30.86	0.018		0.015	0.015
				0.8	1.8	100	47.05	0.020		0.015	0.014
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