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Abstract.

Bron and Besson yield criterion has been used tdeinthe plastic anisotropic
behavior of an aluminum alloy series 5000. The ma&tars of this anisotropic yield
model have been identified by two different methadslassical one, considering several
homogeneous conventional experiments and an expigrane, with only one biaxial
test. On one hand, the parameter identificatiom wiinventional experiments has been
carried out with uniaxial tensile and simple shessts in different orientations to the
rolling direction and with a hydraulic bulge teslt,of them considered at three equivalent
plastic strain levels. On the other hand, Bron Bedson yield function has also been
calibrated with inverse analysis from only a crbssial tensile test, since it was shown
that the strain distribution in the center of theiotform specimen is significantly
dependent on the yield criterion. The principaists along a specified path in the gauge
area of the cruciform specimen have been analymddle gap between experimental
and numerical values was minimized. Finally thddyieontours obtained with the two

methods have been compared and discussed.

Key words: Plastic anisotropy, Yield criterjoBiaxial test, Material parameter

identification
1. Introduction
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Sheet metal forming represents a class of impopamtesses widely used in the
manufacturing industry. Sheet metals usually exlailglastic anisotropy due to previous
thermo-mechanical processes like rolling and ammgalTo optimize the numerical
simulation of the forming processes, an accuraterggion of the plastic behavior is
required. Within a phenomenological descriptiontted mechanical behavior of sheet
metals, yield functions and especially anisotramies are used to represent the initial
anisotropy of the material. Many anisotropic yiglddels were proposed to describe the
initial anisotropy and identified from the mechaiproperties, such as Hill 1948 [1],
Barlat 2000 [2] (YId 2000-2d), Barlat 2004 [3] (M€04-13p/18p) yield models and
Karafillis—Boyce [4]; a thorough review of these aets is presented in [5]. The initial
anisotropy description, coupled with hardening atioh, can lead to a good
representation of the mechanical behavior over rgelsstrain range, e.g. [6]. An
alternative consists in taking into account anoyrevolution, as proposed in [7]. To
consider the plastic strain-induced anisotropy, Zand Lee [8] carried out the eigen
decompositions of the linear transformation tensoirsYld2000-2d yield model at
different equivalent plastic strains. Such an apphowith the variation of anisotropic
coefficients is not considered in this study, whplastic anisotropy coefficients are
considered constants, over the investigated staaige.

Yield functions can involve a high number of mateparameters. The calibration of
these parameters requires usually several mechaesta with different loading paths.
To guarantee the relevance of the parameter setyuimber of experimental data should
not be lower than the number of material parametersidered in the identification
process. In the case of the classical analytigadageh, the experimental values, such as
initial yield stresses and plastic anisotropy ceedhts, obtained from mechanical tests

are used as discrete input data or sampling poifite. yield function makes an



interpolation in-between these sampling pointsallgeif the model is able to represent
the mechanical behavior of the material, the irdleion points of the yield function
correspond to these sampling points precisely. fEf@vance of the yield contour is
improved when increasing the number of samplingiggspidemanding an increase of
experimental information. However, from an econahjoint of view, the number of
tests should be as small as possible. It has beposed in [5] that at least the following

experimental data is required: three yield stregses. 0,, 0,. and g,,) and three
anisotropic coefficients (e.g,, r,; andr,,) obtained from the uniaxial tensile tests in
different orientations to the rolling direction (R2n equi-biaxial yield stresg() and a
biaxial coefficient (,) from biaxial tensile test, usually hydraulic bulgest. As

mentioned above, most of the previous works pragpadentification based on the initial
values of these data, measured at the elastoepteatisition. For the classical Hill 1948
yield criterion [1], three values among the onescai®d above are needed to calibrate
three parameters in the case of a plane stress Bt the same stress condition, four
values are needed to determine Barlat 1991 yidiericm involving four parameters [9].
Aretz [10] identified eight parameters of BarlaD3Qield model (YId2003) [11] with all
the above-mentioned input data. Another metho{iWk3 also proposed to identify this
eight parameter yield model; indeed, the bulge west replaced by two plane strain
tensile tests. The major stresses at plastic yigldiere taken as the input data. With the
two linear transformation tensors introduced byl&dP], yield models were developed
to be more and more flexible, such flexibility bgirelated to the increase of the number
of material parameters. Barlat and co-authors [8libcated the vyield function
Y1d2004-18p with all the above-mentioned data aitth additional data: the initial yield
stresses and anisotropic coefficients from uniataatile tests along 15°, 30°, 60° and
75° to RD. Bron and Besson yield model [13], alssdd on two linear transformation

tensors, was identified similarly with a total of jérameters. From 2000, Banabic et al.



proposed a series of yield models, which are caB&C yield models. For the 8
parameter yield criterion BBC2005 [14] and 16 paetenBBC2008 [15], Banabic et al.
used the same input data as the above mention@0®3dand Y1d2004-18p respectively.

However, Hu [16] pointed out that the initial yiedttesses were difficult to determine
accurately since there exist several definitions imfial yielding. Some works
investigated the identification of material paraengtconsidering not only the initial
values but also values recorded at higher strdiagredict the earing phenomenon in
drawing and ironing process, Barros et al. [17] enadtcomparison of Cazacu and Barlat
2001 yield model [18] identified either from initigield values or from the ones at an
accumulated plastic work of 20 MPa. It is cleatpwn that the yield model identified at
an accumulated plastic work of 20 MPa gives a bealtscription of the material
mechanical behavior than the one identified frominiteal values. Wang et al. [19] also
proposed a strain-dependent identification methoddmsidering the variation trend of
the material values at different plastic strain elsv Another approach without
considering initial yield stress values consistspearameter identification over the
temporal evolution of experimental data. Zang ef{@&]l considered a combination of
stress level in uniaxial tension, equi-biaxial fensand simple shear, both monotonic and
Bauschinger tests, to identify Bron and Bessordy@hction. Bron and Besson [13] also
proposed a similar identification strategy with teenporal evolution of stress levels in
tensile tests, both on straight and U-notched sesnjii can be concluded that due to the
dispersion on initial yield stresses as well as alielution of anisotropy with strain,
considering only initial yield stresses does notegan accurate description of the
mechanical behavior. In this paper, the experimerdaies were obtained at several
plastic strain levels.

Recently, some works have been focused on paranwgetification of yield

functions from the biaxial tensile test. Greenlef20] have performed cross biaxial test



with seven different proportional strain paths,order to identify the parameters of
several yield functions, some of them could notdeatified by uniaxial tensile test but
only with biaxial test. The authors adjusted theapeeters with an iterative procedure to
optimize the predicted strength level of two armshe cruciform sample. Teaca et al.
[21] proposed to identify Ferron, Makkouk and Maidee (FMM) vyield function
parameters [22] by combining results of uniaxiaisike tests and cross biaxial test.
However, only two parameters of the yield model evealibrated from the strain
distribution in the central part of the cruciforpesimen. The field measurement of the
strain level was also used by Prates et al. [23dieatify Hill 1948 coefficients. Up to
now and to the authors’ knowledge, there is no iphbd work that concerns the
parameter identification of a complex yield modé@&hwonly one cross biaxial tensile test.
In the present article, Bron and Besson yield maglelsed to investigate the plastic
anisotropy of AA5086 sheets. This yield model exible enough since the anisotropy is
represented by 12 parameters, in the form of tweal fourth order transformation
tensors; i.e. 4 isotropic parameters and 8 anigmtarameters in plane stress condition.
In order to identify these parameters, with twofed#nt methods, the mechanical
behavior of AA5086 sheets of 2 mm thickness is stigated with homogeneous tests,
like tension and simple shear, both at differergrdations to RD, and hydraulic bulging,
and also with cross biaxial test; all these resarésoriginal ones. The first identification
method is based on an analytical description of tim@nogeneous conventional
experiments. The experimental values at differentivalent plastic strain levels are
obtained from these tests as the input values1814B yield function was also calibrated
with these conventional results. It is shown thet humerical prediction of the strain
distribution at the cruciform specimen center igngicantly modified by the yield
criterion. The second method relies on the croasidli tensile test and all parameters of

Bron and Besson yield function are identified vatbruciform specimen since it is shown



that the strain distribution in the central areghef specimen depends significantly on the
yield criterion. Comparison between experimental andherical results of principal
strains along a specified path in the gage ard¢laeo€éruciform specimen is performed. It
is shown that the cross biaxial test involves gdarange of strain paths, though the
maximum strain is limited. Finally, the yield modatientified by the two identification

methods are compared.

2. Material model

> > >

Assuming orthotropic symmetry(,2,3) are respectively the rolling direction (RD),

the transverse direction (TD) and the normal dioec{ND). In the frame of a uniaxial

tensile test,(},gl,i) are respectively the tensile direction, the trans® direction in the

sheet plane and the normal direction.
2.1 Hill 1948 yield function

Hill 1948 orthotropic yield function is written itme following form [1]:
W, =F(0,-0,)Y+G(0,,-0,,) +H(0,—0,,)* +2L0o’, +2Ma’, + 2Na7, (1)
wherey,, denotes the yield function. Plastic yielding oscwheny,, = o* =Y;? where
O is the equivalent stress aivgl a reference yield stress of the materia)G,H,L, M
and N are material parameters. When the condifof H =1 is imposed.Y, is the

uniaxial yield stress along the rolling directionhen, with plane stress condition
(04 =0y, = 0, =0), three independent anisotropic parametiS and N have to be
identified.

Hill parameters can be calculated from three aropat coefficients r, with

7 :(§,1)20,45°,90° that are defined by:



r,=—2 (2)

where ), and ¢} are the plastic strain increments along the trarsevdirection and the

normal direction respectively. Hill parametdfs G and N are defined by:

F = f'o G= 1 and N = (1+ 2r45) (ro + r45) (3)

) Foo(To +1) ' h+1 2r90(1+ I'o)

2.2 Bron and Besson yield function

Bron and Besson proposed a yield function involviiggparameters under the form

[13]:

R
wa=(Sa)] @

a* are positive coefficients, the sum of which is@do 1. Plastic yielding occurs when

Y =0 =Y, andod andY, have the same definitions as in Section 2.1. Hewex; is

no longer equal to the uniaxial yield stress in tb#ing direction.g*, k=1,2 are

expressed in the form:
1 _(1|ar ™ 1 ol 1_ ol Jo
o' =(3(s-s +ls-s +s-s))
by \ )
o)

2% +2
a, b, b, anda* (a®=1-a") are four isotropic parameters which define thapshof

(5)

b2+‘832

bz+‘822

the yield surfaceS* are the principal values of the transformed stxﬂziatorsﬁj"

defined by:
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With Lk = _C_2 _& Cl +CZ 0 0 0 (6)

3 3 3

0 0 0 ¢ 0 0

0 0 0 0 o

0 0 0o 0 0 ¢

wherec® are 12 parameters which are related to the anjspwf the material. In plane

stress condition, the anisotropic parameter numgzhrces to 8 wittel =c¢f =1.

3. Parameter identification of yield model with conventional tests

3.1 Material data
In this work, three uniaxial tensile tests (UT) rago0°, 45° and 90° according to the
rolling direction, two simple shear tests (SS) gl@&i and 45° and one bulge test have
been considered to identify Bron and Besson yieddeh Hill 1948 parameters were also
identified from the three anisotropic coefficiefiis comparison’s sake.

Material data used in the identification processesponding to three uniaxial tensile

stresses ¢,, 0,. and g,,) and three anisotropic coefficients,( r,. andry, ), two
simple shear stresseg,(andr,;), an equi-biaxial stresg() and a biaxial coefficient
(r,) are obtained at three different levels of the iement plastic straing®
(£°=002,2P=0.05 and g? =0.1). The strain levels were selected according to the

maximum strain range of the tests in the databefs&ig. 1).

3.2 Numerical calculation of material data
In the plane stress conditiom;,, 0,, and o,, are the only non-zero stress

components. With the associated flow rule:



i . Oy
&= ) 2 7
! d0; 0

plastic strain increments can be written as a fonaif the gradient of the yield function:

oy oy 0
do,, 00,
gp=j 0 ¥ 0 )
! do,, 00,
0 0 —[ oy + oy j
dg,, 00,,

Assuming that the uniaxial tensile test is perfainadong a direction defined by an

orientation angled from the rolling direction, then the anisotropaefficient r," can be

calculated by:

( oy jsinzﬁ—( oy Jsin20+(achoszﬁ
00, 00, 00,, ©)
oy N oy

00, 00,,

The biaxial coefficient,” is calculated in the form:

r _éxpx_(al/’j (10)

As the identification process is performed withethrlevels of plastic equivalent

deformation, the cost functiod, is then defined by:

2
3 3 (M =y M _
Q(Yos,a,bubzﬂl,qk):Z@Jf o, f; +[I'b I’b]
S=1 j=1 rgj r,

2 2
MS S 2 MS S
3(g,° -0 MS _ S 2 Tg" —T
. o 8, g, g 9, o,
WlthJS:§ " +[ b bJ twy | ———+
= Ty o, = Ty

where Fo andr, are respectively experimental anisotropic coedfits and biaxial

(11)

coefficients calculated as average values ovegaivalent plastic strain range from 0.02



to 0.1, rg“j” (Eg. 9) andr” (Eq. 10) are predicted anisotropic coefficientsl dmaxial

coefficients; 0'2:' , ré“,f and g are the predicted stress values at different iplast

deformation levels. In Eqg. (11), index S refershe plastic strain levels whereas index |

relates to the test orientatioviy, S=1,3, are the critical values, when yieldinguwsg of

the equivalent yield stress for the three equival@astic strains considered in the
identification.® is a weight coefficient introduced to change thlative importance of
shear tests compared to tensile tests and bulge teg optimization process. Indeed, the
elasto-plastic transition in simple shear is patéidy rounded, leading to an increased
difficulty to determine the initial values of theéeid stress in simple shear. Therefore, in
order to reach a compromise between tension anplesismear, an optimum value of

was determined by successive trials.

In case of anisotropy, &4 is no longer equal to the uniaxial stregs along the rolling

direction, it has to be identified along with therg@meters related to anisotropy. There is
therefore a total of 15 material parameters taleeatified for Bron and Besson criterion.
The major task lies in the optimization of the aligpic parameters to minimize the cost
function. The algorithm Broyden—Fletcher—Goldfarba®no (BFGS) [24] is preferred
here. BFGS is an approximate Newton's method, wisieéhhill-climbing optimization.
The convergence is rapid but the optimized sengtyodepends on the initial set. To
overcome this difficulty and thanks to the effiagrof the algorithm, the optimization
can be led with a large number of initial sets twer all the parameter ranges. The
identification process is realized with the commarsoftware modeFRONTIER® [25]
which is an integration platform for multi-objeatioptimization. It provides a coupling
with third party engineering software such as MATB.Ao design an automatic

simulation and simplify the analysis process.
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3.3 Application for AA5086

The above-mentioned conventional tests have bedorped for aluminum alloy
5086. The sheet thickness is 2 mm. Experimentalesuin stress equivalent strain level
for these tests are presented in Fig 1. For alltékts, strains have been measured by
digital image correlation (DIC) method. These tests be considered homogeneous, at
least over a restricted area, and an average stedule was calculated over this area.
Stresses have been directly calculated from messoirdorce (uniaxial tension and

simple shear tests) or pressure (bulge test). Gilaaent strain is defined by:

400

300 ~

200 4

o (MPa)

100 ~

™

Fig. 1: Cauchy stress versus equivalent strainesufor conventional tests

£ = /225 (12)

It can be seen that necking limits the homogenemusvalent strain in tension at
around 0.2, whereas a maximum value of 0.4 in bidgeis reached. The low maximum
equivalent strain reached in simple shear comes fsiemature failure of the sample
under the grip, partly due to the relatively hightarial thickness (2 mm) that entails a
rather high force for the clamping under the grips.

The anisotropic coefficients,, obtained from uniaxial tensile tests, decreadhk thie

plastic strain. This evolution is represented ig.Ei for two equivalent plastic strain

11



ranges [0.02, 0.1] and [0.1, 0.15]. For each stramge,r, is calculated as the linear

regression of the evolution &f), as a function ok}, (Eq. (2)), over the considered strain

range.
0.7
- ¢P[0.02-0.1]
—&— ¢P[0.1-0.15]
0.6 -
<L 0.5
0.3 \
0 45 90

0 (%)
Fig. 2: Anisotropic coefficients calculated oveotdifferent equivalent plastic strain

ranges

Experimental material data for AA5086 is given imble 1. The stresses are
determined at an equivalent plastic straih=0.02, £°=0.05 and £€°=0.1
respectively for each test. The anisotropic coeffits (r,, r,, r,, ) are the ones

calculated for an equivalent plastic strain ramgenf0.02 to 0.1, in order to keep the same

strain range as for the stress levels. It can be #®at this material does not exhibit the

anomalous behavior [26], indegg are less than one and the biaxial stigsss lower
than the uniaxial tensile stresg .

Table 1. Material data derived from the conventiaests

Oy O4s Tgo Oy To I4s
[MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa]

r0 r45 r90 rb

£°P=002| 191 179 178 172 102 10¢

g =005 | 239 228 226 226 131 139 0.49| 0.62| 0.52| 1.03

gP=01 290 276 276 284 156 164

12



In the optimization process, a first step is totfig variation range for the parameters.
The range used in this work is given in Table 2. ¥ the variation range is set to be
from 0.800, to 1.200,, from several trials. Then one hundred initialgpaeter sets for

the algorithm BFGS can be generated to cover thatian range of all the parameters.

Table 2. Central values and variation ranges (@chwets) for each parameter

a, a by b, oy C;
0.5 (0.1~0.9) 6 (0~12) 10 (0~20) 10 (0~20) __ 0.52-2.2) | 05 (1.2-2.2
1 1 2 2 2 2
C3 C4 Cl CZ C3 C4
05 (1.2-22)| 05 (1.2-22) 05 (1.2-2.0) 0BZ-22)| 05(1.2-2.2) 05 (-L.2-2.0)

The 13 parameters of Bron and Besson yield funaaoulated from the experimental
data of Table 1 are given in Table 3. During thenidfication process, the weight
coefficiento is set equal to 0.5. Indeed, for higher values oéspecially for the low
value of the equivalent plastic strains, the predidensile results were too far from the
experiments.

Table 3. Anisotropic parameters of Bron and Besgeld function identified from conventional

tests. Three different values fé§ have been identified, corresponding to each etpnvglastic
strain level.

s 1 1 1 1 2 2 2 2
Yo (M Pa ) a | a by b, G C2 G Ch | & C, Cs Cs

196.0/245.2/297.% 0.13 3.39 16.17 7.34 169 170191 141] 0.97] 0.79] 0.9§ 1.0

As a comparison, Hill 48 yield criterion has beatilrated by the threey, r,, ry,)

values, from data given in Table 1, and are preskint Table 4.

Table 4. Parameters of Hill 1948 yield function

F G H N
0.63 0.67 0.33 1.46

Figs. 3 to 6 show the results for both Bron andsBasand Hill 1948 yield criteria.
Both of them predict well the anisotropic coeffiti@volution withd. The experimental

r-value is the one at plastic strain ranges [000H], For the uniaxial yield stresses at three

equivalent plastic strain leveB” =0.02, £” =0.05 and " = 0.1, Bron and Besson

yield function gives also a good description, whil#l 1948 yield model has not the

13




ability to follow their variations. For shear stses, compared to Hill 1948 predictions,
Bron and Besson predicted values are very closiget@xperimental ones at each strain

level. The associated yield surfaces are presenteid). 6. The yield model predicts the

biaxial stress perfectly but only &" = 0.05, it has a 4.8% overestimationat =0.02,

while a 3.6 % underestimation can be noticeé'at 0.1. For ther, coefficient, as it can

be observed for the, coefficients (Fig. 3), the prediction is excellent.

0.64

0.59 ~

2 0.54

—B&B
- - - -Hill 48
= Experiment

0 45 90

6 (°)
Fig. 3: Experimental and predicted anisotropic toents

350

—B&B
----Hill 48
= Experiment

oo (MPa)

0 45 90

Fig. 4 Experimental and predicted uniaxial stresses
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270

——B&B
e -+ - - Hill 48
o = Experiment

220 4

70 \
0 45 90

6(°)
Fig. 5 Experimental and predicted shear stresses

360

240

120

G2 (MPa)
o
|

-120 ~

-240

— B&B

= Biaxial stress
'360 T T T T T

-360  -240 -120 0 120 240 360
G441 (MPa)

Fig. 6 Predicted yield surface contours
During this identification process, the 13 paramsetae computed by means of 10
input values, which are obtained from six experitaktests (3 UT, 2 SS, 1 Bulge). The
insufficient input data may lead to non-unique sd#tparameters. In this work, the set

corresponding to the lowest value of the cost fioncivas kept.

4. Biaxial tensiletest with cruciform specimen

4.1 Experiments



To simplify both the experimental database andctdiration of the yield function
parameters, a second method based on data obtesned fcross biaxial tensile test was
investigated. This test seems particularly intémgssince different strain paths can be
obtained simultaneously with a unique specimen.[27]

A cruciform specimen shape has been designed amdven in Fig. 7. Experiments on
a servo-hydraulic testing machine have been peddr(realized by LGCGM [28]) with

a constant velocity ratig, / v, =1 imposed on four arms of the cruciform specimen;

_ _ <1 . " .
v, =V, =lmm.s" are the imposed velocities along the arms of &mepde (cf. Fig. 7 for

the frame definition).

Images of the central area of the specimen arededavith a high resolution camera
and a digital image correlation software CORRELA RRveloped by LMS at the
University of Poitieryis used to compute the in-plane strain compon&stshown in Fig.
8, a central square area of approximately 25x25 mas selected, leading to a total

number of about 1600 material points. Major strairand minor straire, were output at
these material points and the strain path, charaeteby the raticg, /¢, , was analyzed at
time t = 6.0s for a rupture time point recorded at tirhe 6.048s. Such a distribution is

presented in Fig. 9. There is a nearly equi-biastigdss state in the central area. It then
changes gradually to nearly uniaxial tensile stetate at the corner. The maximum and
minimum principal strains along four diagonal pathdicated in Fig. 9 have been
compared in Figs. 10 and 11, respectively. Theltesibtained for the four paths are
similar, whatever the selected path. A slight dipancy is recorded near the free edge of
the sample, the maximum relative gap being 1.7%hemajor strain and 0.58% for the
minor strain. An average value, both for minor angjor strains, was then calculated
over the four paths. This average is used in thewing parts for the comparison with

finite element simulation and identification proceel

16



Fmm

Fig. 7: Geometry of quarter cruciform specimen

Fig. 8: Analysis section and visualization of thdidgonal paths.

X (mm)

Fig. 9 Strain path ratio distributios, /&, in the analyzed central section
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Fig. 10 Maximum principal strain along the fourghaal paths

0.04
o Path 1
A Path 2
o Path 3
BB B < Path 4
0.02 - P 8 g .
% 4
@ g
8 4
® 8 o
0 T T T 0 T
4 8 12 1% R 20
O
-0.02 8

Distance from centre (mm)

Fig. 11 Minimum principal strain along the four gamal paths

Fig. 12 shows the evolution of the loads recordedgthe two armsF, andF, . The

rolling direction of the sheet corresponds to thdirection of the specimen. Due to the

anisotropy, a difference can be observed betweztwb signals.

18
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Fig. 12 Evolution of loads on the two arms

4.2 Numerical simulation

Finite element (FE) simulations of the biaxial tesive been carried out with the
commercial software ABAQUS, with the implicit sotv&he anisotropic behavior of the
material is modeled by Bron and Besson yield funmciimplemented through a user
subroutine. It should be emphasized that, as testiep, only anisotropy is dealt with.

Hardening of the material is modelled by isotropedening identified from a tensile
test in the rolling direction. From the tensilettelsta in the rolling direction, and

assuming isotropy, the equivalent plastic strais walculated and Cauchy stress versus
equivalent plastic strain curve was fitted with ¥amuationo, = o, + Q(l— e B’ ) with

o, =146MPa, Q =2176MPa and B =10.9. These parameters were determined from

tensile data and were kept constant throughousthéy. From the relatior}:Yo, it

comes that the hardening law introduced in theédialement code is written as:

o= w(la;i,a.bl,bz,al.qkj(as +Q(1—e‘B§")) (13)

0
where the first term in the right-hand side pareqf (13) depends only on the stress
tensor for uniaxial tension in RD (only one nonezeomponent) normalized by the yield

stress in RD and on the parameter set for the tapso yield criterion.

19



Due to the symmetry of the problem, only a quadithe specimen is modeled.

Experimental forces=, and F, given in Fig. 13 are imposed on the two arms ef th

cruciform specimen during the simulation processirfhode shell elements were used
for the mesh, with a minimum size of 1 mm. Influeraf the mesh size was investigated,
in particular its influence on the major and mistrains, and stable predictions (accuracy
of the same order that the one of experimenta) degee obtained with the selected mesh.
The computational time is about ten minutes (preaes/-640M (2.8 GHz) with 4Go
RAM) with these conditions.

NN NN

X-symmetry

(

e’

Trrvy

y_symmetry

Fig. 13: FE boundary conditions
The numerical simulation of biaxial tensile tess Hmeen performed with Bron and
Besson and Hill 1948 yield criteria identified withnventional tests. Fig. 14 gives the

equivalent plastic strain distribution in the cahtarea of the specimen obtained at

t =6.0s with Bron and Besson model. In order to analyzeeholution of the principal

strains, a partition of the cruciform specimenhia tentral area has been performed along
the diagonal direction and the values at the nattasy the partition line are output. The
predicted principal strains and strain path ratiaveh been compared with the
experimental results and are shown in Figs. 154X} It can be seen that Bron and
Besson predictions are close to the experimensailtss while the values predicted by
Hill 1948 criterion stand farther, especially ftetminimum principal strain. Thus it is

shown that the strain distribution in the centethaf cruciform specimen is significantly
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dependent on the yield criterion. Bron and Bessarampeter set identified with
conventional tests has the capability to well diéscthe strain distribution, whereas Hill

1948 leads to significant discrepancies.

8P
+2.157e-01
+1.977e-01
+1.797e-01
+1.618e-01
+1.438e-01
+1.258e-01
+1.078e-01
+8.987¢-02
+7.189¢-02
+5.392e-02
+3.595e-02
+1.797e-02
+0.000e+00

Fig. 14 Predicted equivalent plastic strain disttiln and definition of the nodes along the
diagonal direction used for the output
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Fig. 15(a) Major strain
0.04
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Fig. 15(b) Minor strain
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Fig. 15(c) Strain path ratio
5. Parameter identification with biaxial tensiletest data

Following the previous conclusion, that the stidistribution in the central area of the
cruciform shape is sensitive to the yield criteriadentification of the material
parameters based on the minimization of the gawdset the evolution of major and
minor strains along a diagonal path is performethis section. Bron and Besson yield
model is used in the numerical simulation of thexkl tensile test.

A cost function is now defined to calculate thefetiénce between the experimental

and numerical principal strains:

&

p EFi _ .i)2 p EFi _ i \2
v anbate) =3[ 8] 3£ 2
i=1 i=1 2

where experimental valueg and &, are compared to the numerical valug$ and

&5 . The index p in Eq. (14) stands for the numbepaifits along the diagonal path. As
the nodes used to output the strain componentsliiezent in the model and in the
experiments, a linear interpolation of the expentak signals was performed. The
minimization of the cost function is then perfornveith the software modeFRONTIER®

which makes a coupling between ABAQUS and MATLABeTalgorithm SIMPLEX is
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preferred in the identification process. In an mpation procedure involving finite
element integrations with many parameters and tahculation times for each iteration,
the SIMPLEX is well adapted. For a set of 13 partamse the algorithm needs 14 initial
sets, which are randomly chosen in the variatiorgeaof the parameters. These sets
permit to efficiently cover the space of solutioftscan be emphasized that the initial
parameter sets for this identification, comparedht® identification with conventional
tests, are very different. The variation rangeamfreparameter is the same as the one used
for the conventional tests and is given in Table 2.

During the optimization process, the principal istrigeld at timet = 6.0s is considered
both in the experiments and in the numerical sitmuia Table 5 gives the values of the
newly identified parameters of Bron and Bessondymebdel after nearly 300 iterations.

Table 5. Anisotropic parameters of Bron and Besgeld function identified by biaxial test

Y(MPa) | @, | a b | b | g || G ||| c |c|c

125.9 0.72 | 0.16 13.00 8.41 106 110 082 085 075 0}4p.78 0.62

Fig. 16(a) shows the predicted and experimentabmand minor strain evolution
along a diagonal path. According to this figuresrthis a very good agreement between
experiments and numerical simulation. The straih patio along the diagonal direction
has been compared with the experimental one inlBigdp). Bron and Besson model gives
a slight underestimation at the beginning of theveucentral area of the cruciform
specimen). However, farther from the center, thediotion is rather close to the

experiments.
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Fig. 16(a) Principal strains predicted by Bron &ssson yield function with

parameters identified from the biaxial test
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Fig. 16(b) Strain path ratio predicted by Bron &&$son yield function with
parameters identified from the biaxial test

6. Comparison of the two methods

Both methods involve mechanical tests with DIC I@teain measure. However, in the
case of conventional tests, the strain field camddidently considered homogeneous,
e.g. for simple shear test and an average shean sof 0.3, a maximum relative gap of
+/- 5% was recorded, related to the accuracy ofsthein measure [6]. This value is
significantly lower than the strain range recordetiaxial test, with an equivalent strain

that ranges from 0.02 up to 0.12. Moreover, them@most no strain path ratio variation
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over the selected areas for conventional tests emlseit evolves significantly for the
biaxial test.

The experimental data represented in the p(&EEIEEl) corresponding to both the
conventional tests and the biaxial test used indbatification procedure are shown in
Fig. 17. For the first method, the sampling poodsupy a larger area in the pla(tg,sl)
however the information is more discrete when camegbao the approach with only the
biaxial test. Indeed, a large number of strain patios are then investigated, though for a
fixed strain level. A possibility to enrich thistdbase would be to add other path than the
diagonal one or use the same path but at diffesteain levels.

Fig. 18 shows the predicted conventional tests pattameter set of Table 5. It can be
seen that the overall trend and level are wellgetga for each type of test. Indeed, stress
level in bulge test is well predicted up to an &gient plastic strain of 0.2 as well as for
simple shear test at 45°/RD. However, some disa@@pa are evidenced. Indeed, no
variation for the shear stress, whatever the aatemt to the rolling direction, was
predicted though it comes from experiments thattiear stress along RD is lower than
the one at 45°/RD. Concerning the uniaxial tensi#s, though the stress level in RD is
above the ones in 45° and 90° to RD in the experima different tendency is predicted,
with stress at 0° and 45° to RD well above the an@0°/RD. It seems therefore that the
uniaxial stress state is not well enough represkeint¢he series of stress states along the
diagonal direction for the biaxial test. Furtherriwds under progress with taking into
account other paths like longitudinal and transyg@aths to output the strain data.

Fig. 19 gives a comparison between two yield corst@alculated with parameters of
Bron and Besson model obtained either from conweatitests or the biaxial test. There

is only a small difference between these two carstomainly near the plane strain state.
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Fig. 19 Comparison of two yield contours

7. Conclusion

Bron and Besson yield model has been used to préukcanisotropic behavior of
material AA5086. 13 parameters of the yield modelehbeen identified by two different
methods. The first method is associated with cotiweal homogeneous tests: uniaxial
tension, biaxial tension by hydraulic bulging anmtige shear. To take into account the
subsequent evolution of anisotropy, the identifaatprocess is performed with the
material data at several plastic strains. The atiethod is based on only a biaxial test
realized on a cruciform specimen. The identificati® carried out with a comparison of
experimental and numerical principal strains alargjagonal direction of the specimen
central area. It is shown that (i) the numericatdiction of the principal strains is
significantly dependent on the yield model (Brow &esson and Hill 1948) and that (2)
the two methods give similar yield contours, exaegdr the plane strain state. Finally, it
can be concluded that a single biaxial tensile segtms sufficient to obtain all the

material parameters of a complex yield criterionA&5086 sheet.
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