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A novel classification method for prediction of
rectal bleeding in prostate cancer radiotherapy
based on a semi-nonnegative ICA of 3D planned

dose distributions

Julie Coloigner, Auréline Fargeas, Amar Kachenoura, Lu §V&aél Dréan, Caroline Lafond, Lotfi Senhadiji,
Senior member, IEEERenaud de Crevoisier, Oscar Acosta and Laurent Al®eajor member, IEEE

~ Abstract—The understanding of dose/side-effects relationships the dose-toxicity relationship issues are based on theethre
in prostate cancer radiotherapy is crucial to define appropfate  Dimensional planned Dose Distribution (3DpDD) via the
individual's constraints for the therapy planning. Most of the Dose-Volume Histograms (DVHs) [5] by using radiobiologica

existing methods to predict side effects do not fully exploi . S -
the rich spatial information conveyed by the three-dimengpnal Normal Tissue Complication Probability (NTCP) models [6]-

planned dose distributions. We propose a new classification [9]- In Prostate Cancer RadioTherapy (PCRT) context, diffe
method for three-dimensional individuals’ doses, based ora ent studies have shown a significant correlation betweea,dos

new semi-nonnegative ICA algorithm to identify patients at yolume and rectal toxicity [10]—[17]. Nevertheless, theted-
risk of presenting rectal bleeding from a population treated for ies present some limitations since they have been solelydbas

prostate cancer. The method first determines two bases of viers o .
from the population data: the two bases span vector subspasge on the DVHs: i) the use of DVHs require large databases for

which characterize patients with and without rectal bleedng, the estimation of population specific parameters, ii) déffe
respectively. The classification is then achieved by calating 3DpDD may have similar DVH, and iii) methods based on

the distance of a given patient to the two subspaces. The rdfs)  DVHs lack spatial accuracy, since they considered the @rgan
obtained on a .cohort of 87 patients (at two years follow-up) as having homogeneous radio-sensitivity.
treated with radiotherapy, showed high performance in ters of Recently, methods have been proposed which addressed the
sensitivity and specificity. ’ _ ) ) ]
use of Three-Dimensional (3D) voxel information. Buettner
~ Index Terms—semi-nonnegative ICA algorithm, feature extrac- ot 5. [18], [19] proposed a parameterized representation o
tion, prostate cancer, rectal bleeding, side effects, radtherapy, . . . .
classification. the 3DpDD to describe its geometrical properties, such as
the eccentricity and its lateral and longitudinal extem{é.
ter a first feature extraction step, a formal classificatien i
. INTRODUCTION performed using Support Vector Machine (SVM). However,
in this method, there is still a preceding individual featur
Modern RadioTherapy (RT) techniques, such as Intensggmputation step, which does not jointly use the voxel infor
Modulated RT (IMRT) and Image Guided RT (IGRT), maynation across the whole population. Exploiting the richelox
allow the increase of dose delivered to the target volumformation may be hampered by the large inter-individual
(tumor) [1] but at the expense of the risk of toxicity sinc@natomical variability. If all the voxel dose informatiomea
neighboring organs may also be over-irradiated [2]-[4}h@ to be analyzed across the population, a previous anatomical
case of prostate cancer, the considered organs at risk @regdiignment and dose mapping into a common spatial coordinate
bladder and the rectum for which the toxicity events magystem is performed. This is particularly challenging dae t
vary in time and complexity. For instance, rectal bleedinghe poor soft-tissue contrast, large inter-individualiataitity,
stool loosing and/or urinary incontinence can arise sévekhd differences in bladder and rectum filling [20], but some
years after the end of the treatment. Hence, being able rjistration methods have been proposed tackling this-prob
identify a patient who likely will suffer from toxicity eves |em [21]. Following this idea, population analysis and Vexe
at the early planning stage is of paramount importance \ise comparison of 3DpDD has been performed in [22], [23].
terms of treatment optimization. Understanding the dosgithough these approaches enable the identification of 3D
toxicity relationships is, thus, a central question to ngEnaanatomical patterns which may be responsible for toxicity,
the therapy by selecting appropriate constraints at thers®/ they do not perform any formal classification or a prediction
planning step in IMRT. Most of the current methods addressinf toxicity for a given individual. Thus, new methods aimed a
jointly taking advantage of the 3DpDD, that reveal the subtl
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performed for feature extraction and dimensionality reiuc planning step, namely the 3D anatomical data (individual
in the identification of Alzheimer’s disease [24] using fieEi CTs) and organ manual delineations. Thus, euclidean distan
emission tomography images. PCA computes an orthogonaps from organs boundaries are built and combined with
basis by maximizing the variance of the coordinates of ea€lT scans to perform a non-rigid demons registration method
3D individual image in the subspace spanned by the babiased warping as described in [22]. Regarding the single
vectors. In the context of rectal bleeding, PCA is used template, it was selected as the individual closest to athef
analyze non-rigidly registered dose distributions andgsifg remaining individuals. This typical individual was foung b
bleeding patients [25], [26]. This work aimed at identifyin affinity propagation clustering among a subgroup of rangoml
one basis of orthogonal vectors from 3DpDD of rectal blegdirselected patients from the whole database [22]. In our study
and non rectal bleeding patients, allowing good classifioat we focus on rectal bleeding and only the registered 3DpDD
results. However, PCA is limited by the orthogonal constisai within the rectum is considered.

defined in the problem formulation. This constraint can be b) pata structuring: Each individual’s 3DpDD is ar-
relaxed by using more statistical information from 3DpDDranged in a vector by vertically concatenating the rows of
such as the mutual independence of the signal of interggtslices. Thus, we obtained atv(x P™)) matrix X(1) for
(sources) [27]. This leads to the Independent Compongjitients with rectal bleeding and a®v (x P() matrix X ()
Analysis (ICA) concept [28]. ICA has been successfulljor those without rectal bleeding®?), P(2) and N represent
used for extracting linear features combinations [29],][30the number of individuals with rectal bleeding, the numbkr o
Moreover, in some blind source separation applicationsh siindividuals without rectal bleeding and the number of vexel
as face recognition [31] or tumors classification [32], [3BE respectively.

components of the mixing matrix can represent pixels ang the 5y taining step:in this step we first identify from the data

are indeed positive. In order to improve thg extraction nwal two vector basesA() — (a§1)7 . a(l()1>) and
this nonnegativity property can be exploited, giving rige t @ _ @ 2) | F b
what we call hereafter the Semi-Nonnegative ICA (SN-ICAYY | = (ai”,...,az)), spanning two vector subspaces,

In our context, the components of the mixing matrix corred"” and A™®), that characterize patients with and without
spond also to the intensity of the dose such as a positiveval§ctal bleeding, respectively. The dimensidié (i = {1,2})
(which means delivered energy per mass unit at each vox@e usually lower tha(?). Secondly, we construct fropd ")

In this paper, we propose a new classification procedurecbagnd.A® two sets of subspaces, called) = {eV,... e}
on a new SN-ICA algorithm, to characterize rectal bleedirgnde(® = {652), e ,sf)}. More precisely, we respectively
on groups of patients treated by radiotherapy. More prigisebuilt from A and A® two setsz™ = {E{",... E{}}
this procedl_Jre aims at .determining two bages from 3DpDRpd Z(? — {E&Q), - .,E(L2)} (WhereEg),k e{1,....K}
the first basis characterizes the rectal b_Ieedlng and thmgiecis a sub-basis of ranR™®), with R < F(_ and Ef),é c
one corresponds to the non rectal bleeding patients. Thsicla 1,...,L}, is of rankR®, with R® < F®). It is notewor-

fication is achieved by projecting a new 3D individual platmnethy that each subspaﬁi) is spanned by a vector subbasis
Dose Distributions (pDD) onto both subspaces spanned by;) K . h il be di din details i
the two vector bases. The new patient is thus classified usifg ° Two key questions, .t at .W' € |scu§se 'rll) etails in
the smaller distance to both subspaces. Tests on realadlin&‘agt'onS IlI-B and 1I-3, arise: i) the calculation th) and
database of 87 patients (13 of them presented rectal b@edi‘ﬁ( ), and ii) the choice of the optimal subbask¥ . and
within a 2-year follow-up) and the comparison with som(EZ)t, containing the more informative features AfY and
classical methods showed high performance of the proposgd®)  that better divide the patients in rectal and non rectal
method in terms of sensitivity and specificity. The obtainggleeding groups.

results revealed spatial relationships between the 3DplD a
treatment outcome, paving a way for the prediction of tdyici
in PCRT.

3) Classification step:In order to classify a new patient
belonging to the testing set, its 3D individual pDR,,¢.,,
is orthogonally projected onto all subspacesgf ande(®,

Il. THE CLASSIFICATION PROCEDURE chara_ctenzmg the two groups (patients with and withoutake
bleeding) as follows:

Our classification procedure involves three steps, namely
the preprocessing step, the training step and the clasgifica

1) _ AL
step, which are summarized in figure 1. 9k = Aefj)m"ew (1<k<K) @

g9 = Ak e (1 S L L) @)
£

1) Preprocessing steplt is divided into two sub-steps: i) ) . ) )
data registration and ii) data structuring. where A:‘u) = E(EMNED)TEDT and A:‘m =

a) Data registration: In order to perform a voxel based ., (2) (E(z)T’“E(Q))_lE(z)T Afterward. the euclidean éistances

statistical analysis, an accurate mapping of the doseidisfr{ * ¢ ¢ e '

bution received by the rectum is required. Patient’s plagni etweene,.., and its orthogonal projections are computed by:
CT and dose distributions are non-rigidly registered into a 1) 1)
common coordinate system. This non-rigid registration ap- di” = |[Tnew — g5, II(

1<k
proach advantageously combines information availabléat t df) = ||Znew — gf)H (1

K) )
(<L

) (4)

<k<Z
<t<



Step 1: Preprocessing
3DpDD training set

>
3DpDD . . .
_Lpl data registration I—.l data structuring I— 3DPDD festing set
>
Step 2: Training step SN-ICA

group 1: individuals R

with rectal bleeding -
3DpDD training set

group 2: individuals > —

without rectal bleeding

identification of the two bases from 3DpDD:

the first basis characterizes the rectal bleeding group
and the second basis corresponds to the non rectal
bleeding individuals

Step 3: Classification step

orthogonal projections
p| onto all subspaces ofthe ==
two groups

calculation of euclidean
distances to the subspaces

3DpDD testing set

Fig. 1. The three steps of the classification procedure: é yptleprocessing step: the data are registered and strict@)ethe training step: the two vector
bases spanning the rectal and non rectal bleeding subspeecealculated, and 3) the classification step: the new 3DsDipthogonally projected onto both
subspaces and the new patient is classified in the closesp.gro

To select the optimal COUPK@&L’EZL)- we maximize the [Sgi) [m],..., 5S2i> [m]]”. In our context, each component of

following criterion: A® represent the intensity value of the dose and it is
dD 4@y BN C) 5 |ndee_d po_smve._ln addition, we assume that the coordénate
(A e, ) = a2g max( ) ©) o 20 [m] in basisA”, namely the elements of?) ] , are

D g®
_ (") _ ~ independent. So, the problem we tackle in this paper can be

with 1 < k < K and1 < ¢ < L. Finally, the new patl(e2r)1t IS formulated using the Semi-Nonnegative ICA (SN-ICA) one

classified as belonging to the closest groupdkilj L <dy’ . [34], [35].

we will deduce that he belongs to the rectal bleeding’ group.problem 1: Given one realization of a real random vector

Otherwise, he is classified as non rectal bleeding patiefg. | process {x()[m]}, find an (N x F@) matrix A® and

interesting to note that this step is performed by the egalid one realization of & (-dimensional source random process
norm and does not require any evolutive classification nethq (4 [;,]}, such that for each index:

@ m] = ADs[m], where AV has nonnegative compo-
Ill. PROBLEM FORMULATION AND METHOD nents ands(*) [m] has statistically independent components.
This section presents the new SN-ICA algorithm that will

be used to estimate the vector bagtd) = (agl), . ,a;l()l))

B. SN-ICA algorithm
and A® = (a{”,...,a'?),), that characterize patients with - algorty o
and without rectal bleeding, respectively. In the sequed, w As depicted in figure 1, the SN-ICA method consists, first,

present the algorithm in general case, namely to estimate th @ honnegative compression and rank estimation step which
basisA”, whateveri € {1, 2}. aims to reduce the dimension of the observation space. The

second step, based on the ELS-AE'S™¢ algorithm [34],
estimates the based”, (i € {1,2}) from the compressed
observations.

1) The nonnegative compression and rank estimatibm:
order to reduce the dimension of the observation space, the
nonnegative compression method truncates¥héimensional

A. Problem formulation

As explained in section 11-1X ¥ contains the 3DpDD of all
patients belonging to th&" group (each individual’'s 3DpDD
is arranged in a column vector). More particularly, assuinag t
each individual 3DpDDz ) [m] = [{"[ml, ..., z{[mlI™, is  \ectora) [m] into a vectorz" [m] of rank F() < N. The

izati -di i (4) :
one real_lzat|0n of av dlmen_S|onaI randpm proce{;sz _[m]}' compressed observations are expressed as follows:
x([m] is modeled as an linear combination of basis vectors

(@{”,...,al),), whose weights are denoted by{"[m] = &V [m] = WO [m] (6)



whereW ) of size (V x F() is the compression matrix. Forwith e = [C s AT, C, ;r (A®A)]" where the matri-

the ICA model without nonnegative constraint, the columhs ees C, ;) = diag([Cy 11300, ,Cpi) piy pe 3]) and
W(” are the eigenvector.s corresponding to ﬁﬁ@ largest C’M(i) = diag([Cl71,171,§<1:>,--- ,CF(U,Fm,F(i),Fu),gm]) of
eigenvalues of the covariance mattX(«”)[m]z([m]") — size () x F®) are diagonal. The symbab stands for

E(z[m])E(z?[m]") and the estimate of the rank"), the Khatri-Rao product (column-wise Kronecker product) an
is determined by the number of eigenvalues not exceedingly, denote:(]l(i))QQ:A(i)QA(i). The matrixV'® represents

close to zero [36]. However, in our model, such a method cafe model residual. As a way of treating the nonnegativity

rl()('g)guararz';)ee t?.? n(?nnegatIVIty of th(e‘)C(_)mpressed basr1_9(ma(t:onstraint of the matrile(i) in the SN-ICA model, one can
= WWTAY since generally'" is not nonnegative. )

A D) 50 60
It is possible to transfornW () into the nonnegative orthantre.Sort E?) the }Egyiie) change of(l_)var;amb (1-)_ (B(,l-) >
by column-pair rotations [37], [38]. with B € R* *  (where (B)™ = B " o B and
' itge symbolo represents the Hadamard product (element-wise

In practice, the only use of the rotation transformation .
not sufficient to guarantee the nonnegativityWt”). This is Product). The SN-ICA problem is, then, totally characted
by the following objective function:

done by the introduction of the shearing transformationhen t
pairs of columns oW () (see Appendix A for details). Thus,

it W is nonnegative, the compressed matibgz) of size
(F@ x F@) preserves the nonnegativity property af®).

The rank is also estimated by singular value decomposition
[36], as in the common compression. So, the compressed . .
3D individual pDD yector,:i(i)[m] still follows the SN-ICA  where the couple of variablesB(Z),C'(z)) belongs to the
model: 9 [m] = A" 50 [m). open seR(F+F)?F  RFUXFY and the symbol. ||,

2) The SN-ICA based ELS-A1%¢ algorithm: The SN- denotes the Frobenius norm. It is worth noting that the
ICA algorithm exploits some interesting properties enpbyenonnegative constraint is circumvented by means of therequa
by cumulants in the presence of mixed independent processbange of variable, leading to unconstrained problem.

[34]. Let C,, ,, nye0 @NAC, . .. sz be the entries
of the Third Order (TO) and Fourth Order (FO) cumulanéeOI

a_rrays,(_?a a0 andCy z0, reNSE)_;actlver, of a zero-meaﬁ(l_)— count several advantages, such as the decomposition agcura
dimensional random vectdtz*/[m]}. Under the assumptionShe nymerical complexity and the memory requirements [39].
made in SN-ICA problem and due to the multi-linearityrne ALS principle is to reduce the non-linear minimization
property of cumulants, we have: problem of f (10) to several coupled linear least-squares

(@) A0

~ i ~ (1) ~ (4
1B,V = Tl - (B (10

a) Alternating Least Squares (ALS) procedufd:S pro-
ure is proposed, in order to minimize (10), taken into ac-

F® subproblems. To do so, we choose to alternatively minimize

Cormampar = AV LAY AW ¢, (7) the cost function w.rtB” and &, optimizing w.r.t. one
f=1 variable while keeping the other one fixed. Then, we solve

F® sequentially, for the iteratioi¥, both following subproblems:

S ORON ()
Cormzmgmaa® = At (A0 (A g ALY Crp 5o (8)
=1

~ (i = (i), = (i 2
whereCf,ﬁ{_,g(i) is the(f, f, f)-th element of the TO cumulant Bgtllzarg min fp) =arg min ‘ ng;;*>—c§t’((A< ))QZ)T
array of {3\ [m]}, Cyf.p.p.50 isthe(f, f, f, f)-th element of ‘ B® B . ‘

the FO cumulant array o{é(i) [m]} an(_j F® _is the number C*le:argminf@m :argminHTi(?fé?)—O(Z)((AEEL)QZ)T
of extracted sources. Note that the dimension€0f) and cw e

C, 2 are(FO x FO x FO) and(FO x FO x FO) x FO),

respectively. We propose to merge together the entrieseof th o _ )
TO and FO cumulant arrays in the rectangular mal"r:i%;‘)l) of with A= (B

2

)°2, and wheref s, and fs) depend only

size(F() 4 (F())2 x (F()2). The (iy, i)-th entry,7**_ .~ on one free variable3"” and&'”, respectively. The solution
11,2,L ~ (7 . . .
of Tf?’.;‘) is given by: Bf-tll of the first subproblem can be obtained by alternatively
‘ ) @) solving fp w.rt. all components OB(l).. So, we introduce
Cryna,in a0 fOr anyip € {1,..., F} fai © BWn = feo(BY), where BY, is the (m,n)-
with 75 =n4 +F® (ng—l) men _ (§) ~ ()
7G4 w=1C iy With i =ny+ FOng th component ofB"*. The element ofB;, ., is achieved
i1,i0,2"" mn1,Nn2,n3,N4,T

andiz =ns+F® (ny — 1) by vanishing the derivative denotq%(i> . It is noteworthy

m,n

for anyi, € {F(+1,... . FO+(F")2} that this derivative is a polynomial in variab..,, and the
By inserting (7) and (82, we obtain the following algebrai€XPression is given by:
structure of the matrixl’

AN

T = (a4 vo ©  fho (BY) = ar(BRL) +aa(BL,) + e B, (11)

%)



with: ALS update rules, at the iteratian, instead ofBE? andC'.

(i _ : ; - = (1) ~ (1)
0y =— 2(A5t)T(M§Z) + Nz('zlf)))n,(nfl)F(i)er_ After !nsergg)g th((aj ugg;e\te ruLes @& anddCb in (.10_),_bothh
@) (@)ag % () (i) g ~(0) stepsgespit gn i can be computed by minimizing the
4(A; (A ) Ay ) o ((Cy )" C ) mn— following function:
AAD (& ED (AP yrye2 + JONINGIO) () o5 (@) 2
(GG (i) ) e B e e (O B R I T
((Ait )TAz't )n,n((cz‘t )TCz‘t )n,n_ = (5) ~ (i) ~ (@) ~ (i)
(A® 2((é(i))Té(i)) ) w.rt. B and u©" and whereA, ., = (B,.,)%. This
mns it s can be done approximately or exactly [41], [43]. We propose
- QA%),n(ME? +N§f§))m,(n71)Fm+m an optimal procedure, allowing to accelerate maximally the
a3 = — Q(ME? + Nz('i))m,(n—l)F(i)—{-m_" convergence. It searches the opt_imal st_epsiz_es that p_onds
- ) () to the real roots of a polynomial defined in equation (14).
4((A;

; )QQ(C'Z(-Z))TC“ Ymont The details of such a procedure are given in in Appendix B.
( .i))TA(li)) ((égi))Tégi)) _ Nevertheless, this procedure can considerably increase th
¢ it Jmn ALt it mn ALS numerical complexity per iteration. Then, to have a good

8 A,}Zn)QQ((C’EZ))TCS))n,n compromise between effectiveness and numerical complexit
B (é(i))TA(i)) it is better to calculate the optimal stepsized; and pS,
ar = i it Jmn every k iterations with & > 1. Finally, after the ELS-

ALS®uar¢ step, the vector basiA.(i) is identified as follows:
A = w149 with AY = (BY)2 and W

computed in the section 11I-B1.

whereMZ(.z):Mat(F(”Xl’(F(l))z)(vec(qu}f;f))TC’x)) and
NO = Mat®xFOFO) (ar7)  Note that, Mat!*
is the block matrix rearrangement operator of(BK x
J) matrix, such asMat>/5)((Z,7, Z,7 ... | ZET|T) =
[Z1,Zs,- -, Zk], with K blocks of size(I x P). A matrix
computation of the previous coefficients is performed ailhigy A. Database
for an effective implementation in matrix programming envi A total of 87 patients treated for prostate cancer with IMRT
ronments. The first solution B.%), = 0 and for the others, we is used to evaluate our classification procedure. The used
can search by computing the positive roots of a third degraeatment planning system is Pinnacle V7.4 (Philips Mddica
polynomial defined by: System, Madison, WI). The total prescribed dose is 46 Gy to
A0y A3 L 9B 56 L Y the seminal vesicles delivered in 4.6 weeks, and 80 Gy to the
TAD, (Ayin) = (Ayn)” + a_7Amn + ar prostate delivered in 8 weeks. The standard fractionatias w
) (i) o _ of 2 Gy per fraction. The whole treatment and dose cons#aint
with Apn = (Bmn)®. Then, an analytical root can begre complied with GETUG 06 recommendations as described
computed using Cardono’s method and choosing the positike[47]. The constraints are a maximal dose and a V72 Gy
root, which minimizes the cost functiorfy, ,, . This step is |ower than 76 Gy and 25% for the rectal wall. The size of

mn

achieved for all components a8/, . Then, the solution of the images i$$12 x 512 pixels in the axial plane, with 1mm

the second subproblem is well-known and given by image resolution and 2mm slice thickness. For each patient,

et = T(3,4)((A(i) Lo AW D) [40] the organs are manually contours by the same expert, faipwi
it+1 — L2 it+ it+ :

b) Line search procedureThe ALS procedure has somethe same standard clinical protocol in radiotherapy. Theeex

known drawbacks, as slow convergence, in the context gintoured the clinical target (prostate and seminal vesjcl
ill-conditioned factors or high collinearity, and as sengy and the organs at risks ( the bladder and the rectum). For

to initialization. The algorithm can stay trapped in a locdtach patient, the prescribed dose is computed in a standard

minimum or cycle [41], [42]. Line search scheme has bedffatment planning system step and then resampled into the
used in order to exit from them and so, to accelerate thel native space. The prostate received homogeneously 80

ALS algorithm [42]-[46]. It consists of the linear interptibn  ©Y While the nearby organs at risks received lesser and
of the loading matricesB D and é(i) from their previous heterogeneous dpse. The delivery was guidedF by means of an
. ) ' IGRT protocol, with cone beam CT images or two orthogonal
estimates: . . X ; . ey
o images (kV or MV imaging devices), using gold fiducial
(“Gﬁ“) (12) markers in 57% of patients. The events were defined as rectal
bleeding & Grade 1), at least one episode occurring between
(13) 6 months and 2 years after Radiation Therapy. Patients with
a history of hemorrhoids were not allowed to be scored as
Grade 1 bleeding. Rectal toxicity was scored according ¢o th
Common Terminology Criteria for Adverse Events (CTCAE)
version 3.0. Out oR7 patients,13 presented rectal bleeding
IC{%gradel) with a follow-up time of two years.

IV. DATABASE AND VALIDATION RESULTS

= (1) = (1) z
Bnew = Bit—l + MzB;

~(1) ~ (1) S IOPVI0!
Crew=Cii 1+ 1§ Gy,

whereG5" :BEiLl_Bﬁf andG4"” :éf.zll_éf.? represent

the search directions or the directions of the cycle, corgbut
by the ALS procedure, and wheye?”’ and ;S are the
stepsizes along those directions. The line search stepris
formed before applying the ALS iteration and the interpiofat

matrices,BiZw and C’(Z) are used as starting values for the (volume receiving at least 72Gy)

new?



B. Validation use of the registered 3DpDD. The obtained results (table I)
how that the SN-ICA classification method outperforms all

1) Evaluation schemeBecause of the reduced number o
he other methods.

patients in our database (especially those suffering frectat

bleeding, 13 patients), a leave-one-out cross validasqrer- TABLE |

formed to evaluate the proposed classification method. A 3DCOMPARISON OF UNSUPERVISED CLASSIFICATION TECHNIQUES AND
individual pDD is extracted (validation data) and our metho SUPERVISED APPROACHES

described in section Il is applied to the 86 remaining 3DpDD [ Methods || Sensitvity G¢) || Specificity Gp) |
(training data). This is repeated such that each patiengésl u SN-ICA 1 1
as a test sample. The performance of the method is evaluated Classical ICA 0.28 1
in terms of Sensitivity §¢) and Specificity §p). The Se NMF 1 0.42

. : . ) PCA 0.76 1
value assesses the probability of patients with rectaldihee DA 053 064
being correctly classified and th& value corresponds to the SVM 0.23 0.81
probability of other patients who are correctly identifiesl a K-means 0.46 0.35

without rectal bleeding.
2) Results:In order to study the performance of the pro-
posed procedure, we first discuss the impact of the raiks

and F® of A" and A®®. Then we evaluate the interest of V. DISCUSSIONS ANDFUTURE WORK

. . . . 1 2
selecting the more informative features, lléz(aoit and E§0}))t. Results demonstrated the robustness of the SN-ICA algo-
Eventually, a comparative study with some classical methogthm for the classification of 3DpDD. Although the method
is proposed. was herein applied to the analysis of doses for predicting

a) Influence of the rankg"(!) and F®: Figures 2(a) radiotherapy side-effects, it can also be directly applied
and 2(b) show theSe and Sp values as a function of(")  different classification problems of non-rigidly aligned 3
and F(?, varying from3 to 7. In this experiment, the whole yoxel data.
vector bases derived from the SN-ICA algorithm are used.The identification of bases combined with orthogonal pro-
In other word we assume thﬂgt = AU i = {1,2}. We jection improves the results with respect to the use of dmiy t
remark that, for the high values df") (5 < F() < 7) and orthogonal projections onto the raw population dats"’ and
F® (3 < F® < 4), all patients are classified in the groupX (®. Indeed, using our simple classification scheme without
of rectal bleeding:Se = 1 and Sp ~ 0. In contrary, when any vector basis identification leads to very poor perforcean
FM s low (3 < F < 4), we obtainSe ~ 0 and Sp = 1 since most of the patients were classified as rectal bleeding
(all patients are viewed as no rectal bleeding ones). We al®: = 1 and Sp = 0.02). In addition, all the supervised
observe that, fo6 < F() < 7 and4 < F(® < 5, we obtained methods (which do not explicitly identify vector bases)egiv
the quite good results. The best trade off betwEemnd Sp poor results (see table 1.

values seems to be achieved far), F@) = (7,5): only 2 Two other major contributions in this paper are: i) the
patients with rectal bleedings=0.84) and2 patients without consideration of non-negativity constraints togetherviit-
rectal bleeding $p=0.97) are not well classified. dependency, and ii) the nonnegative compression. The non-

b) Influence of feature selectionn this experiment, the negativity is in line with the positive character of dose,igth
procedure of the feature selection is evaluated. Figurap 3is meaningful for this application. The SN-ICA algorithm
and 3(b) display th&eand Spvalues when varying”™) and allows for the combination of nonnegative constraints with
F® and for(RV, R®) = (1,1) (i.e. only one vector of two independent assumption as opposed to PCA, classical ICA
basesA)) and A® are selected to form the optimal vectomnd NMF methods, which use orthogonality, independence
subbasesEEth and Egit). We show thatSp is equal tol and nonnegativity constraints, respectively. Regardiegion-
whatever the number of ranks(,y and Fi,. In other words, negative compression, it allows for the estimation of thetbe
all patients without rectal bleeding are well classified.eThbasis rankg"(?). Moreover, reducing the dimension of the ob-
procedure allows to perfectly classify the two groups & 1  servation space, yields an increased computational efigie
andSp = 1) for many couples of ranks. More particularly, it iswithout degrading the performance of the procedure.
interesting to note that fofF(y), F(2)) = (4,4), estimated by  Our classification criterion is based on the euclidean norm
the proposed nonnegative compression algorithm [36]itsectand does not require any evolutive classification method.
[1I-B1), the obtained performance is also perfect. In addition to that, a careful selection of more informative

c) Comparison with classical algorithmshe proposed features from the computed bases is also crucial for theielas
SN-ICA algorithm was also compared to: i) four unsupervisditation. With these data, significantly improved performes
classification approaches, namely the PCA-based methed pte obtainedfe = 1 and Sp = 1).
sented in [26], a classical ICA-based algorithm [48], a Non- The proposed framework also depends on a non-rigid
negative Matrix Factorization (NMF) based approach [43] amarching organ and CTs scans. The exploitation of euclidean
a K-means clustering algorithm [50], and ii) two supervisedistance maps from organ boundaries allowed for careful
methods, namely Linear Discriminant Analysis (LDA) [S51Jjmatching of the dose near to the rectal wall. Nevertheless,
and Support Vector Machine (SVM) [52]. All these method&urther work will be investigated to enhance the alignment o
also take the advantage of the spatial information throbgh tall structures. Another key point to consider, in futuredéts,
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Fig. 3. Performance of the multivoxel-based Semi-NonnegdCA (SN-ICA) feature extraction for different couple$ mnks and selection of one feature.

relies on the optimal template selected from the database[3d], such as radio-sensitivity, personal medical histaiye,
be representative of a given population. concomitant treatment, etc. Further works should alsoidens

Aithough the results are promising in terms of performanc&]e inclusion of these individual’s clinical variables lthaay
Concerning the clinical app”cation, the results shall loa-c be involved in tOXiCity as an additional criterion withineth
firmed with larger databases. Toxicity prediction has bedgssification.
addressed by a large number of studies using DVHs [6]—[9],
which differ from our proposed approach. Despite the lack of VI. CONCLUSION
spatial accuracy, these well-established methods pragode In this work, we have proposed a new method for classifying
prediction results. In future work, a thorough validatigaanst patient at risk of suffering from rectal bleeding after pats
those models will be performed. One of the issues for thtmncer radiotherapy. The proposed approach is based on a new
comparison to be carried out lies in the need of large cohoB&&-ICA algorithm, which allows for the extraction of more
to estimate the population specific parameters. As oppasedriformative features from the 3D planning Dose Distribatio
them, the proposed method exploits the rich spatial inferm@DpDD). The method exploits the rich spatial information
tion encoded in the 3DpDD Yyielding a perfect classificatiortonveyed by the 3DpDD thanks to the determination of two
The good performance reveals that classifying rectal limged bases for both rectal bleeding and non rectal bleedingnatie
and non rectal bleeding patients from a population treated fThe classification is then achieved by orthogonally praject
prostate cancer is possible. Clearly, in this study we dort3D individual test onto both subspaces spanned by the more
claim that the 3DpDD is the only factor responsible of sidmformative vectors. The test patient is thus classifiechgisi
effects. Obviously, it is well known that the toxicity is als an euclidean distance. A comparative study demonstrages th
related to specific factors of an individual [16], [17], [53]performance of our method, which provides a new means of



predicting toxicity. This framework may in turn be used for APPENDIXB

improving the therapy by introducing new constraints withi THE COMPUTATION OF THE MATRIX F'
the IMRT planning, and the SN-ICA may also constitutes a The functiony (14) can be rewritten as follows:
promising procedure for processing other image applinatio iy A - -
where the nonnegative constraints and the independence ag#” ,pu© ) = HFo + PP+ Fa(u” )2+

sumption are verified. 55 710 A(9) A, B
Fy(uP ") + Fa(pP ) + Fsp© " + Fep® () +
(i 5 (i (i 5 (i (i 5(i 2
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THE NONNEGATIVE COMPRESSION F, = -C\ B, Fs=-G5" E (20)
The shearing transformation for a pair of columng®t™, Fg = —Gngl F; = —GSMEQ
calledw'” andw!”, is defined as follows: Fs = -GSVBy, Fo—-G°"E,
ol o -l w [} 1] a5 win
_ Ey, = (KooKy)' Ei=(Koo0K;+K;0K)'
where the parameteyris called a shear factor. Noting th@tﬁz) E, = (KooKo+ K, 0K, +KsoKg)

remains unchanged, we consider the following negativene%
3

_ T _ T
measure criterion [38]: = (K10K;+ K0 Ky)'  Ey=(K20K»)

L and finally:
_ O » »
J(\) = 3 Z(ij) ]leg2<0 (16) Ko — Agtll _ (Bgtll)oz Ky — (Gift;( >)<>2
J . .
~ (%) ~ (7)
1 fa<o K,=B, 10Gzs +Gzw o B4 (21)

W@ 1 - B (i A (i .
and W, is the (j,k) In order to calculate:2” anduS”, the functiony can be

reduced to a compact form as follows:

where 1, = .
<0 { 0 otherwise

th component oﬂ/)[\/(z). The purpose is to find a which 50 0 )
minimizes the total sum of squares of negative elements in e(u” u” ) =||Fullp =u"F'Fu (22)

{u,(f) (16). The global optimum©#* is the root of the derivative \yhere F — [vec[Fy],vec[Fs], ..., vec[F1],vec[Fy|] is a
of J()\). However, such a°?! is difficult to obtain analytically, (F®)1(F®)3 x 10) matrix, andu = [uém BW\4

since the heaviside-step-like functidp . exists in (16). We @(i)( E}m)g i) (‘ué(i))g S10) (Hé(i)) & (M3<i>)4
propose to computa iteratively by a Newton’s method. At (B3 (ME}&))Q (1) 1iT is alO-dirr;ensic;naI vectc’)r
iterationit, the update rule oh is given by: N L0 o
The objective functiorp is a second degree polynomial in
2T Nit—1)\ " 0T (Ai—1) 1€ The optimal stepsizwj{” is achieved by vanishing
Ait = Aig—1 = N, ONir1 A7) the partial derivative w.r.tu® V' then pg"” is equal to a
. . . ._.rational function inuZ"”’. The expression of&"’ is injected
where \;;_; is the solution at the previous iteration, " " ationd Ma B OpConse ?f:az;ltl theJ lobal
OJ(Nit—1)/ONit—1 and 8% J (N\iy—1)/ON2,_, are the first and q & /On o g Y, g
second order derivatives of w.r.t \;;_; which are given as m|n|mu~mmuit _can_ be computed by rooting the r_1u~r(rqj)erat0r of
follows, respectively: dp/0uP ", which is a 24-th degree polynomial " and
selecting the root yielding the smallest value of the olbject
function . Then, we inferu$"” from p5 .

OJ(Nit—1) , ,
ONit_1 (W4 W ))<0
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