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Abstract: 

The effect of non-magnetic Ti4+ substitution on the structural, electrical and magnetic 

properties of La0.67Ba0.33Mn1-xTixO3 (0≤x≤0.1) are investigated and compared to those 

existing in La0.67Ba0.33Mn1-xCrxO3, (magnetic Cr3+). The structural refinement by the Rietveld 

method revealed that Ti-doped samples crystallize in the cubic lattice with space group           

P m3 m, while samples with Cr crystallize in the hexagonal setting of the rombohedral R3 C 

space group for identical contents of dopant. The most relevant structural features are an 

increase of the lattice parameters, of the cell volume and of the inter-ionic distances with 

increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-

ferromagnetic transition temperature (TC) when the amount of chromium or titanium 

increases. Transport measurements show that when increasing the metal doping, the resistivity 

increases whereas the metallic behaviour of the parent compound La0.67Ba0.33MnO3 is 

destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a 

semiconducting behaviour in the whole range of temperature, for which the electronic 

transport can be explained by a variable range hopping (VRH) and/or small polaron hopping 

(SPH) models. 
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1- Introduction 

Manganese oxides R1-xAxMnO3 (R, a trivalent rare-earth element, e.g. La, Nd, Pr, and A, a 

divalent dopant, e.g Ca, Ba and Sr) of perovskite structure have been extensively investigated 

since the discovery of the phenomenon of colossal magnetoresistance (CMR) [1-4]. The 

microscopic mechanism underlying the electronic, structural and magnetic properties in these 

materials can be characterized by a delicate interplay of spin, charge and lattice degrees of 

freedom [5-7]. Presence of holes (Mn4+) into the Mn3+ eg orbitals creates ferromagnetic 

double-exchange interactions (DE) which couple magnetism with electrical conductivity [8], 

while the Jahn-Teller distorted-ions Mn3+ couple magnetism with the lattice. Both the 

electronic and magnetic properties of the perovskite compounds are sensitive to the effective 

d-electron hopping interaction and nominal concentrations. In addition, doping not only 

changes the structural tolerance factor (tG) but also changes the   Mn-O-Mn bond angles, 

which strongly affects the electron hopping process between Mn3+ and Mn4+ ions and the 

associated conduction mechanism. By this way, one can tailor the properties of these 

manganites in a more effective way. So, it is expected then, that substitution of Mn by 

trivalent and tetravalent elements will strongly affect the electronic, transport and magnetic 

behaviour of these compounds [9-13]. 

In the present work, we examine the influence of Ti-substitution on the structural, magnetic 

and electrical transport properties of La0.67Ba0.33Mn1-xTixO3 (0 ≤ x ≤ 0.1). Titanium is a quite 

stable tetravalent element in transition-metal oxides [14]; it is a nonmagnetic cation and 

therefore no interactions between Ti4+ and Mn3+ ions will occur. Because of its tetravalent 

oxidation state the total number of 3d electrons should decrease linearly with increasing               

Ti-doping. With this in mind, it becomes interesting to compare the physical properties of the 
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Ti-doped manganite perovskites with those of Cr-doped (trivalent Cr3+) system. In a parallel 

work presented elsewhere, we have reported the physical properties of the solid solution 

La0.67Ba0.33Mn1-xCrxO3  (0 ≤ x ≤ 0.15) perovskites [15]. The results showed that substitution of 

Mn by trivalent Cr3+ leads to drastic changes in their physical properties. 

From the relationship between the average (Mn/Ti–O) and (Mn/Cr–O) distances and their 

influence on the magnetic and electrical properties, we will make clear the role of the 

tetravalent and trivalent ions in the ferromagnetic-to-paramagnetic and                         

metal-to-semiconductor transitions. Thus, Ti and Cr doping at the Mn-site should provide 

useful information for the understanding of the main physical mechanisms existing in these 

manganite perosvkites. 

2- Experimental details 

Polycrystalline samples of nominal compositions La0.67Ba0.33Mn1-xTixO3 (0 ≤ x ≤ 0.1) were 

synthesized by a conventional solid-state reaction method. Raw materials of La2O3, BaCO3, 

Mn2O3 and TiO2, of purities higher than 99%, were weighed in stoichiometric amounts. The 

mixtures were heated in air at 900°C for 72h to achieve decarbonisation. The material was 

then ground in an agate mortar to have fine powder. The calcined mixtures were then pressed 

into pellets (13mm diameter and 2mm thickness under 8Tons/cm2) and sintered several times 

in air, with intermediate grindings, at 1400° C for 48h. 

The morphological properties of the samples were investigated by scanning electron 

microscopy (SEM) on a JSM-6400 apparatus working at 20 KV. The structural 

characterization was done through X-ray diffraction patterns (XRD) using a “Panalytical X 

pert Pro” diffractometer with Cu Kα radiation (λ=1.5406
°
A ). Data for Rietveld refinement 

were collected in the range of 2θ from 10 to 120° with a step size of 0, 017° and a counting 

time of 18s per step. The magnetization was measured in a ZFC/FC mode between 2K and 

400 K, under a magnetic field of 100 Oe, using a Quantum Design SQUID susceptometer, 
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model MPMS-XL5. The temperature dependence of the d.c resistivity ρ(T) was measured by 

the conventional four-probe method in the range 80-300K. 

  3- Structural and morphological properties 

The X-ray diffraction patterns for the series La0.67Ba0.33Mn1-xTixO3 (0 ≤ x ≤ 0.1) show that all 

samples are single phase, with no detectable impurities (Figure 1). All diffraction peaks have 

been indexed in a cubic lattice symmetry with space group Pm3 m, while patterns for the 

series La0.67Ba0.33Mn1-xCrxO3 were indexed on the basis of a rombohedral-distorted perovskite 

structure in the R3 C space group for samples with x ≤ 0.1 and in a cubic lattice with Pm3 m 

space group for x=0.15 [15]. These observations are consistent with the values of the 

Goldschmidt tolerance factor tG (Table I), tG=(rO+rA)/ 2 ( rO+rB) [16], where rA, rB and rO are 

respectively the average ionic radii of the A and B perovskite sites and of the oxygen anion. 

The tolerance factor is an important structural parameter which reflects the local microscopic 

distortion from the ideal perovskite (ABO3) structure (tG=1), for which the B-O-B bond angle 

θ is equal to 180°.  

The structural parameters were refined by the standard Rietveld technique using the FullProf 

program [17], based on the consideration of low values of the residuals for the weighted 

pattern RWP, the pattern RP, the structure factor RF and the goodness of fit χ2, as listed in    

Table I. An excellent agreement was found between the experimental spectra and the 

calculated values (Fig.2). The lattice parameters and the unit cell volume of               

La0,67Ba0,33Mn1-xTixO3 (0 ≤ x ≤ 0.1) increase monotonously with increasing the Ti-doping , as 

shown in Figure 3 and Table I. The increase of the lattice constant can be related to the larger 

ionic radius of the Ti ion ( rTi4+=0.605
°
A , and rMn4+=0.54 

°
A ). This is confirmed by the 

evaluation of the (Mn,Ti)-O bond length distance using Rietveld refinement, which also 

increases with Ti doping (Table I). Thus, the linear increase in d(Mn, Ti)-O with the nominal Ti 
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content x is in agreement with our starting hypothesis of a Mn4+-Ti4+ substitution. The 

obtained angles (180°) confirm the cubic structure of all samples.  

Our results are similar to those reported for the La0.7Sr0.3Mn1-xTixO3 system [18] for which an 

increase in the Ti content does not appreciably change the (Mn,Ti)-O-(Mn,Ti) bond angle 

although it results in an increase of the (Mn,Ti)-O bond length and of the corresponding 

lattice parameters.                           

Compared with the substitution of Mn3+ by Cr3+ in La0.67Ba0.33Mn1-xCrxO3, we observe that 

the lattice parameters a and c, the unit cell volume and the (Mn, Cr)-O-(Mn, Cr) bond angle 

decrease with increasing Cr content (Table II), which was attributed to the smaller ionic 

radius of the Cr3+ ions (0.62
°
A ) substituting the larger Mn3+ ions (0.64

°
A ) [15]. 

Figure 4 depicts the scanning electron micrograph (SEM) images taken for       

La0.67Ba0.33Mn1-xTixO3 samples with x=5 at.%, x=7 at.% and x=10 at.%. All samples are 

composed of strongly connected large grains, forming almost homogenous particles. 

The crystallites size was estimated using the XRD data and applying the Rietveld refinement 

formula:  

                                                
IG

GS π
λ180=    (1)   

where λ is the X-ray wavelength and IG is the Gaussian size parameter given by the Rietveld 

refinement. The average grain size (GS) estimated by this analysis is approximately 30 nm. 

4-Physical properties 

4-1-Magnetic properties 

The effect of the substitution of nonmagnetic Ti4+ for a magnetic ion Mn4+ on the physical 

properties of La0.67Ba0.33Mn1-xTixO3 ( 0 ≤ x ≤ 0.1) was studied through the temperature 

dependence of the magnetization M(T). Figure 5 (a) shows the zero-field cooled/field-cooled 

(ZFC/FC) cycles measured under a magnetic field of 100 Oe.  
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All samples present a magnetic transition from a paramagnetic state at high temperatures, to a 

ferromagnetic state at low temperatures. The Curie ordering temperature TC, was evaluated 

from the minimum value of the temperature derivative of the magnetization in FC mode, 

dM/dT (inset, figure 5 (a)). The transition temperature decreases systematically with 

increasing Ti concentrations, from 345K for x=0 to 183K for x=0.1 (Figure 5b). A similar 

behaviour was observed for the Cr-substituted manganites La0.67Ba0.33Mn1-xCrxO3 although 

less pronounced (figure 5b and Table III) [15]. 

As it is well known, the magnetic and transport properties of double-exchange ferromagnets 

are controlled by the one-electron bandwidth W, which is determined by the average radius of 

the A-cations <rA> through the θMn-O-Mn bond angles  [19]: 

W  α   
[ ]

5.3

2/)(cos

><
−Π

−OMnd

γ
 (2) 

where γ is the average bond angle <θMn-O-Mn>, and <dMn-O> is the average bond length. We 

suggest that the reduction of TC should be attributed to the reduction of the one-electron 

bandwidth W (Table I). The ferromagnetic transition temperature and the magnetization 

decrease with increasing amount of titanium. On the other hand, the TC values of the            

Cr-doped samples are higher than those of the Ti-doped samples, that is, the decrease with x 

is more sensitive to the Ti-substitution compared to the Cr-one (figure 5 (b)). The slow 

decrease of TC in Cr-doped compounds as x increases is in agreement with the weakness of 

the Mn3+-O-Mn4+ and Mn3+-O-Cr3+ ferromagnetic interactions, indicating that the Mn3+ 

cations are mainly replaced by the Cr3+ ions [15]. Ti4+ ion is non magnetic and does not 

possess any 3d electrons, but its presence in the crystal lattice substituting Mn causes a 

sudden break of the ferromagnetic Mn3+-O-Mn4+ interactions without any ferromagnetic 

compensation, leading to a much stronger decrease of TC than in the case of Cr substitution.  

4-2- Electrical transport properties 
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The temperature dependence of the resistivity ρ(T) measured at zero field in the temperature 

range of 80-300K, is shown in Fig. 6. It is readily observed that the resistivity dramatically 

increases with x(Ti) increasing, due to the replacement of some Mn3+-O-Mn4+ bonds by  

Mn3+-O-Ti4+ bonds. Indeed, the Ti4+ addition brings about a disorder at the B-site and breaks 

the electrical transport channels, it reduces the number of empty orbitals of Mn4+ and 

therefore, the double-exchange interaction channels are broken. Taking the sign of the 

temperature derivative of the resistivity (dρ/dT) as a criterion, we find that compounds with 

x=0, x=0.02 and x=0.05 exhibit a metallic to semiconductor transition, while for samples with 

x = 0.07 and x=0.1 doping, the high-temperature semiconducting state is maintained 

throughout the whole temperature range. The next paragraphs will detail on these two 

different behaviours. It should be stressed that the temperature TM-SC, corresponding to the 

metal-semiconductor transition, shifts to lower values with increasing x, similarly to TC    

(Table III), and it is not further noticed in our temperature range, for substituting ratios above            

7 at.%. of Ti4+. As mentioned earlier, the larger ionic radius of Ti4+ increases the average 

(Mn,Ti)-O distance, resulting in a decrease of the charge carriers bandwidth W (Table I) and 

thus in an increase of the resistivity [19,20].  

  4-2-1- Semiconducting behaviour  

The variation of the electrical resistivity with temperature above TM-SC may be explained on 

the basis of two different models. The variable range hopping (VRH) model has been used to 

explain the electrical conduction at high temperature, that is, in the range Tp < T < θD/2,        

(θD, Debye temperature), while the small polaron hopping (SPH) model is considered for 

temperatures above θD/2 [21].  

For the semi-conductive transport character, the conduction may operate in terms of: 

1- The Mott variable range hopping (VRH) mechanism [22], which is expressed as: 

4/1
00 )/exp()( TTT ρρ =  (3) 
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where 0ρ  depends on the assumption made about the electron-phonon interaction and is 

considered as constant in most of the cases, although it is slightly affected by temperature 

[23]. T0 is the characteristic VRH temperature, T0 = 16.α3/kβ.N(EF) where N(EF) is the density 

of states at the Fermi level. Here, the T0 value is evaluated from the slope of the plot ln(σ) vs. 

T-1/4 (Fig. 7). The constant α was taken as 2.22nm-1 [24].  

2- The Emin-Holstein theory of adiabatic small polaron hopping model (ASPH) [24], 

which is expressed as: 

)/exp()( TkEBTT Ba=ρ  (4) 

where Ea is the activation energy for hopping conduction and B is the residual resistivity. 

Figure 8 shows the results for the ASPH model, in which the straight line is a fit to Eq. (4).  

The computed values of T0, N(EF) and Ea for these two models are summarized in Table IV. 

Both models describe quite well our results in the semiconducting phase, although the second 

model (ASPH) gives the best square linear correlation coefficients (R2). We may conclude 

then, that the transport properties are dominated by the small polaron hopping mechanism. 

  4-2-2- Low-temperature metallic behaviour  

The electrical conduction in the ferromagnetic phase, below the metal-semiconductor 

transition at T=TM-SC is generally understood according to the double-exchange theory. In this 

model, the Mn3+-O-Mn4+ coupling are responsible of the conduction mechanisms from the 

half-filled to the empty eg orbital. 

The following equations are generally used to fit the electrical resistivity data in the 

case of the manganites: 

ρ = ρ0 + ρ1T (5) 

ρ = ρ0 + ρ2T
2 (6) 

ρ = ρ0 + ρ2.5T
2.5 (7) 

ρ = ρ0 + ρ2T
2+ ρ4.5T

4.5 (8) 
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where ρ0 is the resistivity due to grain/domain boundaries and point defects scattering [25], 

the term ρ1T is a thermal diffusive conductive process, ρ2T
2 in Eqs. (6) and (8) represents the 

electrical resistivity due to the electron-electron scattering [26]. The term ρ2.5T
2.5 is the 

electrical resistivity due to electron-magnon scattering process in the ferromagnetic 

phase [27]. The term ρ4.5T
4.5 is a combination of electron-electron, electron-magnon and 

electron-phonon scattering processes [28, 29]. 

The experimental data at T < TM-SC for polycrystalline La0.67Ba0.33Mn1-xTixO3 samples (x=0, 

0.02 and 0.05) were fitted to the above four equations and the quality of these fitting was 

evaluated by comparing the squared linear correlation coefficients (R2) obtained for each 

equation. Best results are obtained using Eq. (8). Plots of the electrical resistivity versus 

temperature and the best fits to the data are shown in Fig. 9. These fits show that the 

parameters ρ0, ρ2 and ρ4.5 increase with the increase Ti-doping, according to the reduction of 

the double-exchange mechanism (DE) (Table V). Therefore, the metallic regime can be 

attributed to the electron-(phonon, magnon) scattering processes, which further demonstrates 

that the metallic regime occurs in the ferromagnetic phase. 

5- Conclusions 

In summary, we have reported the effect of the substitution of Mn by Ti on the structural, 

magnetic and electrical transport properties of La0.67Ba0.33Mn1-xTixO3 system as a function of 

doping (x). The XRD analysis, along with the magnetic and resistivity measurements support 

the fact that Ti4+ ions substitute for Mn4+. The results were then compared with those obtained 

by substituting Mn3+ by Cr3+. These results show that the substitution by non magnetic 

tetravalent Ti significantly weakens the double exchange interactions and, as a result, TC 

decreases stronger than in the case of the substitution by the magnetic trivalent element Cr3+. 

The resistivity measurements show that, by increasing the metal doping, the resistivity 

increases and the metallic behaviour of La0.67Ba0.33MnO3, observed below room temperature, 
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is destroyed. Electrical investigations show that the metallic behaviour of the resistivity below 

the metal-semiconductor transition is well fitted by the relation ρ = ρ0 + ρ2T
2+ ρ4.5T

4.5. On the 

other hand, the high temperature resistivity above TM-SC was explained using variable range 

hopping (VRH) and small polaron hopping (SPH) models. 
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Tables captions. 

Table I: Refined structural parameters of La0,67Ba0,33Mn1-xTixO3 at room temperature. 
Space group m3Pm . The numbers in parentheses are the estimated standard deviations to the  
last significant digit. 
 
 
Table II: Refined structural parameters of La0,67Ba0,33Mn1-xCrxO3 at room temperature 
( 1.0≤x ). Space group R 3C (from ref.15). 
 
 
Table III: Values of the magnetic transition temperature TC and the Metal-Semiconducting  
   transition temperature TM-SC for La0,67Ba0,33Mn1-xMexO3 (Me=Ti,Cr). 
 
 
Table IV: Characteristic temperature T0, density of states at the Fermi level N(EF), activation 

energy Ea and correlation factors R2 for La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ) using VRH  
      (eq.3) and ASPH (eq. 4) models. 
 
 

 
Table V: Fit parameters to equation (8) ρ (T) = ρ0+ ρ2T

2+ ρ4.5T
4.5, obtained for the metallic  

   behaviour (below TM-SC) for La0,67Ba0,33Mn1-xTixO3 samples. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



 15 

Figures captions: 

Figure 1: X-ray diffraction patterns of La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ) compounds at  
room temperature, indexed on a Pm3 m space group. 
 

Figure 2 :Rietveld refinement of X-ray diffraction data for La0,67Ba0,33Mn1-xTixO3  
( 1.00 ≤≤ x ). Open circles correspond to the X-ray diffraction data and the lines are  
theoretical fits to the observed X-ray data. Vertical bars are the Bragg reflections for the space  
group Pm3 m. The difference pattern between the observed data and the theoretical fit is  
shown at the bottom. 
 
 
 Figure 3: Variations of the lattice constant and cell volume (in inset) for  La0,67Ba0,33Mn1-xTixO3 
( 1.00 ≤≤ x ).  
 
 
 Figure 4: SEM micrographs of La0,67Ba0,33Mn1-xTixO3 samples (x = 0.05, 0.07 and 0.1). 
 
 
Figure 5: (a) Plots of the magnetization, measured in a field of 0.01T, versus temperature for  
Ti-substituted La0,67Ba0,33Mn1-xTixO3 in field-cooled (filled symbols) and zero-field-cooled 
(open symbols) modes. Inset shows the temperature derivative dM/dT, (b) TC versus (Ti, Cr)  
content x. 
 
Figure 6: Electrical transport data for La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ). 
 
Figure 7: Temperature dependence of the conductivity σ in scales of ln(σ ) as a function of (1/T1/4), 
for La0,67Ba0,33Mn1- xTixO3 ( 1.002.0 ≤≤ x ). The Variable Range Hopping (VRH) fits are also shown.  
 
Figure 8:  ln(ρ/T) versus 1/T plots in the high temperature region of La0,67Ba0,33Mn1-xTixO3     
samples ( 1.002.0 ≤≤ x ). Full line is the fit to equation 4, )/exp()( TkEBTT Ba=ρ . 

 
Figure 9: Plots of the electrical resistivity   ρ(T) for   La0,67Ba0,33Mn1-xTixO3 samples  
x = 0.02, and 0.05) and their fits (full lines) using equation 8, (ρ (T) = ρ0+ ρ2T

2+ ρ4.5T
4.5.  
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at room temperature, indexed on a Pm3 m space group. 
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Figure 2 : Rietveld refinement of X-ray diffraction data for La0,67Ba0,33Mn1-xTixO3 

( 1.00 ≤≤ x ). Open circles correspond to the X-ray diffraction data and the 
lines are theoretical fits to the observed X-ray data. Vertical bars are the Bragg 
reflections for the space group Pm3 m. The difference pattern between the 
observed data and the theoretical fit is shown at the bottom. 
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                  Figure 3: Variations of the lattice constant and cell volume (in inset) for     
                  La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ).                 
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      Figure 4: SEM micrographs of La0,67Ba0,33Mn1-xTixO3 samples (x = 0.05, 0.07 and 0.1). 
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Figure 5: (a) Plots of the magnetization, measured in a field of 0.01T, versus temperature 

for Ti-substituted La0,67Ba0,33Mn1-xTixO3 in field-cooled (filled symbols) and 
zero-field-cooled (open symbols) modes. Inset shows the temperature 
derivative dM/dT, (b) TC versus (Ti, Cr) content x. 
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 Figure 6:   Electrical transport data for La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ). 
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       Figure 7 : Temperature dependence of the conductivity σ in scales of ln(σ ) as a function of (1/T1/4), 
                         for  La0,67Ba0,33Mn1- xTixO3 ( 1.002.0 ≤≤ x ). The Variable Range Hopping  
                        (VRH) fits are also shown. 
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Figure 8 :  ln(ρ/T) versus 1/T plots in the high temperature region of La0,67Ba0,33Mn1-xTixO3     
 
 samples ( 1.002.0 ≤≤ x ). Full line is the fit to equation 4, )/exp()( TkEBTT Ba=ρ . 
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Figure 9 : Plots of the electrical resistivity   ρ(T) for   La0,67Ba0,33Mn1-xTixO3 samples     

(x = 0, 0.02, and 0.05 ) and their fits (full lines) using equation 8,                         
ρ (T) = ρ0+ ρ2T

2+ ρ4.5T
4.5.  
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Table I 
Refined structural parameters of La0,67Ba0,33Mn1-xTixO3 at room temperature. Space group m3Pm . The numbers in parentheses are the estimated 

standard deviations to the last significant digit. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 0 0.02 0.05 0.07 0.1 

a(Å) 3.9075 (2) 3.9119 (2) 3.9201 (1) 3.922 (1) 3.9265 (1) 

V (Å3) 59.66 (0) 59.86 (1) 60.24 (0) 60.33 (0) 60.54 (0) 

tG 0.9999 0.9992 0.9981 0.9973 0.9962 

La/Ba    Biso (Å
2) 0.32 (9) 0.08 (4) 0.85 (4) 1.18 (4) 1.01 (5) 

Mn/Ti    B iso (Å
2) 0.02 0.066 0.44 (6) 0.75 (5) 0.26 (7) 

  (O)       Biso (Å
2) 2.03 (9) 1.20 (1) 1.6 (1) 2.44 (1) 2.1 (1) 

d(Mn, Ti)-O (Å) 1.953 (5) 1.956 (2) 1.960 (5) 1.961 (4) 1.963 (5) 

θ(Mn, Ti -O- Mn, Ti) (°) 180 (8) 180 (2) 180 (6) 180 (5) 180 (6) 

W (a.u) 0.0961 0.0955 0.0948 0.0946 0.0943 

R-factor (%) 

Rwp (%) 3.38 5.03 4.27 4.15 5.24 

Rp (%) 2.18 3.73 3.2 3.09 3.92 

RF (%) 1.94 3.16 2.36 1.69 1.97 

χ
2 (%) 5.3 3.63 2.68 2.45 3.56 
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Table II  
 

Refined structural parameters of La0,67Ba0,33Mn1-xCrxO3 at room temperature ( 1.0≤x ).                         
Space group R 3C (from ref.15) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 0 0.02 0.05 0.1 

a (Å) 5.5322 (1) 5.5316(1) 5.5314 (1) 5.5315 (1) 

c (Å) 13.5034 (2) 13.5004 (2) 13.4994 (1) 13.4922 (3) 

V(Å °)3 357.91 (1) 357.75 (1) 357.70 (1) 357.52 (1) 

d(Mn, Cr)-O (Å) 1.9550 1.9562(6) 1.9575 (4) 1.9587(9) 

θ(Mn, Cr -O- Mn, Cr) (°) 175.77 (2) 173.84(2)   172.42(5) 171.2(4)   

W 0.0956 0.0954 0.0952 0.0948 
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Table III 
 

Values of the magnetic transition temperature TC and the Metal-Semiconducting transition 
temperature TM-SC for La0,67Ba0,33Mn1-xMexO3 (Me=Ti,Cr)  

 
 
 
 
 
 
 
 
 
 

Composition 

La0,67Ba0,33Mn1-xMexO3 

TM-SC (K) 

Me=Ti 

Tc (K) 

 

 

x=0 TM-SC>300 345 345 

x=0.02 224 309 334 

x=0.05 181 264 329 

x=0.07 ____ 235 ____ 

x=0.1 ___ 183 306 

Me=Ti  Me=Cr  
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Table IV 
 

Characteristic temperature T0, density of state at the Fermi level N(EF), activation energy Ea 
and correlation factors R2 for La0,67Ba0,33Mn1-xTixO3 ( 1.00 ≤≤ x ) using VRH (eq. 3) and 

ASPH (eq. 4) models. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Composition 

La0,67Ba0,33Mn1-xTixO3 

x=0.02 x=0.05 x=0.07 x=0.1 

 
 

VRH  model 

 

 

T0 (K) 7.33×105 (2)  3.51×107 (4) 8.45×107 (1) 10.02×107 (2) 

N(EF)(ev-1 cm-3) 2.77×1021 5.78×1019 2.40×1019 2.03×1019 

R2 0.968 0.889 0.990 0.988 

 
 

ASPH model 

 

 

Ea (meV) 64.80 (1) 118.02 (1) 143.09 (7) 157.53 (6) 

R2 0.993 0.998 0.999 0.999 
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Table V 
 

Fit parameters to equation (8) ρ (T) = ρ0+ ρ2T
2+ ρ4.5T

4.5, obtained for the metallic behaviour 
(below TM-SC) for La0,67Ba0,33Mn1-xTixO3 samples  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Composition 

La0,67Ba0,33Mn1-xTixO3 

x=0 x=0.02 x=0.05 

ρmax(�-cm) 0.0219 0.1434 1.394 

ρ0(�-cm) 0.00709 (2) 0.0721 (1) 0.7223(2) 

ρ2(�-cm K-2) 2.703 ×10-7 (1) 1.821 ×10-6 (4) 2.52 ×10-5 (3) 

ρ4.5(�-cm K-4,5) 5.24 ×10-15 (5) 1.91 × 10-11 (2) 2.69 ×10-10 (2) 

R2 0.998 0.997 0.996 


