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Abstract—In heterogeneous wireless networks, different radio
access technologies are integrated and may be jointly managed.
To optimize composite network performance and capacity, Com-
mon Radio Resource Management (CRRM) mechanisms need
to be defined. This paper tackles the access technology selection
— a key CRRM functionality — and proposes a hybrid decision
framework to dynamically integrate operator objectives and user
preferences. Mobile users make their selection decision based on
their needs and preferences as well as on the cost and QoS
information signaled by the network. Appropriate decisional
information should then be derived so that the network better
utilizes its radio resources, while mobile users maximize their
own utility. We thus present two tuning policies, namely the
staircase and the slope tuning policies, to dynamically modulate
this information. Simulation results illustrate the gain from using
our tuning policies in comparison with a static one: they lead
to better network performance, larger operator gain and higher
user satisfaction.

Index Terms—Radio access technology selection, heterogeneous
wireless networks, hybrid decision-making approach.

I. INTRODUCTION

Multiple radio access technologies (RATs), such as IEEE

802.11 WLANs, mobile WiMAX, HSPA+ and LTE, are being

integrated to form a heterogeneous wireless network. This

cost-effective solution provides high capacity and global ser-

vice coverage. However, radio resources need to be jointly

managed. Typically, when a new or a handover session arrives,

a decision must be made as to what technology it should be

associated with. Robust decisions inevitably help to enhance

resource utilization and user satisfaction.

So as to consider operator objectives, including efficient

exploitation of radio resources, network-centric schemes have

been proposed: network elements collect necessary measure-

ments and information. They take selection decisions transpar-

ently to end-users in a way to enhance heterogeneous network

performance. In [1] and [2], network selection is formulated

as an optimization problem. The best assignment is derived to

optimize the associated objective function, defined as a het-

erogeneous network performance metric: perceived throughput

in [1] and service time in [2]. In [3] and [4], Semi-Markov

Decision Process (SMDP) is proposed to find the optimal

access policy that maximizes the long-term reward function.

In [5], a fuzzy neural methodology is used to jointly decide

of the network association and the bandwidth allocation. A

reinforcement signal is also generated to optimize the decision-

making process: the means and standard deviations of the input

and output bell-shaped membership functions are adjusted

accordingly.

However, to reduce network complexity, signaling and

processing load, mobile-terminal-centric methods have also

gained in importance: based on their individual needs and

preferences, rational users select their access technology in

a way to selfishly maximize their payoff (utility). Since their

payoff does not only depend on their own decision, but also on

the decisions of other mobiles, game theory is widely adopted

as a theoretical decision-making framework ([2], [4] and [6]).

Players (i.e., the individual users) will try to reach a mutually

agreeable solution, or equivalently, a set of strategies they will

unlikely want to change. Also, in [7] and [8], Simple Additive

Weighting (SAW), Multiplicative Exponent Weighting (MEW),

Grey Relational Analysis (GRA) and Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) are used

as multi-criteria decision-making methods. Individual users

combine their QoS parameters (e.g., instantaneous peak rates),

calculate decision metrics, and select their access technology

accordingly. Because individual users have no information

on the global network state (i.e., network load conditions),

mobile-terminal-centric approaches are known for their po-

tential inefficiency.

In this article, we propose a hybrid decision method that

combines benefit from both network-centric and mobile-

terminal-centric approaches. The network information, that is

periodically broadcasted, assists mobile users in their deci-

sions: mobiles make their selection decision based on their

individual needs and preferences as well as on the cost

and partial QoS information signaled by the network. A

particular attention is then addressed to the network to make

sure it broadcasts appropriate decisional information so as

to better exploit its radio resources, while individual users

are maximizing their own utility. We thus present two tuning

policies, namely the staircase and the slope tuning policies, to

dynamically derive what to signal to the mobiles. Our hybrid

framework may be naturally integrated into Self-Organizing

Networks (SON) [9].

The rest of this paper is organized as follows: Section II

describes our hybrid decision framework. Section III presents

our tuning policies. Our system model is detailed in section IV.

Section V discusses simulation parameters and results. Section



VI concludes the document.

II. HYBRID DECISION FRAMEWORK

Network information is periodically sent to all mobile users

using the logical communication channel (i.e., radio enabler)

proposed by the IEEE standard 1900.4 [10]. This information

implicitly integrates operator objectives. It may be static or

variable so as to dynamically optimize short- or long-term

network performance.

When a new or a handover session arrives, the mobile

decodes the decisional information, evaluates available alter-

natives, and selects the technology that best suits it.

A. Network information

The network information provides cost and some QoS

parameters: they can be seen as incentives to join available

alternatives.

• The cost parameters: Because flat-rate pricing strategies

waste resources [11], result in network congestion and

thus degrade network performance [12], they are not

optimal in supporting QoS. A volume-based model is

therefore proposed: mobile users are charged based on

the amount of traffic they consume; in our work, costs

are defined on a per kbyte basis.

• The QoS parameters: The number of radio resource units

(RRUs) (e.g., OFDM symbols or OFDMA slots) that need

to be allocated to future arrivals are broadcasted:

– Mobiles are guaranteed an average minimum number

of RRUs, denoted by nmin.

– They also have priority to occupy up to an average

maximum number of RRUs, denoted by nmax.

The network loading conditions and capacity are, how-

ever, masked. In fact, nmin and nmax reveal the operator

intention to serve future arrivals: they do not exclusively

reflect the loading conditions, but also other potential

operator objectives (e.g., energy consumption).

Since the smallest allocation unit (i.e., RRU) may be

different from one technology to another, there is a need

to homogenize the QoS information. The QoS parameters

are then expressed as throughputs: dmin and dmax instead

of nmin and nmax. Yet, because perceived throughputs

highly depend on radio conditions (or equivalently on

adopted modulation types and FEC coding rates), dmin

and dmax are derived for the most robust modulation and

coding scheme.

Consequently, when evaluating available alternatives, mo-

biles should combine their individual radio conditions

with the provided QoS parameters: for that they multiply

dmin and dmax with a given modulation and coding gain.

Although QoS parameters are provided, our decision frame-

work is independent of local resource allocation schemes.

First, enough RRUs are allocated to meet all of the operator

commitments (i.e., the minimum guaranteed throughput given

by dmin). Then, any priority scheduling algorithm (including

opportunistic schemes) could be adopted to allocate to each

session up to its maximum prioritized throughput given by

dmax. The remaining resources may afterwards be equitably

granted to all sessions.

B. Technology selection

For each incoming session, the network proposes one or

more alternatives, which are the available access technologies.

For each alternative (a), the network broadcasts the three

parameters: dmin(a), dmax(a), and cost(a). From the user’s

point of view, the network parameters are decision criteria that

will be used by the mobile to rank the access technologies. For

that, the mobile has to adopt a multi-criteria decision making

method: it defines a utility function that will be computed

for all available alternatives. This utility is obtained after

normalizing and weighting the decision criteria.

III. TUNING POLICIES

Because mobile users also rely on their needs and pref-

erences to select their best alternative, the network does not

completely control individual decisions. However, by broad-

casting appropriate decisional information, the network tries to

globally influence users decision in a way to satisfy its own

objectives.

In our work, we focus on efficient resource utilization:

the network information is dynamically derived in a way to

enhance heterogeneous network performance. On the other

hand, mobile users make their decisions so as to maximize

their own utility.

When a radio access technology dominates all the others

(i.e., provides higher QoS parameters for the same cost or

the same QoS parameters for a lower cost), common ra-

dio resources are inefficiently utilized causing performance

degradation. In fact, mobile users would select the dominant

alternative, leading to unevenly distributed traffic load. While a

technology is overcrowded, the others are almost unexploited.

This inefficiency is very similar to that of the mobile-terminal-

centric approaches. To remedy it, the QoS information, sig-

naled by the network, needs to be modulated as a function of

the loading conditions.

In this section, we present two tuning policies, namely the

staircase and the slope tuning policies, to dynamically derive

the QoS information. In order to reduce network complexity

and processing load (one of the drawbacks of the network-

centric approaches), our policies are basic and simple. Yet,

they help to efficiently distribute traffic load and thus to better

utilize radio resources.

A. Staircase tuning

Initial QoS parameters (i.e., dmin and dmax) are specified.

When the operator bandwidth guarantees — identified as

a generic load factor — exceed a predefined threshold S1,

these parameters are reduced in the corresponding technology

following a step function, as shown in Fig. 1. Yet, when S2

is reached, they are set to zero.
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Fig. 1. Bandwidth guarantees reduction — Staircase tuning

B. Slope tuning

As technologies are progressively loaded, the QoS parame-

ters are gradually tuned. When S1 is reached, these parameters

are linearly reduced down to zero, as shown in Fig. 2. The

slope helps to better respond to traffic load fluctuations.
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parameters

Load factorS1 S2

QoS incentives

Fig. 2. Bandwidth guarantees reduction — Slope tuning

When the QoS parameters are dynamically modulated,

future arrival decisions are pushed to less loaded technologies,

thus enhancing long-term network performance.

IV. SYSTEM MODEL

The radio resource is divided into multiple radio resource

units (RRU), thus compatible with OFDM-based technologies

(e.g., LTE and WiMAX technologies). In the time domain,

transmissions are further organized into (radio) frames of

length 10 ms. At each scheduling epoch, resource units

are allocated to individual users based on their priority and

current needs. Actually, before any scheduling is applied, the

minimum guaranteed resource units (the operator guaranteed

commitments) are directly allocated. Then, the Weighted Fair

Queueing is adopted to share out the remaining resources;

grants are however limited to dmax. Session priorities are

based on the cost they pay for one unit of traffic. Finally,

when all active sessions have been allocated enough resources

as to meet their dmax, the remaining resources are equitably

distributed (according to the Round Robin service discipline).

Mobile users arrive sequentially. The total number of ar-

rivals is limited to Ntotal; it sets the traffic load. Their sojourn

time is considered to be much greater in comparison with the

simulation time. Consequently, the system dynamics will then

slow down until a pseudo-stationary regime is attained, where

all measurements are performed. Results are validated through

extensive simulations.

After they decode cost and QoS parameters, mobiles adopt

a satisfaction-based decision making method to evaluate and

then rank the different alternatives. The normalization of

decision criteria dmin(a), dmax(a), and cost(a) depends on

the session traffic class and throughput demand. For traffic

class c and alternative a, the normalization is a mapping of

dmin(a), dmax(a), and cost(a) to d̂cmin(a), d̂cmax(a), and
ˆcostc(a) respectively.

In our work, we define three traffic classes : inelastic,

streaming, and elastic classes. Before we give the normalizing

functions for each traffic class, we note that p̂c(a), p ∈
{dmin, dmax, cost}, can be viewed as the satisfaction of a class

c session with respect to criterion p for alternative a:

• Inelastic sessions (c = I): since designed to support con-

stant bit rate circuit emulation services, inelastic sessions

require stringent and deterministic bandwidth guarantees.

Thus, dmax should not have any impact on the final

decision. Besides, the satisfaction with respect to dmin

has a step shape (Fig. 3(a)): mobiles expect to be satisfied

when dmin is greater or equal to their fixed throughput

demand Rf ; otherwise, they are not satisfied.

d̂Imin(a) =

{

0 if dmin(a) < Rf

1 if dmin(a) ≥ Rf

(1)

• Streaming sessions (c = S): since designed to support

real-time variable bit rate services (e.g., MPEG-4 video

service), streaming sessions are fairly flexible and usually

characterized by a minimum, an average and a maximum

bandwidth requirement. Their throughput satisfaction is

therefore modelled as an S-shaped function (Fig. 3(b)):

d̂′
S
(a) = 1− exp

−α(d
′(a)
Rav

)2

β + (d
′(a)
Rav

)
(2)

where d′ = {dmin, dmax}.

Rav represents session needs: an average throughput

demand. α and β are two positive constants to determine

the shape of the sigmoid function.

• Elastic sessions (c = E): since designed to support

traditional data services (e.g., file transfer, email and

web traffic), elastic sessions adapt to resource availability

(i.e., load conditions), requiring no QoS guarantees. Thus,

dmin is completely ignored. Moreover, the satisfaction

with respect to dmax has a concave shape (Fig. 3(c)): the

satisfaction increases slowly as the throughput exceeds

the comfort throughput demand Rc of the user (i.e., the

mean throughput beyond which, user satisfaction exceeds

63% of maximum satisfaction).

d̂Emax(a) = 1− exp−
dmax(a)

Rc

(3)

The monetary cost satisfaction is, however, modelled as a Z-

shaped function for the three traffic classes (Fig. 4): the slope

of the satisfaction curve increases rapidly with the cost.

ˆcostc(a) = exp−
cost(a)2

λc
, c ∈ {I, S,E} (4)

λc represents the cost tolerance parameter: a positive con-

stant to determine the shape of the Z-shaped function.
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The user profile defines the cost tolerance parameter and

the weights that a given session will apply to normalized

criteria. More precisely, the user profile is the set of vectors

(λc, wc
dmin

, wc
dmax

, wc
cost), c ∈ {I, S,E}, where wc

p is the

weight of p̂c, p ∈ {dmin, dmax, cost}. The utility function of

a class c session for alternative a is defined by :

U c(a) = wc
dmin

.d̂cmin(a) + wc
dmax

.d̂cmax(a) + wc
cost. ˆcostc(a)

The Figure 5 summarizes the decision process:

Fig. 5. Satisfaction-based multi-criteria decision process

• For each alternative a, the mobile combines its radio

conditions with the QoS parameters signaled by the

network: it multiplies dmin(a) and dmax(a) with a given

modulation and coding gain to determine its perceived

QoS parameters, as provided by the network.

• Then, based on the user needs (i.e., traffic class c,

throughput demand and cost tolerance λ), it computes

the normalized decision criteria: d̂cmin(a), d̂
c
max(a) and

ˆcostc(a).
• Next, it combines the user preferences (i.e., wc

dmin
,

wc
dmax

and wc
cost) to the normalized decision criteria,

so as to compute the weighted normalized criteria:

wc
dmin

.d̂cmin(a), w
c
dmax

.d̂cmax(a) and wc
cost. ˆcostc(a).

• Finally, it computes the utility function for each alterna-

tive a and selects the alternative with the highest score.

By broadcasting appropriate decisional information, the

network tries to globally control users decision in a way

to enhance resource utilization. On the other hand, mobiles

make their decisions so as to maximize their own satisfaction.

The selection decisions take then into account both the user

needs and preferences and the operator objectives. Network

complexity and processing load are, however, reduced.

V. SIMULATION PARAMETERS AND RESULTS

For illustration, we consider two access technologies each

with a capacity of 70 Mb/s. Each is assumed to propose

three different service classes, namely Premium, Regular and

Economic. Initial QoS and cost parameters are depicted in

Table I.

Service class dmin (Mb/s) dmax (Mb/s) Cost (unit/kB)

Premium 1 1.35 6

Regular 0.7 1 4

Economic 0.35 0.7 2

TABLE I
INITIAL QOS AND COST PARAMETERS

After they arrive, mobiles are uniformly associated with a

user profile. Detailed user profiles are presented in Table II. In-

elastic and streaming session needs are respectively expressed

as fixed (i.e., Rf ) and average long-term throughput (i.e.,

Rav). We assume that the set of possible throughput demands

is given by D = {0.5, 1, 1.5, 2} Mb/s. Inelastic sessions

generate packets according to a deterministic distribution,

whereas streaming sessions generate packets according to a

poisson process. In our work, we fix delay constraints for

the latter session types. A maximum delay requirement of

100 ms is fixed. Since resources are limited, some packets

may miss their deadline; they will be dropped as they are no

longer useful. Furthermore, elastic session needs are expressed

as comfort throughput (i.e., Rc). We suppose that the set of

possible comfort throughputs is given by C = {0.75, 1.25}
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Fig. 6. Experienced QoS

Mb/s. While inelastic and streaming sessions uniformly choose

one of the possible throughput demands (regardless of the

user cost tolerance parameter), we assume in the following

that elastic session comfort throughput is related to the user

willingness to pay and thus imposed by the user profile.

Profile No. Traffic class λ wdmin
wdmax

wcost

1 Inelastic 60 0.7 0 0.3
2 Streaming 60 14/30 7/30 0.3
3 Elastic 60 0 0.7 0.3

4 Inelastic 25 0.3 0 0.7
5 Streaming 25 0.2 0.1 0.7
6 Elastic 25 0 0.3 0.7

TABLE II
DETAILED USER PROFILES

We also assume that mobiles are uniformly associated with

a set of modulation and coding gains. These multiplicative

factors reflect the user radio conditions in the different tech-

nologies and are supposed to remain constant in time. Two

sets of gains are considered and reported in Table III.

Set No. RAT 1 RAT 2

1 1.5 1.5
2 2 1

TABLE III
MODULATION AND CODING GAIN

When the two access technologies provide the same QoS

parameters, users that are associated with set no. 2 would

select RAT 1: they expect to have better radio conditions

and thus to perceive higher throughputs in RAT 1. All other

alternatives (proposed by RAT 2) are subsequently dominated.

Also, users that are associated with set no. 1 randomly join

their access technology, since they expect to perceive similar

throughputs in the two available technologies. This situation

leads to unevenly distributed traffic load. However, when

the network information is dynamically modulated according

to the staircase or to the slope tuning policies, the QoS

parameters are changed in a way to drive future arrivals

to the less loaded RAT: loaded technologies provide lower

QoS parameters and thus push future users to less loaded

technologies.

When staircase policy is adopted, reduced QoS parameters

are presented in Table IV.

To analyze long-term network performance, six major key

performance indicators are defined: mean delay, packet loss

rate (for inelastic and streaming sessions), comfort metric

(for elastic sessions), throughput, operator gain and perceived

satisfaction level.

Service class dmin (Mb/s) dmax (Mb/s)

Premium 0.5 0.7
Regular 0.35 0.5

Economic 0.2 0.5

TABLE IV
REDUCED QOS PARAMETERS (STAIRCASE POLICY)

A. Performance Results

The proposed tuning policies are compared with the static

one. In the latter case, initial QoS parameters are maintained

fixed, except when the access technology is no longer able to

guarantee to future arrivals the initial QoS parameters.

In the following, we assume that S1 and S2 are respectively

set to 0.5 and 0.9 times the access technology capacity. Before

S1, the network provides constant QoS parameters. After S2,

QoS incentives are no longer provided to future arrivals: the

network keeps a margin of about 10% of the RAT capacity

to provide on-going sessions with more than their minimum

guaranteed throughputs.

1) Real-time sessions: Because real-time (RT) sessions

(i.e., inelastic and streaming sessions) require tight delay

constraints, access technologies should meet their throughput

demands. However, users with a demand of 2 Mb/s may

suffer: even the Premium guarantees may be lower than their

throughput demand. When the access technology is highly

loaded, the resource scheduler will not be able to provide

them with more than their minimum guaranteed throughputs,

thus leading to packet loss. So as to reduce the packet drop

probability, we should avoid that a technology gets overloaded

long before the others. User decisions should then be driven.

Figures 6(a) and 6(b) respectively show the mean waiting

delay and the packet drop probability as a function of the total

number of arrivals. When the slope intervention policy denoted

as Dynamic information [2] is adopted, it best responds to

traffic load fluctuations and thus provides a shorter delay, a

lower drop probability and a subsequently better overall QoS

level. On the other hand, the staircase intervention policy

denoted as Dynamic information [1] is disadvantageous when
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Fig. 7. Operator gain and global network performance

all technologies have exceeded their S1: while load conditions

are critical, RAT 1 is once again privileged until the operator

guarantees exceed S2 (i.e., until RAT 1 no longer provides

QoS guarantees to future arrivals). Yet, real-time sessions

performance are always significantly enhanced in comparison

with the static scenario (denoted as Static information).

2) Elastic sessions: We define the comfort metric as the

ratio of the perceived throughput to the comfort throughput.

When the network information is dynamically variable, ses-

sions are better distributed over the two technologies. More

RRUs are then on average allocated to on-going sessions.

Typically, elastic sessions would experience higher throughput

and subsequently higher comfort metric, as shown in Fig. 6(c).

However, at low traffic load (since tuning policies are not

yet triggered) and at high traffic load (since all technologies

becomes similarly occupied regardless of the tuning policy),

performance enhancement is not that significant for elastic

sessions.

3) Operator gain and global network performance: When

tuning policies are triggered, QoS parameters are reduced. To

benefit from the same initial bandwidth guarantees, mobile

users may have to select a higher priority service class, and

thus have to pay more. Also because fewer real-time packets

are dropped (cf. Fig. 6(b)) and more elastic packets are served

(cf. Fig. 6(c)), users consume on average a larger amount of

traffic (Fig. 7(a)) and once again pay more. We illustrate in Fig.

7(b) the average operator gain. When operators dynamically

intervene, they gain more.

We depict in Fig. 7(c) the average user-perceived satisfac-

tion. Although mobiles may pay more, we notice a higher

satisfaction when tuning policies are implemented. Higher

costs are then justified since users benefit from significantly

better performances. At low traffic load, tuning policies are not

yet triggered. Equivalent performances, costs and subsequently

satisfactions are intuitively observed. However, at very high

traffic load, the performance gain over the static scheme begins

to reduce; henceforth, it slightly offsets the cost considerations,

leading to close user satisfaction.

VI. CONCLUSION

In this article, we address the access technology selection

in heterogeneous wireless networks. We first propose a hybrid

decision framework: the cost and QoS information, signaled

by the network, assists mobile users in their decisions. Our

proposed approach takes into account both the user needs

and preferences and the operator objectives, without unduly

complicating the network. We further present two tuning

policies, namely the staircase and the slope tuning policies, to

adjust the decisional information in a way to enhance resource

utilization, while individual users are maximizing their own

satisfaction. In comparison with the static scheme, perfor-

mance results show that our tuning policies enhance network

performance, provide larger operator gain and higher user

satisfaction. Since it best responds to traffic load fluctuations,

the slope tuning policy has proved to be an efficient strategy

that enhances resource utilization.
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