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An adaptive sparse grid method for elliptic

PDEs with stochastic coefficients

Jocelyne Erhel, Zoubida Mghazli, Mestapha Oumouni

Abstract

The stochastic collocation method based on the anisotropic sparse
grid has become a significant tool to solve partial differential equations
with stochastic inputs. The aim is to seek a vector weight and a con-
venient level for the method. The classical approach uses a posteriori
approach on the solution, yielding to an additional prohibitive cost with
a large stochastic dimension.

In this work, we discuss an adaptive approach of this method to
calculate the statistics of the solution. It is based on an adaptive ap-
proximation of the inverse diffusion parameter. We construct an efficient
error indicator which is an upper bound of the error on the solution. In
the case of unbounded variables, we use an appropriate error estimation
to compute suitable weights of the method. Numerical examples are
presented to confirm the efficiency of the approach and showing that
the cost is considerably reduced without loss of accuracy.

key words: Elliptic PDEs with random coefficients, Stochastic collo-
cation method, Anisotropic sparse grid, Adaptation method.

1 Introduction

The Monte Carlo method [9] is the most classical approach used to compute
statistical quantities of interest depending on the solution of partial differen-
tial equation with stochastic inputs. It consists of solving M deterministic
problems, where M is the number of independent and identically distributed
simulations (iid) of the parameters. The main disadvantage of this approach
is its slow convergence given by the order O( 1√

M
), hence the method generates

usually an exorbitant computational effort.
Recently, spectral methods have been developed such as the stochastic

finite element and stochastic collocation methods. They offer a robust tool for
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solving problems of stochastic PDE [12, 3, 2]. They approach the response
of the model as a stochastic function by a polynomial interpolation in the
stochastic space and provide an exponentially convergent approximation when
the solution of the problem is a smooth function with respect to the stochastic
variable. However, they require solving a large deterministic problem and
this limiting their application sometimes to the problem with small stochastic
dimension.

Those methods suffer from the curse of dimensionality, since the computa-
tional cost increases exponentially with a stochastic dimension and sometimes
those methods are impracticable for very large dimension. Therefore, when
the stochastic dimension is moderately large, it is interesting to minimize the
cost and the effort of the resolution. This can be done by carefully selecting
the stochastic degrees of freedom.

In this work, we discuss the anisotropic sparse grid method with adaptive
approach inspired from the works [3, 16, 8]. In [8], we have introduced the
Kahrunen-Loève expansion of the inverse of the diffusion parameter where
we have used the random variables basis of this expansion to compute the
average solution of one dimensional elliptic problem. Motivated by this work,
we use this inverse of the diffusion to construct an error indicator to carefully
choosing the parameter of the collocation method which are the level and
the anisotropic weights. More precisely, we give an appropriate expansion of
the indicator on the Lagrange polynomials basis, then we use this basis to
construct the solution of the stochastic problem. We prove that this indicator
satisfies an upper bound of the error. This process requires only a sequence of
interpolation problems unlike the traditional approach which requires a large
sequence of deterministic problems.

This paper is organized as follows. In the first section, we introduce the
mathematical problem setting with a finite noise assumption. In section 2, we
recall the stochastic collocation method based on the full tensor product and
sparse grid interpolation. In Section 3, we introduce an indicator which will be
used to determine the stochastic degrees of freedom of the collocation method.
We prove that this indicator gives an upper bound of the error on the solution.
Finally, in section 4, we present numerical examples to illustrate the efficiency
of the proposed approach and compare with the traditional approach.

2 Problem formulation

Let (Ω,F , dP) be a complete probability space, where Ω is the space of
elementary event, F ⊂ 2Ω is the σ-algebra of events and P is the probabil-
ity measure. Also, we consider a bounded domain D ⊂ R

d, with a smooth
boundary ∂D. The parameters k and f are two random fields on Ω×D. We
focus on the following linear elliptic boundary value problem: find a stochastic
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function, u : Ω×D −→ R such that the following equation holds (a.s) in Ω:

(Ps)

{

−div(k∇u) = f in Ω×D,

u |∂D= 0.
(1)

We make the following assumptions on the random parameters k and f to
keep the well-posedness of the problem (Ps).

Assumptions 1:

• H1: f belongs in Lp(Ω)⊗ L2(D), for all p ∈ [1,∞[.

• H2: There exist kmin, kmax such that, for each ω ∈ Ω (a.s) we have

0 < kmin(ω) ≤ k(ω, .) ≤ kmax(ω) and k−1
min ∈ Lp(Ω).

Let H1
0 (D) be the subspace of H1(D) consisting of the functions with vanishing

trace on ∂D, then we define the space Lp(Ω)⊗H1
0 (D),

Lp(Ω)⊗H1
0 (D) :=

{

v : Ω −→ H1
0 (D);

∫

Ω

‖v‖p
H1

0 (D)
dP < ∞

}

.

To introduce the stochastic discretization, we first state some finite dimensional
assumption on the parameters k and f (see [3, 16, 17]).

2.1 Finite dimensional noise

In many practical problems, random coefficients are parameterized by a
finite number of uncorrelated random variables, sometimes independent, as in
the case of a truncated Karhunen-Loève or Fourier expansion [14, 15, 2]. This
motivates us to assume that k and f are parameterized by N random variables
{Yn}Nn=1. The number N is called the stochastic dimension.

Assumptions 2 (Finite dimensional noise)
The stochastic fields k and f used in the computations are parameterized

by a random vector Y = (Y1, ..., YN) with N components such as k(ω, x) =
k(Y(ω), x) and f(ω, x) = f(Y(ω), x).

We denote Γn := Yn(Ω) the image of the set Ω by Yn for each n = 1, . . . , N
and Γ the image Y(Ω). We assume that the components of Y are independent
and ρn is the density function of each Yn. Then Y has a joint probability
density ̺(y) =

∏N
n=1 ρn(yn), ∀y ∈ Γ and Γ :=

∏N
n=1 Γn.
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Exemple1 (Karhunen-Loève (K-L) expansion)
The Karhunen-Loòve expansion [14, 15] allows to expand each random field

k ∈ L2(Ω)⊗L2(D) in the series expansion given by the product of deterministic
functions and a random variables:

k(ω, x) = E[k](x) +
∞
∑

n=1

√

λnφn(x)Yn(ω), (2)

where {λn}∞n=1 et {φn}∞n=1 are respectively eigenvalues and eigenfunctions so-
lution of the following eigenvalue problem:

∫

D

cov[k](x, z)φ(z)dz = λφ(x).

Where cov[k](x, z) := E[k(., x)k(., z)]−E[k(., x)]E[k(., z)] and {Yn}∞n=1 are un-

correlated random variables given by Yn =
1√
λn

∫

D

(k(., x)− E[k(x)])φn(x)dx.

We define the truncated (K-L) expansion kN by,

kN(ω, x) = E[k](x) +
N
∑

n=1

√

λnφn(x)Yn(ω). (3)

Exemple2 (A nonlinear coefficient)
In some cases, to ensure some properties for data, as the positivity, the

parameter k is given by a nonlinear transformation of a Gaussian field G like
that k = g(G), where g > 0 is non negative and smooth. A widely used
example is a log-normal coefficient k(ω, x) = eGN , where GN is the (K-L)
truncation of the Gaussian field G.

2.2 Strong formulation

The stochastic functions k and f are parameterized by the vector Y as
in Assumption 2, then by Doob-Dynkin’s lemma, the solution u of (Ps) can
be also parameterized by Y such that u(ω, x) = u(Y(ω), x). Therefore, we
introduce the strong deterministic problem obtained by projecting (Ps) in
H1

0 (D) for all y in Γ (a.e):







Find u(y, .) ∈ H1
0 (D) such that

∫

D

k(y, .)∇u(y, x).∇v(x)dx =

∫

D

f(y, x)v(x)dx ∀v ∈ H1
0 (D).

(4)

for all y in Γ (a.e), by Lax-Milgram theorem, the problem (4) is well posed
and u(y, .) satisfies:

‖u(y, .)‖H1
0 (D) ≤ CDk

−1
min(y)‖f(y, .)‖L2(D), (5)
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where CD is the Poincaré constant. Under Assumption (H1,H2), the solution
u belongs in Lp

̺(Γ)⊗H1
0 (D) for all p ≥ 1, since:

E[‖u‖p
H1

0 (D)
] ≤ C

p
DE[k

−p
min‖f‖pL2(D)] ≤ C

p
D

√

E[(k−1
min)

2p]E[‖f‖2pL2(D)] .

3 Stochastic collocation method

The stochastic collocation method has the same principle as Monte Carlo
method. It gives realizations of u by solving (4) at deterministic knots {yj}j of Γ
and construct an approximation uh,p of u in the tensor space Wp,h := Pp(Γ)⊗
Vh(D). Where Vh(D) is the standard finite element space and Pp(Γ) is the
span of tensor product polynomials with degree at most p = (p1, ..., pN). The
method is fully parallelized and provide exponential convergence when k and
f are smooth with respect to y. We introduce the semi-discrete approximation
uh obtained by projecting (4) into Vh(D) for (a.s) y ∈ Γ:







Find uh(y, .) ∈ Vh(D) such that
∫

D

k(y, .)∇uh(y, x).∇vh(x)dx =

∫

D

f(y, x)vh(x)dx, ∀vh ∈ Vh(D).
(6)

We solve (6) at suitable knots {yj}j of Γ, then we obtain the family {uh(yj, .)}j
to construct an approximation uh,p by multi-dimensional polynomial interpo-
lation . It can be done either by a full tensor product rule of one-dimensional
interpolation or on the sparse grid given by the Smolyak algorithm [18, 19].

3.1 Full tensor product interpolation

The full tensor product interpolation is given by a product of one-dimensional
interpolation, where a high order is used in each dimension. For n = 1, ..., N ,
let in ∈ N

+ a level of one-dimensional interpolation, and X in := {yn,1, ..., yn,m(in)}
is a set of m(in) collocation points in Γn.

For v ∈ C0(Γn;Vh(D)), we introduce a sequence of one-dimensional La-
grange interpolation operator U in : C0(Γn;Vh(D)) −→ Ppn(Γn)⊗Vh(D) defined
by:

U in(v)(z, x) =

m(in)
∑

j=1

v(yn,j, x)ℓ
in
n,j(z), (7)

where ℓinj (z) =
∏m(in)

r=1,r 6=j
z−yn,r

yn,j−yn,r
is the Lagrange polynomial with degree pn =

m(in)− 1. We define the full tensor product interpolation on C0(Γ;Vh(D)) by:

Aiv(y, x) := U i1 ⊗ . . .⊗ U iN v(y, x) =
∑

j≤m(i)

v(yj, x)L
i
j(y), (8)
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where p = (p1, . . . , pN ), m(i) = (m(i1), . . . ,m(iN )) the tensor space Pp(Γ) :=
⊗N

n=1Ppn(Γn) and we construct the knots in Γ by yj = (y1,j1 , . . . , yn,jn , . . . , yN,jN )
where each yn,jn ∈ X in . For each i, j := (j1, . . . , jN ) and y = (y1, . . . , yn) ∈ Γ, we
set Li

j(y) = ⊗N
n=1ℓ

in
n,jn

(yn) the multidimensional Lagrange polynomial.

3.2 Standard sparse grid method

The Standard sparse grid method is based on the Smolyak algorithm [18, 19]
which provides an effective way to approach multivariate functions by a polynomial
interpolation. It is given by linear combinations of product formulas (8) where in each
dimension, a small order of interpolation is used, this provides a significant reduction
of the full interpolation complexity and the curse of dimensionality is reduced.

For each n = 1, . . . , N , we consider the one-dimensional operator U in associated
to the knots {yn,j}m(in)

j=1 as given in (7), and let ∆in = U in −U in−1 be an incremental
operator with U0 = 0, for w ∈ N, we consider the set of multi-level defined by

X(w,N) :=

{

i ∈ N
N , i ≥ 1, |i| :=

∑N
n=1 in ≤ w +N

}

. The Smolyak interpolation

operator A(w,N) with level w is given by the formula:

A(w,N)v =
∑

i∈X(w,N)

(△i1 ⊗ . . .⊗△iN )v. (9)

An equivalent formula (see [19]) which is more practical than (9) is given by:

A(w,N)v =
∑

w+1≤|i|≤w+N

(−1)w+N−|i|
(

N − 1

w +N − |i|

)

U i1 ⊗ . . .⊗ U iN v. (10)

To compute the interpolation A(w,N)v given in (10), we need to evaluate v at
knots of the "sparse grid" H(w,N) =

⋃

w+1≤|i|≤w+N{X i1 × . . . × X iN }. In the case
when the knots are nested, the Smolyak interpolant becomes more interesting, since,
a significant reduction of the effort can be gained. Several nested points can be
used according to their degree of accuracy and their growing number. For example:
Newton-Cotes, Clenshaw-Curtis, Gauss-Patterson [7, 10, 16, 6].

3.3 The anisotropic sparse grid method

In the standard sparse grid method, all of the directions are equitably treated
globally with the same order, since any permutation of an admissible multi-levels in
X(w,N) is also admissible. However, when the dimensions have different behaviors,
the solution is highly anisotropic and the convergence rate can be deteriorated when
we use this isotropic method. Thus, an anisotropy interpolation is needed to improve
the convergence.

We follow closely [16], to define the anisotropic sparse grid formula. We consider
a suitable weights α1, . . . , αN , for each dimension, α = min

1≤,n≤N
αn and the generalized

sets of multi-levels: Xα(w,N) :=

{

i ∈ N
N , i ≥ 1,

∑N
n=1(in − 1)αn ≤ wα

}

and
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Yα(w,N) =

{

i ≥ 1 : wα <
∑N

n=1 αnin ≤ wα+ |α|
}

with |α| =
∑N

n=1 αn. Then the

anisotropic sparse grid formula is given by:

Aα(w,N)v =
∑

i∈Xα(w,N)

(△i1 ⊗ . . .⊗△iN )v, (11)

An equivalent formula of (11) is given by the product rule [11]:

Aα(w,N)v =
∑

i∈Yα(w,N)

cα(i)U i1 ⊗ . . .⊗ U iN v, (12)

where the combining coefficients cα(i) =
∑

j∈{0,1}N ,i+j∈Xα(w,N)

(−1)|j|.

The computation of Aα(w,N)u requires to evaluate v on the sparse grid:

Hα(w,N) =
⋃

i∈Yα(w,N)

{X i1 × . . .×X iN }. (13)

The anisotropic weights {αn}Nn=1 allows to approximate adaptively u. In the next
section we discuss a posteriori strategy to compute them with a reduced cost.

4 Error estimation and adaptivity in the stochas-

tic space

The computational cost increases exponentially according to the stochastic di-
mension, sometimes, it can be dramatic. Thus, it is interesting to seek an appropriate
way to reduce the global computation cost by carefully selecting suitable stochastic
degrees of freedom and without loss of accuracy by an efficient strategy of adaptation.

4.1 Motivation

In the traditional approaches, when we attempt to approximate u by the full
tensor product, adaptivity in the stochastic space consists of to start with a free
degree of interpolation and increase the degree until reaching the desired accuracy,
as described in [2, 3]. This approach seems very expensive, since in each iteration,
we solve a set of deterministic PDE problems, which increases with N . The same
strategy is used to determine the weights {α}Nn=1 and the level w of the formula
Aα(w,N)u.

In what follows, we introduce an indicator λ to determine with a reduce cost, the
suitable stochastic degree of freedom to compute u. The problem (Ps) is equivalent
to the following system:

{

−∇u = k−1p
div(p) = f.

The first equation shows that each stochastic dimension of u and k−1p have the
same behavior. From the second equation we expect that p and f have also the same
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behavior with respect to the stochastic variable. Therefore, we propose to combine
those parameters to obtain an indicator λ = k−1f , which allows to identify with a
small effort the behavior of different directions of u.

In [8], for one-dimensional elliptic problem, we have computed the Karhunen-
Loève expansion for k−1, and use its random variables as a basis to build a projection
of u which gives a good approximation of the expectation E[u]. In this work, we
propose to use a similar methodology to approximate u in L2(Γ). We expand the
indicator λ on the multi-dimensional Lagrange polynomials basis defined in (8) or
(10, 12), then we use this basis to approximate the solution u.

The following lemma concerns an estimate of the error ‖u−Aiu‖L2(Γ;H1
0 (D) on u

when we approximate it by the full tensor interpolation (8). This is the main result
given in [3] showing that each direction contributes to the global error with a decay
rate depending on the size of the region where u is analytic.

Lemma 4.1 ([3]) Let u be the solution of (Ps), Aiu its full interpolation defined in
(8). We suppose that, in each direction, u admits an analytic extension in the region
Σn(Γn; τn) := {z ∈ C, dist(z,Γn) ≤ τn}, with the size τn > 0. Then, there exists
CF > 0 is independent of each pn = m(in)− 1, such that:

‖u−Aiu‖L2
̺(Γ)⊗H1

0 (D) ≤ CF

N
∑

n=1

βn(pn)e
−νnp

θn
n (14)

• if Γn is bounded , θn = βn = 1 and νn = log

(

2τn
|Γn|

(1 +

√

1 +
|Γn|2
4τ2n

)

)

.

• if Γn is unbounded , θn = 1/2, βn = O(
√
pn) and νn = τn/2.

The next proposition shows that the error ‖λ − Aiλ‖
L2
̺(Γ)⊗L2(D)

is an upper bound

of the error ‖u−Aiu‖
L2
̺(Γ)⊗H1

0(D)
.

Proposition 4.1 Let u be the solution of (Ps), λ = k−1f and Aiu and Aiλ their
approximations by the formula (8). Then we have the following estimate:

‖u−Aiu‖L2
̺(Γ;H

1
0 (D)) ≤ C‖λ−Aiλ‖L2

̺(Γ,L
2(D)).

Where the positive constant C depends on u and λ.

The estimate given in Lemma 4.1 shows that the interpolation Ai converges roughly
like O(e−νp) where ν = minn νn and p the order used in its associated dimension. In
the other word, there is p̃ > 0 such that:

C1e
−νp ≤ ‖u−Aiu‖L2

̺(Γ;H
1
0 (D)) ≤ C2e

−νp for each p > p̃.
Thus, to compare ‖u − Aiu‖L2

̺(Γ;H
1
0 (D)) with ‖λ − Aiλ‖L2

̺(Γ;H
1
0 (D)) it is enough

to compare τn of u with that of λ for each n = 1, . . . , N . To do this, we adopt the
following notations: for each n = 1, . . . , N , we put Γ∗

n =
∏N

j 6=n Γj , y = (yn, y
∗
n) where

yn ∈ Γn and y∗n ∈ Γ∗
n. We also suppose that f is polynomial with respect to y.
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Proof of the Proposition 4.1
1) First, we consider the case where k is linear according to y: k = b0+

∑N
n=1 bnyn.

Since f is polynomial on y, it is enough to compare the analyticity region of u with
that of k−1. The function u(., y∗n, x) as a function of the variable yn, can be extended
analytically in the ball {|z − yn| < τn(u)} and we have by d’Alembert’s rule:

1

τn(u)
= lim sup

m−→∞

‖
√
k∂m

yn
∇u‖

L2(D)

m!

‖
√
k∂m−1

yn ∇u‖
L2(D)

(m−1)!

.

Since, we can write: k−1(z, y∗n, x) =
k−1(yn, y

∗
n, x)

1 +
(z − yn)bn(x)

k(yn, y∗n, x)

, then k−1(., y∗n, x) is analyti-

cally extended in the region {|z − yn| < τn(k
−1)}, such that:

1

τn(k−1)
= ‖bn

k
‖∞.

On the other hand, by deriving m-time the problem (4) with respect to yn we
obtain:

∂myn

∫

D
k∇u∇vdx =

∫

D

m
∑

l=0

(

m

l

)

∂lynk∂
m−l
yn ∇u∇vdx = ∂myn

∫

D
fvdx ∀v ∈ H1

0 (D),

for l ≥ 2 we have ∂lynk = 0 and ∂ynk = bn, then:

∫

D
k
∂myn∇u
m!

∇vdx = −
∫

D
bn
∂m−1
yn ∇u

(m− 1)!
∇vdx+

∫

D

∂mynf

m!
vdx. (15)

Taking v = ∂myn∇u in (15) and by Cauchy-Schwartz inequality we obtain:

‖
√
k∂myn∇u‖L2(D)

m!
≤ ‖bn

k
‖∞

‖
√
k∂m−1

yn ∇u‖L2(D)

(m− 1)!
+

CD
√

kmin(y)

‖∂mynf‖L2(D)

m!
.

Since f is polynomial on y, we have lim supm−→∞
‖∂m

yn
f‖

L2(D)

m! = 0, thus

lim sup
m−→∞

‖
√
k∂m

yn
∇u‖

L2(D)

m!

‖
√
k∂m−1

yn ∇u‖
L2(D)

(m−1)!

≤ ‖bn
k
‖∞.

Then we deduce that τn(u) ≥ τn(k
−1). Therefore, there exists C > 0 such that:

||u−Aiu||L2
̺(Γ;H

1
0 (D)) ≤ C||λ−Aiλ||L2

̺(Γ;L
2(D)).

2) We suppose now that k is non linear according to y as k(y, x) = g(b0(x) +
∑N

n=1 bn(x)yn), where g is an analytic and strictly positive function. Observe that
in this case, k satisfies the assumption ensuring the analyticity of u (see [3]). Let

9



{Vl}l a discretization of the set Γ, where for each element Vl with the size hl, the
following estimate holds:

k(y, x) ≈
N
∑

n=1

an(y
l, x)yn ∀y ∈ Vl.

Where yl is the center of Vl. Let Al
iu be the full interpolation for the restriction of

u in each element Vl, then by the previous case the following estimate holds:

||u−Al
iu||L2

̺(Vl;H
1
0 (D)) ≤ c̃||λ−Al

iλ||L2
̺(Vl;L2(D)). (16)

Furthermore, for all y in Vl, if we set ψl(y, ·) = u(y, ·)−Aiu(y, ·), we have:
Al

iψl = Al
iu−Al

i(Aiu) = Al
iu−Aiu, since Aiu is polynomial. According to the

classical hp convergence (see [2, 5]), with a small size hl, the following estimation
holds,

‖ψl −Al
iψl‖L2

̺(Vl;H
1
0 (D)) ≈ ĉhpl ‖ψl‖L2

̺(Vl;H
1
0 (D)) (17)

where p is the smallest order used in the directions of Al
i. Therefore, we deduce

||u−Al
iu||L2

̺(Vl;H
1
0 (D)) ≈ ĉhpl ||u−Aiu||L2

̺(Vl;H
1
0 (D)). (18)

Also by the same argument, we have:

||λ−Al
iλ||L2

̺(Vl;H
1
0 (D)) ≈ ĉhpl ||λ−Aiλ||L2

̺(Vl;L2(D)). (19)

Combining (18) and (19) with (16) we obtain in each Vl:

||u−Aiu||L2
̺(Vl;H

1
0 (D)) ≤ C̃||λ−Aiλ||L2

̺(Vl;L2(D)).

Then the estimation hold on Γ.

Remark 4.1 The result of the proposition is still true with Smolyak interpolation
Aα(N,w), since the accuracy of the formula Aα(N,w) depends on the size of the
analyticity region of the function. Moreover, when k is linear with respect to y, the
constant C can decrease with total number of collocation points used by Aα(w,N).

Remark 4.2 (Choice of the reference points) When we attempt to determine
a suitable polynomial degree pn according to direction n of Aiλ, we set the other
directions fixed at reference point y∗n and we seek the degree pn such that two successive
approximations are close. The degree m(in) may depend on y∗n, so it must be carefully
chosen. For a random field discussed in Section 2.1, the reference point y∗n = 0 is
adequate, since there is no interaction between directions.

In the next section, as an application of Proposition 4.1, we use the indicator
λ = k−1f to determine an appropriate level w and a weight vector α to compute
Aα(w,N)u.

10



4.2 Adaptive sparse grid

The main ingredients of the collocation method on the anisotropic sparse grid is
the weight vector α and the level w. The vector α takes into account the importance
between the dimensions. The level w is the total order of the interpolation, it controls
the cardinality of the knots of the grid. Then, when we determine suitable weights
and a convenient level w with a small cost, the method becomes more efficient.

4.2.1 Determination of the anisotropic weights

The main idea proposed in [17] consists of choosing each anisotropic weight αn as
the exponential rate of the convergence according the direction n i.e αn = νn, where
νn is the rate given in Lemma 4.1. The global error committed by the interpolation
Aiu can be split into N parts, ‖u−Aiu‖L2

̺(Γ,H
1
0 (D)) ≤

∑N
n=1 εn.

Each part εn is the error contribution in the direction n which is estimated by:

εn ≈ cne
−νnpn , when Γn is bounded , (20)

εn ≈ O(
√
pn)e

−νn
√
pn , when Γn is unbounded , (21)

When we attempt to solve highly anisotropic problem, we obtain numerically (Section
5) a non optimal vector weight with (21), since the resulting sparse grid is quite dense.
The anisotropic property of the weight can is reduced because the square

√· in (21).
In order to remedy to this situation when Γ is unbounded, we propose to use an
estimate error as in (20). We suppose that the density ̺ decreases like a gaussian
kernel, and each density ρn of Yn satisfies the following estimate:

ρn(z) ≤ Cne
−δz2 , Cn > 0 et δ > 0, ∀z ∈ R. (22)

We denote by Hp(t) ∈ Pp(R) the normalized Hermite polynomials,

Hp(t) =
1

√

p!2pπ
1
2

(−1)pe−t2 d
p

dtp

(

e−t2
)

.

We recall that they form a complete orthonormal basis of the space L2
µ(R), where

µ(t) = e−t2 . We note also hp(t) =
√

µ(t)Hp(t), the associated Hermite functions.
The following proposition gives an estimate of the error committed by Umv for an
entire function v satisfying (22). The proof is based on an estimate of the Fourier-
Hermite coefficients (see[4]) for an entire function decreasing as a gaussian kernel.

Proposition 4.2 We consider κ in L2
ρ(R;L

2(D)), U i(κ) its Lagrange interpola-
tion defined by m(i) Gauss points. We suppose that ρ satisfies (22), for each t ∈ R,
κ(t, .) have an entire extension in the complex plan, and there is ν > 0 such that

‖e−ν|z|κ(z)‖L2(D) ≤ Cν <∞, ∀z ∈ C. (23)

Then, there is a decay g > 0 and a constant C does not depend on m(i) such that:

‖κ(t, .)− U i(κ)(t, .)‖L2
ρ(R;L

2(D)) ≤ Ce−gm(i). (24)

11



Proof: We consider the function κ̃(t, x) = κ(w(t), x) where w(t) =

√
2t

δ
and the

expansion of κ̃ in Hermite polynomials basis:

κ̃(t, x) =
∞
∑

p=0

κp(x)Hp(t) where κp(x) =

∫

R

κ̃(t, x)Hp(t)e
−t2dt. (25)

We set F (t, x) := κ̃(t, x)e−
t2

2 , its Fourier-Hermite expansion is given by:

F (t, x) =

∞
∑

p=0

Fp(x)hp(t) where Fp(x) =

∫

R

F (t, x)hp(t)dt, (26)

The Hermite coefficients Fp in (26) are the same as in (25). Indeed,

Fp(x) =

∫

R

F (t, x)hp(t)dt =

∫

R

κ̃(t, x)e−t2Hp(t)dt = κp.

The function κ satisfies (23), then F decreases as a gaussian kernel, since

‖κ̃(t, x)‖e−t2/2 ≤ Cνe
√
2 ν
δ
te−t2/2 ≤ Cνe

− 1
2
(t−

√
2 ν
δ
)2e

ν2

δ2 ≤ de−qt2 ,

where d and q are positive, finite, and depending on ν and δ. Clearly F is an entire
function and decrease as a gaussian kernel, therefore (see [4]) the Fourier-Hermite
coefficients Fp decreases geometrically as:

Fp ≤ Ke−gp ∀p ∈ N,

where the constant K > 0 does not depend on p and the decay g > 0. The following
error can be bounded (see [3], Lemma 7) as:

‖κ(t, .)− Um(i)(κ)(t, .)‖L2
ρ(R;L

2(D)) ≤ min
v∈Pm(i)⊗L2(D)

max
t∈R

∣

∣

∣

∣

‖κ− v‖L2(D)e
− (tδ)2

4

∣

∣

∣

∣

. (27)

Taking v = Πm(i)κ in (27) the truncated Hermite expansion of κ up the orderm(i)−1,
and let ṽ = Πm(i)κ̃ that of κ̃. We deduce:

‖κ(t, .)− Um(i)(κ)(t, .)‖L2
ρ(R;L

2(D)) ≤ max
z∈R

∣

∣

∣

∣

‖κ−Πm(i)(κ)‖L2(D)e
− (zδ)2

4

∣

∣

∣

∣

≤ max
t∈R

∣

∣

∣

∣

‖κ̃−Πm(i)(κ̃)‖L2(D)e
− t2

2

∣

∣

∣

∣

≤
∞
∑

p=m(i)

‖κp‖L2(D)max
t∈R

∣

∣

∣

∣

Hp(t)e
− t2

2

∣

∣

∣

∣

≤ C1

∞
∑

p=m(i)

e−gpmax
t∈R

|hp(t)|.

Knowing that maxt∈R |hp(t)| ≤ 1 ( (see e.g. [4]), we get,
‖κ(t, .)− Um(i)(κ)(t, .)‖L2

ρ(R;L
2(D)) ≤ C1

∑∞
p=m(i) e

−gp ≤ C2e
−gm(i).
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Remark 4.3 When k = eG follows a log-normal law, the indicator λ is an entire
function. Thus, in the case of unbounded variables, we use the estimate (24) to
compute numerically the rate convergence in each direction of λ. Numerical tests have
shown that using estimate (24) yields a fast convergence of the formula Aα(w,N).

In order to determine the anisotropic weight, we use the bound given by the Propo-
sition 4.2 for both bounded and unbounded set Γ, we use the algorithm given in
[16] for the indicator λ instead of the function u. The bound given in (20) and (24)
is only true foe the Gaussian knots, then to obtain suitable weights , we use those
knots with the growth rule of the order m(in) = in for each dimension of λ.

Algorithm to determine αn

• We fix y∗n = 0, as a reference point, i.e yj = 0 for all j 6= n.

• Let m(̃in) = ĩn be an integer such that λ̃(yn, 0) := U ĩnλ(yn, 0) is considered
as a reference approximation according to the direction n.

• For each p = 1, . . . , ĩn − 1, we compute the error: errn(p) = ‖λ̃(yn, 0)− Upλ‖.

• We use a linear least squares algorithm to estimate αn and cn solutions of the
following minimization problem:

min
αn,cn

‖ log(errn)− log(cn) + Pαn‖2,

where errn is the vector with components of the error on λ and P is the vector
with components the number of collocation points.

We observe that with this algorithm the computation cost is clearly reduced. Indeed
to determine each αn with the indicator λ, we compute Pn = m̃n(m̃n+1)

2 interpolation
problems, while when we use u, we must solve Pn of a large linear systems. The
algorithm which compute the weights of u is given in [17], by the following steps:

• We fix y∗n = 0, as a reference point, i.e yj = 0 for all j 6= n.

• Let m(̃in) = ĩn be an integer such that ũh(yn, 0) := U ĩnuh(yn, 0) is considered
as a reference approximation of uh according to the direction n, where uh is
the finite element approximation of u.

• For each p = 1, . . . , ĩn−1, we compute the error: errn(p) = ‖ũh(yn, 0)−Upuh‖.

• We use a linear least squares algorithm to estimate αn and cn solutions of the
following minimization problem:

min
αn,cn

‖ log(errn)− log(cn) + Pαn‖2,

where errn is the vector with components of the error on uh and P is the
vector with components the number of collocation points.

13



Remark 4.4 In the computation of the vector α, we use the growth rule m(in) = in
to compute the interpolation U in since we need many results on the error to obtain
a good estimate of α using a linear squares method.

In practice, to accelerate the convergence of the Formula Aα(w,N), we use an
exponential growth rule m(in) = 2in−1 or at least, the linear growth rule m(in) =
2in − 1. Thus, most of the computation realized to determine the vector α for u
can not be reused to compute Aα(w,N)u, since only the knots of the grid Hα(w,N)
are involved in the construction of Aα(w,N)u. In particular, if the grid Hα(w,N)
is given by Gaussian knots, which are non nested points, almost the computation
realized to determine the vector α for u is not reuse to compute Aα(w,N)u.

4.2.2 Determination of the level w for Smolyak formula

In the classical approach, when we attempt to compute Aα(w,N)u, the appro-
priate level w satisfies ‖Aα(w,N)u − Aα(w + 1, N)u‖ ≈ ε, where ε is a desirable
tolerance. The cost requires by Aα(w+1, N)u is generally greater than the combined
cost of all previous levels, it is given by a large number of deterministic problems.

Non-linear coefficient

Motivated by Proposition 4.1, we use the indicator λ to determine the convenient
level w for the formula Aα(w,N), since the error ‖λ−Aα(w,N)λ‖ is an upper bound
of the error ‖u−Aα(w,N)u‖. The strategy consists of choosing the level w ∈ N such
that for a given desirable tolerance ε > 0, the interpolation Aα(w,N)λ satisfies:

‖λ−Aα(w,N)λ‖ ≤ ε

C
, (28)

where the constant C is given as in Proposition 4.1. It is shown in [17] that the error
committed by Aα(w,N)u satisfies the following bound:

‖u−Aα(w,N)u‖ ≈ C1‖u‖M−ν1 , (29)

where the decay rate ν1 depends on the analyticity of u. We have a similar bound
for the error committed by Aα(w,N)λ.

‖λ−Aα(w,N)λ‖ ≈ C1‖λ‖M−ν2 . (30)

Therefore, if we assume that ν1 ≈ ν2 in the case where k is non linear with
respect to y, we can estimate the constant C as follows:

C ≈ ‖u‖
‖λ‖ ≈ ‖Aα(0, N)u‖

‖Aα(0, N)λ‖ . (31)

The indicator λ allows us to determine a suitable w to compute Aα(w,N)u. By this
strategy we avoid great computations, since Aα(w,N)λ requires only a sequence
of the interpolation problems and we avoid computing Aα(w + 1, N)u given by a
sequence of PDE problems.

14



Linear coefficient

When the parameter k is linear with respect to y, the constant C given in Proposi-
tion 4.1 decrease with Mw, the number of the collocation points with level w, because
the size of the analyticity region of u is large than that of λ. The decay rates ν1
and ν2 as in (29,30) satisfies ν1 ≥ ν2 and depend on αmin the smallest anisotropic
weight vector α [17]. In this case we propose to estimate the constant C for each w
as follows:

C = Cw ≈ ‖Aα(0, N)u‖
‖Aα(0, N)λ‖M

−µ
w .

The decay rate µ > 0 is computed numerically by the following way, we estimate the
weight vector α for λ and consider ñ such that αñ = min1≤n≤N α, we compute only
the weight α̃ñ for u according to direction n = ñ and then we set µ = αñ − α̃ñ.

Using the indicator λ to determine a suitable level w of the formula Aα(w,N),
a significant reduction of the computational effort is kept. By this approach, the
computation of the weight of anisotropy and the interpolation Aα(w+1, N) required
only an evaluation of λ on the collocation knots and the sparse grid Hα(w + 1, N),
instead of solving a set of deterministic PDE problems.

5 Numerical Examples

This Section illustrates the convergence and effectiveness of the proposed adap-
tive approach to the stochastic linear elliptic problem, as described in Section 4. We
consider two cases of the parameter k, non-linear and linear with respect to y. The
computational results presented here are realized by Matlab software.

{

−div(k∇u) = f in Ω×D,
u |∂D= 0,

(32)

with D :=]0; 1[2 and f is deterministic f(ω, x) = cos(x1) sin(x2), x = (x1, x2) ∈ D.

5.1 Non-linear case

In the first example, we consider kN which is non linear with respect to the
stochastic variable and with one-dimensional spatial dependence:

kN (ω, x) = 0.5 + exp

(

Y1(ω)

(
√
πlc
2

)1/2

+
N
∑

n=2

ζnϕn(x)Yn(ω)

)

, (33)

the reals (ζn)
N
n=1 are strictly positive and given by:

ζn :=

(√
πlc

)1/2

exp

(−(⌊n2 ⌋πlc)2
8

)

, if n > 1

the functions {ϕn}Nn=1 are defined by:

ϕn(x) :=















sin

(

⌊n
2
⌋πx
2

)

, if n even,

cos

(

⌊n
2
⌋πx
2

)

, if n odd.
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Where lc is the correlation length and {Yn}Nn=1 are independent gaussian random
variables with mean zero and unit variance. The parameter kN is a truncation of
a log-normal field k = eG, where G is a Gaussian field with a Gaussian covariance
function [16, 17]. The order N is strongly related to the size lc, such that a large
value of lc corresponds to a small value of N , then the problem is strongly anisotropic
and vice-versa [2, 16, 17].

To check that the proposed approach is effective for the anisotropic Smolyak
method, we consider the case where lc = 1

2 with N = 11 and lc = 1
5 with N =

41. The finite element space of the spatial discretization is the span of piecewise
linear functions over a uniform triangulation of D with nd = 2712 unknowns. The
collocation points are the roots of the Hermite polynomials and Γ = R

d.
We will approximate the solution u by the interpolation Aα(w,N)u, then com-

pute E[Aα(w,N)u] and var[A(w,N)u] as an approximation of the mean value and
the variance of the function u respectively.

First, we determine the suitable weight vector α for the indicator λ = k−1f with
a posteriori approach then we seek a convenient level w such that the interpolation
Aα(w,N)λ satisfies a given threshold for E[λ]. Therefore, we use this vector α and
the level w to compute E[Aα(w,N)u] and var[A(w,N)u].

To determine the vector α in this case of unbounded set Γ, we use the bound
(24) given in Proposition 4.2 instead of the bound (21) proposed in [3, 16].

We denote α and α̃ the weight vectors obtained by a posteriori information with
the bound (24), respectively for λ and u. We also denote by α̂ the weight vector for
λ obtained using the bound (21).

Table 1 shows the first ten values of vectors α, α̃ and α̂. We remark that the
components of the vector α for the indicator λ are closely comparable with those of
the vector α̃ for u. However, α is completely different with α̂, since they are obtained
with different one-dimensional bound.

lc α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

1/2 2.57 2.26 2.27 4.31 4.31 8.18 8.18 12.50 12.51 20.58 20.59
1/5 3.13 2.55 2.55 2.88 2.88 3.4 3.4 4.34 4.35 5.92 5.92

lc α̃1 α̃2 α̃3 α̃4 α̃5 α̃6 α̃7 α̃8 α̃9 α̃10 α̃11

1/2 2.57 2.36 2.09 3.58 3.51 8.31 7.04 11.73 10.8 21.48 21.77
1/5 3.13 2.88 2.50 2.33 2.16 2.56 2.62 3.55 3.27 4.22 4.18

lc α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9 α̂10 α̂11

1/2 9.47 7.91 7.92 15.14 15.14 21.87 21.87 30.16 30.17 42.96 42.95
1/5 10.98 9.25 9.27 10.24 10.24 12.03 12.04 15.34 15.34 16.17 16.17

Table 1: The first eleventh values of the weights obtained by a posteriori
approach.

Figure 1 gives the cardinality of the grid Hα(w,N) and Hα̂(w,N). We observe
that the weights obtained by the error bound given in Proposition 4.2 are more
convenient than those obtained using the error bound O(e−

√
mg), since we obtained
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#Hα(w,N) ≪ #Hα̂(w,N).

Figure 1: #Hα̂(w,N) versus #Hα(w,N), (left lc = 0.5, right lc = 0.2).

In Figure (2), we compare #Hα(w,N) versus #Hα̃(w,N), we observe that they
are closely comparable, since Hα(w,N) ≈ Hα̃(w,N).

Figure 2: #Hα(w,N) versus #Hα̃(w,N), (left lc = 0.5, right lc = 0.2).

Proposition 4.1 shows that the error C‖λ − Aα(w,N)λ|| is an upper bound of
the error ‖u − Aα(w,N)u||, thus we use this error to determine a convenient level
w satisfying ‖u − Aα(w,N)u|| ≈ tol. The strategy consists of seeking w such that
C‖λ−Aα(w,N)λ|| ≈ tol, where the constant C is given in (31).

Figure 3 shows that the errors ‖u − Aα(w,N)u|| and C‖λ − Aα(w,N)λ|| have
the same behavior. We have taken Aα(9, N) and Aα(7, N) as a reference solution
for both functions u and λ, respectively when lc = 1

2 and lc = 1
5 .
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Figure 3: Error C‖E[λref − Aα(w,N)λ]‖ versus error on E[u] (left lc = 0.5,
right lc = 0.2).

5.2 Linear case

In the second example we consider a diffusion parameter kN which is linear with
respect to the stochastic variable y ∈ Γ where Γ is a bounded set in R

N :

k(ω, x) =
π2

6
+

N
∑

n=1

1

1 + n2
cos(nπx1) sin(nπx2)Yn(ω), x ∈ [0, 1]2.

The deterministic load function is given by f(ω, x) = 1 + sin(x1)x2Y1(ω). The
variables Y1, . . . , YN are independent and uniformly distributed in the box (−1, 1).

We take N = 51 and we compute α using a posteriori approach, we consider
Aα(9, N) as a reference solution for both functions u and λ. Table 2 gives the First
ten weights for λ = k−1f and u.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

α for λ 3.89 5.77 7.19 8.26 9.11 9.87 10.48 11.01 11.48 11.9
α̃ for u 4.24 6.44 8.00 9.32 10.19 10.92 11.53 12.06 12.53 12.96

Table 2: The first ten values of the weights obtained by a posteriori approach.

We can see that the components of α are slightly smaller than the components
of α̃. This is consistent with the theory, since when k is linear with respect to y, the
analyticity region of u is larger than that of λ (proof of Proposition 4.1).

Figure 5.2 (left) shows that #Hα(w,N) is slightly smaller than #Hα̃(w,N). This

could be explained by the fact that numerically we have
α

min(α)
≥ α̃

min(α̃)
.

Figure 5.2 (right) compares the error on E[u] with Cw‖E[λref − Aα(w,N)λ]‖,
where Cw decreases with Mw = #Hα(w,N) the total number of points, we ap-
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proximate it by Cw ≈ ‖Aα(0,N)u‖
‖Aα(0,N)λ‖M

µ
w, where the decay rate is defined by µ =

min(α̃)−min(α) = α̃1 − α1.

Figure 4: Left: Error Cw‖E[λref − Aα(w,N)λ]‖2 versus error on E[u].
Right: Sparse grid cardinality #Hα(w,N) versus #Hα̃(w,N).

6 Conclusion

In this work we have discussed one strategy of an adaptive collocation method
based on the sparse grid method to approximate an elliptic problem with random
inputs and data. The approximation of the problem is given by an anisotropic
collocation in the stochastic space and the Finite Element approximation in the
physical space. The emphasis has been on to seek the suitable number of knots in
each dimension and the level of the method. We have introduced an error indicator
based on the inverse of the diffusion coefficient and we have shown that this indicator
gives an upper bound of the error on the solution.

The strategy consists of using this indicator to determine a convenient weight vec-
tor and level of the anisotropic sparse grid formula. The classical approach is based
on a posteriori information on the solution and yields an additional cost, which is
given by the resolution of a large sequence linear systems. Here the adaptation ap-
proach requires only a set of interpolation problems providing a significant reduction
in the overall computation.

The numerical examples considered here are given with two examples of diffusion
parameters with bounded and unbounded random variables. The numerical results
show that we obtain a closely comparable weight vector to that obtained by classical
approach. Also, we have obtained an equivalent error on the solution. The proposed
adaptive approach yields substantial computational savings in comparison with the
conventional adaptive approach. An immediate next step is to study the impact of
the spatial discretization on the approximation quality and then make a posteriori
analysis in the physical space.
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[1] I.Babuŝka and P.Chatzipantelidis: "On solving linear elliptic stochastic
partial differential equations", Comput.Methods Appl.Mech.Engrg., 191:4093-
4122, 2002.
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