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Abstract: 

The deprotonation of anisole was attempted using different homo- and heteroleptic TMP/Bu mixed 

lithium-cobalt combinations. Using iodine to intercept the metalated anisole, an optimization of the 

reaction conditions showed that in THF at room temperature 2 equiv of base were required to suppress 

the formation of the corresponding 2,2'-dimer. The origin of the dimer was not identified, but its 

formation was favored with allyl bromide as electrophile. The metalated anisole was efficiently trapped 

using iodine, anisaldehyde, and chlorodiphenylphosphine, and moderately employing benzophenone, 

and benzoyl chloride. 1,2-, 1,3- and 1,4-dimethoxybenzene were similarly converted regioselectively to 

the corresponding iodides. It was observed that 2-methoxy- and 2,6-dimethoxypyridine were more 

prone to dimerization than the corresponding benzenes when treated similarly. Involving ethyl benzoate 

in the metalation-iodination sequence showed the method was not suitable to functionalize substrates 

bearing reactive functions.  

Keywords: 

bimetallic bases, deprotonative metalation, aromatic compounds, lithium, cobalt 

Introduction 

The deprotonative metalation using lithium bases has been widely used as a powerful method for the 

regioselective functionalization of aromatic compounds.1 The use of metal additives in order to get 

more efficient or more chemoselective bases (synergic superbases) is a challenging field. Pioneer 

studies, respectively carried out in the groups of Schlosser2 and Lochmann3 with LIC-KOR, mixture of 

butyllithium (LIC) and potassium tert-butoxide (KOR), and by Caubère, Gros and Fort4 in the pyridine 

series with BuLi-LiDMAE (DMAE = 2-dimethylaminoethoxide) and Me3SiCH2Li-LiDMAE merged 

alkyllithiums and alkali-metal alkoxides. More recently, the use of other (R)n(R’)n’MLi-type bases, with 

M being different from an alkali-metal (e.g. M = Mg, Al, Cr, Mn, Cu, Zn), has been described by 

different groups for their ability to deprotonate aromatic compounds,5 and notably anisole.6 In 2009, 

Klett, Mulvey and co-workers showed that it is possible to design sodium-iron(II) bases, and extended 
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the ability to deprotonate to group 8 ate compounds.7 The same year, Wunderlich and Knochel showed 

that ferration can be achieved using salt-solubilized (TMP)2Fe·2MgCl2·4LiCl (TMP = 2,2,6,6-

tetramethylpiperidino).8  

We recently accomplished the room temperature deproto-metalation of a large range of substrates 

including sensitive heterocycles and functionalized benzenes using newly developed lithium-zinc,9 

lithium-cadmium,10 and lithium-copper(I)11 combinations, in situ prepared from MCl2·TMEDA (M = 

Zn, Cd or Cu, TMEDA = N,N,N',N'-tetramethylethylenediamine) and lithium reagents (alkyllithiums or 

lithium amides). The studies performed using lithium-zinc and lithium-cadmium combinations have 

notably shown that the more efficient bases were obtained by mixing the metal salt with 3 equiv of 

LiTMP.9d,10g A main drawback of the methods developed being the lack of reactivity of such generated 

arylmetals in direct trapping with electrophiles, we turned to other bimetallic combinations in order to 

identify candidates able to perform efficient deprotonations, but also to allow direct functionalizations. 

We here describe the first aromatic deproto-metalations using lithium-cobalt combinations. 

Results and Discussion 

The synthesis of organocobalt ate compounds is well-documented in the literature. They are in 

general obtained by transmetalation of organolithium12 or -magnesium13 reagents with cobalt(II) 

halides. Examples are Me3CoLi,12a Me4CoLi2(TMEDA)2
12b and (R3SiCH2)4Co(MgCl)2 (R3Si = Me3Si, 

MePh2Si, tBuMe2Si).13 The access to mixed lithium-cobalt amides is far less documented, but seems 

possible similarly.14 We first consider the use of CoCl2·TMEDA chelate15 in order to manipulate a salt 

less hygroscopic than CoCl2, but attempts to prepare it failing in giving good microanalyses, we turned 

to CoBr2.
16 We prepared different lithium-cobalt combinations by mixing the cobalt salt with 3 or 4 

equiv of a lithium compound, either LiTMP or mixtures with butyllithium, at 0 °C. We chose anisole 

(1) as substrate to check the ability to deprotonate of the mixtures (Table 1). 

Using LiTMP (1 equiv) or (TMP)2Co (1 equiv, in situ generated from CoBr2 and 2 equiv of LiTMP) 

in tetrahydrofuran (THF) at room temperature for 2 h, and then iodine, anisole (1) was converted into 
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the 2-iodo derivative 2a in 9 or 0% yield, respectively. In contrast, when treated with an in situ prepared 

mixture of CoBr2 (1 equiv) and LiTMP (3 equiv) at 25 °C for 2 h, anisole (1) was readily ortho-

metalated, a result evidenced with the formation of 2a in 54% yield after purification (Entry 1). 

Lowering the reaction temperature to 0 °C resulted in a low conversion, even after 4 h reaction time 

(Entries 2 and 3). When performed at 45 °C, the metalation step worked as at 25 °C, affording 2a in 

50% yield (Entry 4). It is known that labile ligands can play a role on the course of reactions.9a To 

check a possible effect, the reaction was performed at room temperature in the presence of 1 equiv of 

TMEDA; the 39 and 59% yields respectively obtained with and without TMEDA indicates the 

deleterious influence of this ligand, uninteresting in this case (Entry 5). The impact of the reaction time 

was next considered. It was observed that reducing the reaction time to 30 min resulted in a lower 43% 

yield (Entry 6). Extending the reaction time to 4 h did not bring any improvement (Entry 7), but after 20 

h the yield was significantly reduced to 38% (Entry 8). The effect of the base amount was then studied. 

Using 0.5 equiv of CoBr2 and 1.5 equiv of LiTMP led to low conversions, whatever the reaction time 

(Entry 9). It was possible to find again the 54% yield already obtained Entry 1 by using 1.5 equiv of 

CoBr2 and 4.5 equiv of LiTMP, and a 30 min reaction time (Entry 10). The best result (93% yield) was 

obtained using 2 equiv of CoBr2 and 6 equiv of LiTMP (Entry 11), allowing to reduce the reaction time 

to 30 min (Entry 12).  

As previously noted in a lesser extent in other bimetallic series,9d,10g putative Bu3CoLi·2LiBr (Entry 

13), Bu2Co(TMP)Li·2LiBr (Entry 14), and BuCo(TMP)2Li·2LiBr (Entry 15) alkyl/amino combinations 

are not able to deprotonate anisole (1). Higher-order ate compounds being in general more reactive than 

lower-order ones,17 reactions were attempted using putative Bu3Co(TMP)Li2·2LiBr (Entry 16), 

Bu2Co(TMP)2Li2·2LiBr (Entry 17), and BuCo(TMP)3Li2·2LiBr (Entry 18). The iodide 2a was only 

isolated in 19% yield in the last reaction, due to the competitive formation of 2,2'-dimethoxybiphenyl 

(3) in 35% yield.  
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The formation of the dimer 3 has been observed in all the experiments where metalation took place, 

but in various yields. Its formation does not seem to depend on the deprotonation temperature (Entries 

1-4), but seems to be favored with long contact times (Entry 8). In addition, it is clear that the use of 2 

equiv of base prevents its formation (Entries 11 and 12), as if it formed intramolecularly. Using water 

instead of iodine to trap the metalated anisole derivative also resulted in the formation of 3 in a similar 

14% yield (Entry 19). Thus, if cross-coupling with the iodide 2,12c,18 and iodine-mediated oxidation19 

can be proposed to explain the formation of 3, alternatives ways without recourse to them exist. A 

possible in situ partial reduction of Co(II) species to Co(I) due to the presence of metal amides is 

possible,20 but would not lead to a dimer in the absence of an halide.21 Even if the use of degassed THF 

did not change significantly the result (Entry 19),22 a possible role of dissolved oxygen cannot be ruled 

out.19 An alternative explanation could be the presence of a metal impurity in CoBr2 for which the 

corresponding diaryl metal ate compounds is prone to dimerization. Using allyl bromide instead of 

iodine (or water) to quench the metalated anisole derivative produced the dimer 3 in 38% yield, and 2-

allylanisole (2b) in 6% yield besides (Entry 20). One-electron transfers from cobalt(II) ate compounds 

to allyl bromide are possible pathways,23 and dimerization from the generated Co(III) species bearing 

two aryl groups18a appears as a possible pathway to explain the formation of 3 in this case (Scheme 1). 

Other electrophiles favor the dimerization. For example, the use of 2-bromopyridine in order to convert 

the metalated anisole into the cross-coupling product 2c was similarly threatened by a significant 

formation of 3 (Entry 21). 

 

SCHEME 1. Possible pathway for the formation of 3 from the metalated anisole derivative. 
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TABLE 1. Optimization of Anisole Metalation using a Lithium/Cobalt Base. 

1

1) Li/Co base (x equiv)
THF, conditions

2

2) Electrophile (3x
or 4x equiv), rt
3) Hydrolysis

OMe OMe

E

OMe

OMe
+

3  

entry Li/Co base (x) conditions electrophile 
(3x or 4x) 

2 (E), yield yield 
of 3a 

1b CoBr2 (1) + LiTMP (3) 25 °C, 2 h I2 (3) 2a (I), 54% 17% 

2 

3 

4 

5 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

0 °C, 2 h 

0 °C, 4 h 

45 °C, 2 h 

rt,c 2 h 

I2 (3) 

I2 (3) 

I2 (3) 

I2 (3) 

2a (I), 12% 

2a (I), 13% 

2a (I), 49% 

2a (I), 59%d 

5% 

24% 

20% 

-e 

6 

7 

8 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

rt, 30 min 

rt, 4 h 

rt, 20 h 

I2 (3) 

I2 (3) 

I2 (3) 

2a (I), 43% 

2a (I), 57% 

2a (I), 38% 

21% 

-e 

34% 

9 

10 

11 

12 

CoBr2 (0.5) + LiTMP (1.5) 

CoBr2 (1.5) + LiTMP (4.5) 

CoBr2 (2) + LiTMP (6) 

CoBr2 (2) + LiTMP (6) 

rt, 2 to 20 h 

rt, 30 min 

rt, 2 h 

rt, 30 min 

I2 (1.5) 

I2 (4.5) 

I2 (6) 

I2 (6) 

2a (I), -f 

2a (I), 54% 

2a (I), 93% 

2a (I), 93% 

-f 

16% 

-e 

5% 

13 

14 

15 

CoBr2 (1) + BuLi (3) 

CoBr2 (1) + LiTMP (1) + BuLi (2) 

CoBr2 (1) + LiTMP (2) + BuLi (1) 

rt, 2 h 

rt, 2 h 

rt, 2 h 

I2 (3) 

I2 (3) 

I2 (3) 

2a (I), 0% 

2a (I), 0% 

2a (I), 0% 

0% 

0% 

0% 

16 

17 

18 

CoBr2 (1) + LiTMP (1) + BuLi (3) 

CoBr2 (1) + LiTMP (2) + BuLi (2) 

CoBr2 (1) + LiTMP (3) + BuLi (1) 

rt, 2 h 

rt, 2 h 

rt, 2 h 

I2 (4) 

I2 (4) 

I2 (4) 

2a (I), 0% 

2a (I), 0% 

2a (I), 19% 

0% 

0% 

35% 

19 

20 

CoBr2 (1) + LiTMP (3) 

CoBr2 (1) + LiTMP (3) 

rt, 2 h 

rt, 2 h 

H2O (3) 

BrCH2CH=CH2 (3) 

1 (H), - 

2b (CH2CH=CH2), 6%h 

14%g 

38% 

21 CoBr2 (1) + LiTMP (3) rt, 2 h 
NBr

 (3) 2c 
N

, 14% (16%)i 
19% 

(26%)i 

a The rest is in general anisole. b 9 and 0% yield using LiTMP and (TMP)2Co, respectively, under the same 
reaction conditions. c Between 17 and 23 °C. d 39% yield in the presence of 1 equiv of TMEDA. e Not 
quantified. f Low conversion and significant formation of dimer. g 12% using degassed THF. h The high 
volatility of the compound could be partly responsible for the low yield obtained. i Trapping step performed at 
50 °C instead of rt.  
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The optimized conditions in hands, the use of different electrophiles was attempted (Table 2). Anisaldehyde 

led to the corresponding alcohol 2d in a satisfying yield (Entry 2). The alcohol 2e and ketone 2f were produced 

in moderate yields upon interception with benzophenone and benzoyl chloride, respectively (Entries 3 and 4). 

The phosphine 2g was obtained satisfactorily using chlorodiphenylphosphine, but the cross-coupled derivative 

2c was isolated in a low 25% yield due to a significant formation of 3 (Entry 6). 

TABLE 2. Electrophilic Trapping of Metalated Anisole. 

1

1) CoBr2 (2 equiv)
+ LiTMP (6 equiv)

THF, rt, 30 min

2

2) Electrophile
(6 equiv)

3) Hydrolysis

OMe OMe

E

OMe

)2

+

3  

entry electrophile 2, yield yield 
of 3 

1 I2 2a, 93%OMe

I

 

5% 

2 4-MeOC6H4- 
CHO 

2d, 84%OMe OH

OMe 

15% 

3 PhC(O)Ph 2e, 45%OMe

Ph

OH

Ph

 

10% 

4 PhC(O)Cl 2f, 30%OMe

Ph

O

 

16% 

5 Ph2PCl 2g, 82%
OMe

PPh2

 

15% 

6a 

NCl  

2c, 25%
(19%)c

OMe

N

 

-b 

(33%)c 

a Trapping step performed at 50 °C instead of rt. b 
Not quantified. c Using 1 equiv of base. 

The method was then extended to other aromatic substrates (Table 3). Starting from 1,4-dimethoxybenzene 

(4) and using iodine as electrophile, the expected derivative 5a was obtained in a correct yield provided that 2 

equiv of base were used (Entries 1-3). It was noted that a longer reaction time favored the co-formation of 
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diiodides. Trapping with allyl bromide resulted in a significant formation of the dimer 6 whereas the expected 

allylated compound 5b was isolated in a low 6% yield (Entry 4). These results are similar to those obtained 

from anisole (1). Benefiting from a greater activation, 1,3-dimethoxybenzene (7) was quantitatively converted to 

the iodide 8a (Entry 5). Using allyl bromide instead of iodine yielded the derivative 8b in a low yield due to a 

significant recovery of starting material; in this case, the corresponding dimer 9 was isolated in a low 6% yield 

(Entry 6). The behavior of 1,2-dimethoxybenzene (10) is similar to that of 1,4-dimethoxybenzene (4); the 

formation of the corresponding dimer 12 was suppressed by reducing the reaction time to 30 min (Entries 7 and 

8). Trapping using allyl bromide led to a significant formation of the dimer 12, limiting the yield of the allylated 

derivative 11b to 23% (Entry 9). 1,2,3-Trimethoxybenzene (13) led to the expected iodide 14 in a moderate 33% 

yield, due to a significant recovery of starting material (Entry 10). Performed with 2-methoxypyridine (15), the 

reaction led to a more important formation of dimer than starting from methoxybenzenes. The iodide resulting 

from a regioselective metalation next to the methoxy group was isolated in a moderate 43% yield (Entries 11 

and 12). Except an increased conversion, a similar result was observed from 2,6-dimethoxypyridine (18) (Entry 

13). The method is not suitable to functionalize substrates bearing reactive functions. Indeed, using ethyl 

benzoate (21), side reactions with the ester function only allowed the expected iodide 22 to be obtained in 

maximum 22% yield (Entries 14 and 15). A deprotonative metalation followed by a cross-coupling reaction was 

carried out from thiophene. Using 1 equiv of base (in order to avoid 2,5-dideprotonation),9d the expected cross-

coupled compound was isolated, but in a low 19% yield (Entry 16). 

TABLE 3. Extension to Other Aromatic Substrates Including Heterocycles. 
1) CoBr2 (x equiv)
+ LiTMP (3x equiv)

THF, rt, reaction time

2) Electrophile (3x equiv)
3) Hydrolysis

Ar H Ar E Ar Ar+

 

entry Ar-H x reaction time electrophile Ar-E (E), yield Ar-Ar, yield 

1 

2 

3 

4 

4: 
OMe

MeO

H

 

0.5 

1 

2 

2 

2 h 

2 h 

30 min 

30 min 

I2 

I2 

I2 

BrCH2CH=CH2 

5a (I), 10% 

5a (I), 45% 

5a (I), 76% 

5b (CH2CH=CH2), 6% 

6, 22% 

-a 

6, 10% 

6, 33% 

5 

6 

7: OMe

OMe

H

 

2 

2 

30 min 

30 min 

I2 

BrCH2CH=CH2 

8a (I), 97% 

8b (CH2CH=CH2), 14% 

 

9, 6% 
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7 

8 

9 

10: 

OMe

H

OMe

 

2 

2 

2 

2 h 

30 min 

30 min 

I2 

I2 

BrCH2CH=CH2 

11a (I), 76% 

11a (I), 74% 

11b (CH2CH=CH2), 23% 

12, 17% 

12, 0% 

12, 62% 

10 13: 

OMe

OMe

OMe

H

 

2 30 min I2 14 (I), 33%  

11 

12 

15: 

N OMe

H

 

1 

2 

2 h 

2 h 

I2 

I2 

16 (I), 11% 

16 (I), 43% 

17, 19% 

17, 14% 

13 18: 

N OMe

H

MeO  

2 30 min I2 19 (I), 64% 20, 34% 

14 

15 

21: 

CO2Et

H

 

1 

2 

2 h 

2 h 

I2 

I2 

22 (I), 14% 

22 (I), 22% 

-a 

-a 

16b 23: 
S

H

 
1 2 h 4-IC6H4OMe 24 (4-C6H4OMe), 19% -a 

a Not quantified. b Using 1 equiv of base. 

Conclusion 

Like the other lithium-metal combinations, the mixture of CoBr2 and 3 equiv of LiTMP behaves 

synergically, but compared with the previously described "all-TMP" lithium-zinc9 and lithium-

cadmium10 combinations, the base obtained by combining CoBr2 with 3 equiv of LiTMP is less 

efficient as far as both conversion and chemoselectivity are concerned. For example, starting from 

anisole (1), the iodide 2a was isolated in 84% and 75% yield using 0.5 equiv of the lithium-zinc and 

lithium-cadmium combinations, respectively, against 59% under the same conditions using 1 equiv of 

the lithium-cobalt one. Concerning the metalation of methoxybenzenes, its efficiency more looks like 

that of the reported "all-TMP" Gilman-type lithium-copper(I) combination.11 Nevertheless, the 

reactivity exhibited by the generated arylmetal species has been improved using lithium-cobalt bases. 

In conclusion, compared with the previously reported "all-TMP" reagents, the combination here 

presented allows more efficient direct trappings for the generated arylmetal compounds, but lacks both 
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efficiency and chemoselectivity. Studies are under development to identify more suitable lithium-metal 

systems. 

Experimental Section 

General Procedure A (Deprotonation using 2 equiv CoBr2 and 6 equiv LiTMP Followed by 

Trapping using I2). To a stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine (4.1 mL, 24 

mmol) in THF (8 mL) were added BuLi (1.6 M hexanes solution, 24 mmol) and, 5 min later, CoBr2 

(1.7 g, 8.0 mmol). The mixture was stirred for 10 min at 0 °C before introduction of the substrate (4.0 

mmol). After 2 h at room temperature, a solution of I2 (6.1 g, 24 mmol) in THF (7 mL) was added. The 

mixture was stirred overnight before addition of an aq saturated solution of Na2S2O3 (10 mL) and 

extraction with EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO4, filtered and 

concentrated under reduced pressure. 

2-Iodoanisole (2a). 2a was obtained according to the general procedure A starting from anisole (0.44 

mL), but reducing the metalation reaction time to 30 min, and was isolated after purification by flash 

chromatography on silica gel (eluent: heptane/CH2Cl2 95/5) as a colorless oil (93% yield). The analyses 

are as described previously.10a  

2-Iodo-1,4-dimethoxybenzene (5a). 5a was obtained according to the general procedure A starting 

from 1,4-dimethoxybenzene (0.55 g), but reducing the metalation reaction time to 30 min, and was 

isolated after purification by flash chromatography on silica gel (eluent: heptane/AcOEt 97/3) as a 

yellow solid (76% yield): mp < 50 °C; 1H NMR (300 MHz, CDCl3)  3.74 (s, 3H), 3.81 (s, 3H), 6.94 

(d, 1H, J = 8.9 Hz), 6.85 (dd, 1H, J = 2.9 and 8.9 Hz), 7.33 (d, 1H, J = 2.9 Hz); 13C NMR (75 MHz, 

CDCl3):  154.2, 152.6, 124.7, 114.6, 111.5, 85.9, 56.9, 55.8. These data are analogous to those 

previously described.24  

2,2',5,5'-Tetramethoxybiphenyl (6). 6 was obtained according to the general procedure A starting 

from 1,4-dimethoxybenzene (0.55 g), but using 2,2,6,6-tetramethylpiperidine (1.0 mL, 6.0 mmol), BuLi 
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(6.0 mmol) and CoBr2 (0.42 g, 2.0 mmol). It was isolated after purification by flash chromatography on 

silica gel (eluent: heptane/AcOEt 88/12) as a red solid (22% yield): mp 94-95 °C; 1H NMR (300 MHz, 

CDCl3)  3.73 (s, 6H), 3.78 (s, 6H), 6.83-6.88 (m, 4H), 6.91 (dd, 2H, J = 1.0 and 8.4 Hz); 13C NMR (75 

MHz, CDCl3):  153.3 (2C), 151.1 (2C), 128.6 (2C), 117.1 (2C), 113.4 (2C), 112.4 (2C), 56.6 (2C), 

55.7 (2C). These data are analogous to those previously described.25  

2-Iodo-1,3-dimethoxybenzene (8a). 8a was obtained according to the general procedure A starting 

from 1,3-dimethoxybenzene (0.55 g), but reducing the metalation reaction time to 30 min, and was 

isolated after purification by flash chromatography on silica gel (eluent: heptane/AcOEt 60/40) as a 

white solid (97% yield): mp 106 °C (lit.26 100 °C); 1H NMR (300 MHz, CDCl3)  3.88 (s, 6H), 6.49 (d, 

2H, J = 8.2 Hz), 7.25 (t, 1H, J = 8.2 Hz); 13C NMR (75 MHz, CDCl3):  159.4 (2C), 129.7, 104.0 (2C), 

77.5, 56.5 (2C). 

1-Iodo-2,3-dimethoxybenzene (11a). 11a was obtained according to the general procedure A 

starting from veratrole (0.50 mL), and was isolated after purification by flash chromatography on silica 

gel (eluent: heptane/AcOEt 98/2) as a yellow solid (76% yield). The analyses are as described 

previously.10a  

1-Iodo-2,3,4-trimethoxybenzene (14). 14 was obtained according to the general procedure A 

starting from 1,2,3-trimethoxybenzene (0.68 g), but reducing the metalation reaction time to 30 min, 

and was isolated after purification by flash chromatography on silica gel (eluent: heptane/CH2Cl2 

50/50) as a light yellow solid (33% yield): mp < 50 °C (lit.27 42 °C); 1H NMR (300 MHz, CDCl3)  

3.84 (s, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 6.49 (d, 1H, J = 8.8 Hz), 7.40 (d, 1H, J = 8.8 Hz); 13C NMR (75 

MHz, CDCl3):  154.3, 153.3, 142.6, 132.5, 109.7, 81.2, 60.9, 60.8, 56.1. 

3-Iodo-2-methoxypyridine (16). 16 was obtained according to the general procedure A starting from 

2-methoxypyridine (0.42 mL), and was isolated after purification by flash chromatography on silica gel 

(eluent: heptane/Et2O 85/15) as a white solid (43% yield): mp 64 °C (lit.28 66 °C); 1H NMR (300 MHz, 
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CDCl3)  3.98 (s, 3H), 6.64 (dd, 1H, J = 4.8 and 7.5 Hz) 8.02 (dd, 1H, J = 1.7 and 7.5 Hz), 8.11 (dd, 

1H, 1.7 and 4.8 Hz); 13C NMR (75 MHz, CDCl3):  161.8, 147.9, 146.4, 118.1, 79.7, 54.6. 

2,2'-Dimethoxybipyridine (17). 17 was obtained according to the general procedure A starting from 

2-methoxypyridine (0.42 mL), but using 2,2,6,6-tetramethylpiperidine (2.0 mL, 12 mmol), BuLi (12 

mmol) and CoBr2 (0.84 g, 4.0 mmol). It was isolated after purification by flash chromatography on 

silica gel (eluent: heptane/AcOEt 98/2) as a light yellow solid (19% yield): mp 104 °C (lit.29 139-140 

°C); 1H NMR (300 MHz, CDCl3)  3.92 (s, 6H), 6.95 (dd, 2H, J = 5.0 and 7.2 Hz), 7.59 (dd, 2H, J = 

1.9 and 7.2 Hz), 8.18 (dd, 2H, J = 1.9 and 5.0 Hz); 13C NMR (75 MHz, CDCl3):  161.1 (2C), 146.2 

(2C), 139.5 (2C), 119.8 (2C), 116.4 (2C), 53.5 (2C). 

3-Iodo-2,6-dimethoxypyridine (19).
30 19 was obtained according to the general procedure A starting 

from 2,6-dimethoxypyridine (0.53 mL), but reducing the metalation reaction time to 30 min, and was 

isolated after purification by flash chromatography on silica gel (eluent: heptane/AcOEt 98/2) as a 

brown solid (64% yield): mp < 50 °C; 1H NMR (300 MHz, CDCl3)  3.88 (s, 3H), 3.95 (s, 3H), 6.13 (d, 

1H, J = 8.2 Hz), 7.78 (d, 1H, J = 8.2 Hz); 13C NMR (75 MHz, CDCl3):  163.2, 160.5, 149.3, 103.4, 

65.5, 54.3, 53.5; HRMS calcd for C7H8INNaO2 [(M+Na)+•] 287.9497 and C7H9INO2 [(M+H)+•] 

265.9678, found 287.9492 and 265.9680, respectively. 

2,2',6,6'-Tetramethoxy-3,3'-bipyridine (20).
30 20 was obtained according to the general procedure 

A starting from 2,6-dimethoxypyridine (0.53 mL), but reducing the metalation reaction time to 30 min, 

and was isolated after purification by flash chromatography on silica gel (eluent: heptane/AcOEt 96/4) 

as a white solid (34% yield): mp 144.5 °C; 1H NMR (300 MHz, CDCl3)  3.92 (s, 6H), 3.94 (s, 6H), 

6.36 (d, 2H, J = 8.0 Hz), 7.52 (d, 2H, J = 8.0 Hz); 13C NMR (75 MHz, CDCl3):  162.0 (2C), 159.6 

(2C), 142.5 (2C), 110.5 (2C), 100.4 (2C), 53.4 (2C), 53.3 (2C); HRMS calcd for C14H16N2NaO4 

[(M+Na)+•] 299.1008 and C14H17N2O4 [(M+H)+•] 277.1188, found 299.1007 and 277.1192, 

respectively. 
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Ethyl 2-iodobenzoate (22). 22 was obtained according to the general procedure A starting from ethyl 

benzoate (0.61 mL), and was isolated after purification by flash chromatography on silica gel (eluent: 

heptane/AcOEt 98/2) as a yellow oil (22% yield): 1H NMR (300 MHz, CDCl3)  1.41 (t, 3H, J = 7.1 

Hz), 4.39 (q, 2H, J = 7.1 Hz), 7.14 (td, 1H, J = 1.7 and 7.8 Hz), 7.39 (td, 1H, J = 1.7 and 7.9 Hz), 7.79 

(dd, 1H, J = 1.7 and 7.8 Hz), 7.98 (dd, 1H, J = 1.0 and 7.9 Hz); 13C NMR (75 MHz, CDCl3):  166.5, 

141.1, 135.4, 132.4, 130.7, 127.8, 93.9, 61.6, 14.1. These data are analogous to those previously 

described.31 

General Procedure B (Deprotonation using 2 equiv CoBr2 and 6 equiv LiTMP Followed by 

Trapping with an electrophile ≠ I2). To a stirred cooled (0 °C) solution of 2,2,6,6-

tetramethylpiperidine (4.1 mL, 24 mmol) in THF (8 mL) were added BuLi (1.6 M hexanes solution, 24 

mmol) and, 5 min later, CoBr2 (1.7 g, 8.0 mmol). The mixture was stirred for 10 min at 0 °C before 

introduction of the substrate (4.0 mmol). After 30 min at room temperature, the electrophile (24 mmol) 

was added. The mixture was stirred overnight before addition of H2O (10 mL) and extraction with 

EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO4, filtered and concentrated 

under reduced pressure. 

2-Allylanisole (2b). 2b was obtained according to the general procedure B (in this case, an extended 

reaction time of 2 h was used, and the following amounts for 2,2,6,6-tetramethylpiperidine (2.0 mL, 12 

mmol), BuLi (12 mmol) and CoBr2 (0.84 g, 4.0 mmol) were used) starting from anisole (0.44 mL), and 

using allyl bromide (1.0 mL, 12 mmol). 2b was isolated after purification by flash chromatography on 

silica gel (eluent: heptane/CH2Cl2 92/8) as a colorless oil (6% yield). The analyses are as described 

previously.10e  

2,2'-Dimethoxybiphenyl (3). 3 was obtained according to the general procedure B (in this case, an 

extended reaction time of 2 h was used, and the following amounts for 2,2,6,6-tetramethylpiperidine 

(2.0 mL, 12 mmol), BuLi (12 mmol) and CoBr2 (0.84 g, 4.0 mmol) were used) starting from anisole 

(0.44 mL), and using allyl bromide (1.0 mL, 12 mmol). 3 was isolated after purification by flash 
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chromatography on silica gel (eluent: heptane/CH2Cl2 50/50) as a white solid (38% yield): mp 158-160 

°C ; 1H NMR (300 MHz, CDCl3)  3.80 (s, 6H), 7.07-6.99 (m, 4H), 7.28 (dd, 2H, J = 1.7 and 7.4 Hz), 

7.36 (td, 2H, J = 1.7 and 8.2 Hz); 13C NMR (75 MHz, CDCl3):  156.9 (2C), 131.4 (2C), 128.5 (2C), 

127.7 (2C), 120.2 (2C), 111.0 (2C), 55.6 (2C). These data are analogous to those previously 

described.32  

(2-Methoxyphenyl)(4-methoxyphenyl)methanol (2d). 2d was obtained according to the general 

procedure B starting from anisole (0.44 mL), and using anisaldehyde (3.0 mL). It was isolated after 

purification by flash chromatography on silica gel (eluent: heptane/CH2Cl2 40/60) as a light yellow oil 

(84% yield). The analyses are as described previously.9d  

(2-Methoxyphenyl)diphenylmethanol (2e). 2e was obtained according to the general procedure B 

starting from anisole (0.44 mL), and using benzophenone (4.4 g). It was isolated after purification by 

flash chromatography on silica gel (eluent: heptane/Et2O 90/10) as a white solid (45% yield): mp 114.5 

°C (lit.33 111-113 °C); 1H NMR (300 MHz, CDCl3)  3.81 (s, 3H), 7.08-7.01 (m, 2H), 7.40-7.18 (m, 

7H), 7.66-7.49 (m, 3H), 7.83-7.87 (m, 2H), OH not seen; 13C NMR (75 MHz, CDCl3):  156.9, 144.1, 

131.3, 128.5 (4C), 128.5, 127.7, 127.1 (4C), 126.8, 120.2, 110.9, 82.9, 55.5. 

2-Methoxybenzophenone (2f). 2f was obtained according to the general procedure B starting from 

anisole (0.44 mL), and using benzoyl chloride (2.8 mL). It was isolated after purification by flash 

chromatography on silica gel (eluent: heptane/CH2Cl2 50/50) as a white solid (30% yield): mp < 50 °C 

(lit.34 35-37 °C); 1H NMR (300 MHz, CDCl3):)  3.72 (s, 3H), 6.98-7.07 (m, 2H), 7.34-7.58 (m, 5H), 

7.79-7.83 (m, 2H); 13C NMR (75 MHz, CDCl3):  196.4, 157.3, 137.7, 132.9, 131.8, 129.8 (2C), 129.5, 

128.8, 128.1 (2C), 120.4, 111.4, 55.5. 

(2-Methoxyphenyl)diphenylphosphine (2g). 2g was obtained according to the general procedure B 

starting from anisole (0.44 mL), and using chlorodiphenylphosphine (4.3 mL). Due to its suspected 

easy oxidation, all the solvents were degassed before use. It was isolated after purification by flash 

chromatography on silica gel (eluent: heptane/CH2Cl2 85/15) as a white solid (82% yield): mp 123 °C 
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(lit.35 118 °C); 1H NMR (300 MHz, CDCl3)  3.76 (s, 3H), 6.69-6.73 (m, 1H), 6.86-6.95 (m, 2H), 7.28-

7.39 (m, 11H); 13C NMR (75 MHz, CDCl3):  161.0 (d, JP = 15 Hz), 136.6 (d, 2C, JP = 10 Hz), 133.8 

(d, 4C, JP = 20 Hz), 133.5 (d, JP = 0.7 Hz), 130.2, 128.4 (2C), 128.3 (d, 4C, JP = 12 Hz), 125.5 (d, JP = 

12 Hz), 120.9 (d, JP = 0.8 Hz), 110.1 (d, JP = 1.7 Hz), 55.5 (d, JP = 0.7); 31P NMR (75 MHz, CDCl3):  

-16.8; HRMS calcd for C19H17NaOP [(M+Na)+•] 315.0915 and C19H18OP [(M+H)+•] 293.1095, found 

315.0913 and 293.1094, respectively. 

2-(2-Methoxyphenyl)pyridine (2c). 2c was obtained according to the general procedure B, but 

performing the trapping step at 50 °C, starting from anisole (0.44 mL), and using 2-chloropyridine (2.3 

mL). It was isolated after purification by flash chromatography on silica gel (eluent: heptane/AcOEt 

90/10) as a yellow oil (25% yield). The analyses are as described previously.9d  

2-Allyl-1,4-dimethoxybenzene (5b). 5b was obtained according to the general procedure B starting 

from 1,4-dimethoxybenzene (0.55 g), and using allyl bromide (2.1 mL). It was isolated after 

purification by flash chromatography on silica gel (eluent: heptane/EtOAc 98/2) as a colorless oil (6% 

yield): 1H NMR (300 MHz, CDCl3)  3.36 (d, 2H, J = 6.6 Hz), 3.76 (s, 3H), 3.78 (s, 3H), 5.01-5.14 (m, 

2H), 6.10-5.90 (m, 1H), 6.92-6.68 (m, 3H); 13C NMR (75 MHz, CDCl3): 153.5, 151.5, 136.7, 129.8, 

116.1, 115.5, 111.4, 111.3, 56.0, 55.6, 34.2. The 1H NMR data are analogous to those described.36  

2-Allyl-1,3-dimethoxybenzene (8b).
37 8b was obtained according to the general procedure B starting 

from 1,3-dimethoxybenzene (0.55 g), and using allyl bromide (2.1 mL). It was isolated after 

purification by flash chromatography on silica gel (eluent: heptane/CH2Cl2 90/10) as a colorless oil 

(14% yield): 1H NMR (300 MHz, CDCl3)  3.42 (dt, 2H, J = 1.5 and 6.1 Hz), 3.81 (s, 6H), 4.90-5.00 

(m, 2H), 5.89-6.02 (m, 1H), 6.56 (d, 2H, J = 8.3 Hz), 7.14 (t, 1H, J = 8.3 Hz); 13C NMR (75 MHz, 

CDCl3): 158.2 (2C), 136.8, 127.0, 116.5, 113.9, 103.8 (2C), 55.8 (2C), 27.1. 

2,2',6,6'-Tetramethoxybiphenyl (9). 9 was obtained according to the general procedure B starting 

from 1,3-dimethoxybenzene (0.55 g), and using allyl bromide (2.1 mL). It was isolated after 

purification by flash chromatography on silica gel (eluent: heptane/CH2Cl2 30/70) as a white solid (6% 
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yield): mp 176 °C (lit.37 174-175 °C); 1H NMR (300 MHz, CDCl3)  3.72 (s, 12H), 6.65 (d, 4H, J = 8.3 

Hz), 7.29 (t, 2H, J = 8.3 Hz); 13C NMR (75 MHz, CDCl3):  158.3 (4C), 128.6 (2C), 112.5 (2C), 104.4 

(4C), 56.1 (4C). These data are analogous to those previously described.38  

1-Allyl-2,3-dimethoxybenzene (11b).
39 11b was obtained according to the general procedure B 

starting from veratrole (0.50 mL), and using allyl bromide (2.1 mL). It was isolated after purification by 

flash chromatography on silica gel (eluent: heptane/AcOEt 98/2) as a colorless oil (23% yield): 1H 

NMR (300 MHz, CDCl3)  3.42 (d, 2H, J = 6.5 Hz), 3.81 (s, 3H), 3.86 (s, 3H), 5.02-5.10 (m, 2H), 

5.91-6.05 (m, 1H), 6.76-6.81 (m, 2H), 7.00 (t, 1H, J = 7.8 Hz); 13C NMR (75 MHz, CDCl3):  152.7, 

147.0, 137.2, 133.9, 123.8, 121.9, 115.4, 110.4, 60.5, 55.6, 33.9. 

2,2',3,3'-Tetramethoxybiphenyl (12). 12 was obtained according to the general procedure B starting 

from veratrole (0.50 mL), and using allyl bromide (2.1 mL). It was isolated after purification by flash 

chromatography on silica gel (eluent: heptane/AcOEt 88/12) as a white solid (62% yield): mp 106-108 

°C (lit.40 104-105 °C); 1H NMR (300 MHz, CDCl3)  3.65 (s, 6H), 3.90 (s, 6H), 6.87 (dd, 2H, J = 1.6 

and 7.6 Hz), 6.93 (dd, 2H, J = 1.6 and 8.2 Hz), 7.08 (dd, 2H, J = 7.6 and 8.2 Hz); 13C NMR (75 MHz, 

CDCl3):  152.7 (2C), 146.7 (2C), 132.8 (2C), 123.2 (2C), 123.2 (2C), 111.5 (2C), 60.5 (2C), 55.7 

(2C); HRMS calcd for C16H18NaO4 [(M+Na)+•] 297.1103 and C16H18KO4 [(M+K)+•] 313.0842, found 

297.1104 and 313.0854, respectively. 

2-(4-Methoxyphenyl)thiophene (24). 24 was obtained according to the general procedure B starting 

from thiophene (0.32 g), but using 2,2,6,6-tetramethylpiperidine (2.0 mL, 12 mmol), BuLi (12 mmol) 

and CoBr2 (0.84 g, 4.0 mmol). It was isolated after purification by flash chromatography on silica gel 

(eluent: heptane) as a yellow solid (19% yield). The analyses are as described previously.10e 
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