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Abstract:

The identification of plastic properties with spieat indentation has been the subject of many
studies in last decades. In the present work, a m&thod for the determination of the
hardening law of materials using the load-displaseihcurve of a spherical indentation test is
proposed. This method is based on the use of aagweepresentative strain. The advantage
of the proposed average representative strain tsittle strictly obtained from the material
response to the indentation test. By using varialaes of penetration depth, the proposed
method gives the range of strain for which the hairdglaw is precisely identified and allows
determining a confidence domain that takes intooaect experimental imprecision and
material heterogeneity. The influence of penetrati@pth and the error formula on the
identified Hollomon hardening law are discussedthia present study. The present study
clarifies many problems that were observed in nevistudies such as the uniqueness of
solution and the sensitivity of the indentationt testhe plastic parameters of the Hollomon

hardening law.
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1- Introduction

Knowledge of the hardening law is fundamental isigie and forming of metal products.
This mechanical property is commonly obtained froemsile test. For cases such as
plastically and functionally graded materials, bemical materials, welded components and
thin films, the tensile test cannot be applied. Tsrumented indentation test is an excellent
substitute in such cases for the standard tereste]1—9] . Identification of plastic hardening
parameters from a load-penetration depth spheinckntation curveR-h curve) is mostly
used and the methods based on the representataie anhd stress approach are widely
proposed [10-20].

Several methods consist to directly correlate #peasentative stress and strain to the stress—
strain point in the uniaxial tensile test [10,13}-18ther methods consist to determine the
parameters of the Hollomon hardening law from aethform expression of theh curve as

a function of material properties [11,12,16-18,2D,Ebr the second group of methods, the
full stress—strain response is commonly estimaterh fthe following piecewise power law

assumption:

o=Ee if o<o,

og=E"g!e" if o20, (1)
Wheregy is the yield stressy is the work hardening exponent gads the Young's modulus.
While the framework for determining the hardeniag lof materials by considering tlikeh
curve has been demonstrated to work well for metatsies of uniqueness [17,22,23] and

sensitivity [23—-25] have also been identified. Maver, none of the studies concerning the

mechanical characterization using #é curve [11,12,16-18,20,21] gave a clear answer on



the range of strain for which the hardening lavpiiscisely identified. In some studies, no
physical justification was given to explain the sea why the proposed strain can be
considered as representative of spherical indemtdfi0,16]. In other studies, the use of the
representative strain serves as a mathematicklhtaigcing no physical basis [11,12,18,20,21].
In a recent study[26], an investigation of the domia which the solution exists while
identifying the hardening law of a material witthgpical indentation using the-h curve was
performed. A definition of an average representas#&in only based on the material
response to the indentation test, i.e. FHe curve, was also proposed in this study. Based on
the use of this average representative strain, & igentification method that allows
identifying the hardening law of materials for allk&own range of strain is proposed in the
present study. Also, the influence of the peneiratiepth and the choice of the error formula

used in the identification process is investigated overtaken in the proposed method.

2-Material presentation and experimental results

The studied material denoted 20MnB5 steel (Europetamdard EN 10083-3, Steelgrade
number: 1.5530) is a commercial Hot-rolled bordoyad case-hardening and heat-treatable
steel, provided by Hoesch Hohenlimburg GmbH. Thenubal composition in weight is:
0.191%C, 1.14%Mn, 0.362%Si, 0.0158%P, 0.0008%S5% &, 0.0014%B, 0.039%Al,
0.027%Ti, 0.017%Mo, 0.025%Cu and 0.06%Ni. The stesl been hot rolled to a thickness
of 4.5 mm. All investigations have been performed tbe material in this as received
condition.

The micrograph in Fig. 1 shows, as a result of hibe rolling, a fine and homogeneous
distribution of spheroidized carbides in a ferriti@atrix. This microstructure gives excellent
properties in the as rolled condition for cold famgy slitting and machining without

additional annealing processes. For our study,tyue of steel was selected because of this



fine, homogeneous microstructure, which leads gwad reproducibility of the indentation

tests.
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Fig. 1: Microstructure of the 20MnB5 steel alloy

The tensile test and indentation specimens wefudbr sectioned with a Precision Cut-Off
Machine from the hot rolled sheet. The Vickers hass$n (10Kgf) measurements gave:
HV10=155 for the surface and Hy@®160 for the core. The true tensile curves obtaifoed
20MnB5 steel before necking are represented in Eigfhe experimental conditions and
measurement method for the tensile test were piesém a previous study [6]. Fig. 2 shows
that the studied material exhibits a yield stresalmjut 340 MPa and a non-negligible work
hardening. This figure also shows that the Holloreguation does not describe the entire

flow curve for the 20MnB5 steels
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Fig.2: Uniaxial tensile test curves for 20MnB5 stdalloy [26]

The spherical indentation tests were carried oth witungsten carbide ball of radius 0.5 mm.
The indentation bench and the experimental conditiased for the indentation tests were
detailed in a previous study [6]. Four sphericaleim@tion curves were obtained from the

material. Fig.3 shows that a satisfying reproduitypof the indentation tests was obtained.
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Fig. 3: Spherical indentation curves for 20MnB5 stel alloy



2- Evaluation of the tensile properties from one vae of h,,/R

ratio

Using the four experimental indentation curves (6g@8), the average curve is determined
(average load for every penetration depth). Inpifesent study, only the average curve is used
to characterize the material. In order to quarttiy gap between two indentation curves, the

root mean square error, equation 2, was used:

1 e 2
ERMS(hmax/ R) = \/hm_ _[(Fl - FZ) dh (2)
ax 0

WhereR is the spherical indenter radius (0.5 mim)is the penetration depth,.x is the
maximal penetration depth aikd andF, are the load for the two considered curves. Ia thi
section one penetration depth is treatbga(R=0.2344). The characterization procedure
consists to calculate the gap, uskgus (EQ. (2)), between an experimenkah curve and a
number of F-h curves obtained from Finite Element simulations doiferent Hollomon
hardening law parameters. The finite elements (R&flel was presented in a previous study
[26]. The elastic properties of the simulated matercorrespond to the elastic properties of
the steelsi.e.. E=210GPa and=0.3. A database was built up frdfh curves obtained from
finite element simulations of the spherical indéota test with different combinations of

plastic properties presented in Fig.4a.
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TheEgrwmsdistribution in gy, n] diagram is presented in Fig.5. As presented irptegious
study [26], theErms distribution takes a particular form of a conehnan elliptical base in the

[k, n] diagram, wherd is defined as follow:
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k= (1- n)In(%J

Since theErys distribution form (cone with an elliptical base)known in k, n diagram, the

values of the hardening law parameter sets of #t@bdse were chosen to be regulakjm][

diagram (fig.4b).

G4

+3 1

+2 -

1

Ly

(b)




Percentage of relative gap %

100 - Y1/ === Solution |
S Hardening laws of the 41

E bottom of the valley

0 T = T T T

0.00 004 0.08 0.12 0.18

Strain
Fig.5: (a) Comparison between the ERMS distributios obtained from the database and
the cone with the elliptical basg26]
(b) Hardening law of the materials for which the maerial parameter sets @, n) are
located in the bottom of the valley (see Fig.5 (agnd percentage of the maximal relative

gap between these curv§as]

The mathematical equation of this cone, used tergehe the Hollomon hardening law of the

material, is:

_xY Ly
(5 ¥ “
with
x= (k—ky)cost,. +(n—ny)sing )
and

y = ~k—ky)sinf,o +(n-ny)cost, 6)



whereX andY are the parameters that indicates the dimensibtisecelliptical base for one
specific value of error. The dimensional univoandY is the inverse of the dimensional unit
of Eelipse Ko @andng are the coordinates of the summit of the caieethe identified solution
and &,r indicates the direction of the principal axis loé ellipse ink, n] diagram.

The units ofEeipse aNdErms are identical (Newton, in our case).

The comparison betwedfrus obtained from the database, dhgpse Obtained from Eq. (4)
is presented in Fig.5a. In Fig.5a, it is clearlpwh that theEqipse distribution given by Eq.
(4) superimposes perfectly onto thgus distribution. This result proves that the consedier
assumption on the cone with the elliptical basenfar correct.

From Fig.5a, we can notice the presence of a “yaitethe [¢y, n] diagram in which thé&grus
variation is very small. All thedj, n) parameters that are located in the bottom ofuaiey
lead to hardening laws that intersect at one spestifain (Fig.5b). This strain, which depends
on the direction of the valley, was defined as dherage representative straigg [26]. All
the (&, n) parameters which are located in the bottom oltikey lead td=-h curves close to
the F-h curve corresponding to the solution. Hence,Rkecurve is mostly influenced by the
part of the hardening law which is located aroungldverage representative strais, WWhen

a material is characterized using thé curve, it is this part of the Hollomon hardeniagvl
that is mostly characterized and the better idiedtifTo determine,r the following equation

is used [26]:

_ -1
£, = ex;{tan @J ()

The 5 parameters, Y, no, ¢ anddar, are obtained from the minimal value of the foliog

cost function:

E= Z(EI RMS — Eiellipse)2 with E' RMS — Eiellipse =0 if E RMS 2 Ecritical (8)



wherei corresponds to each case of the material parasetss,, n) that were chosen for the
database. It should be noticed that the ellipttcale form was assumed to be the form of the
Erwms distribution near the solution, i.e where the exalexists. For this reasoBgiitica Was
defined in order to use only the material paramsé¢sthat are near the solution to correctly
determine the five parameters of the ellipticaledn this studyEiicas = 30N was chosen for
hmaxR=0.2344. In the case of,,,/R=0.2344, the parameters of the identified hardetamg
presented in Fig.6, arey= 240 MPa anch=0.182. The comparison between the identified
hardening law and the tensile test curves shovighikadentified parameters of the hardening

law give a stress strain curve very close to thpearmental tensile test curves.

800

500

400 -

300

Stress (MPa)

— Tensile test curves
Identified Holomon Hardening law for h__ /R=0 2344

200

100

0 T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 012 0.14 0.16 0.18

Strain

Fig.6: Comparison between the tensile test curvesd the identified hardening law with

the elliptical cone definition.

Furthermore, the proposed identification methoddRéws identifying a confidence domain.
When multiple experimental indentation curves aed, differences between these curves are
always observed. One cannot obtain two experimeruales that superimpose perfectly

because of the experimental imprecision and themaaheterogeneity.



In order to quantify those differencéSysis calculated between the average experiméntal

h curve and each one of the four experimental cuimesh,,,/R=0.2344.

Erus (N)
hmax/R Test 1 Test 2 Test 3 Test 4 Maximum
0.2344 1.17 1.97 2.50 0.85 2.50

Table 1: Values of root mean square errorrys) between the average curve and the

four experimental curves[26]

The values oEgys obtained between the average curve and the fqeremental curves are
presented in table 1. Using the equation of theeowith the elliptical base (Eq. (4)), the
ellipse which corresponds to the maximum valug&gjsgiven in Table 1 is determined. This
ellipse (isovalue ofErmg is presented indy, n] and [K, n] diagrams (Fig.7a). All the
Hollomon hardening laws parameters that are locatgide this ellipse can be considered as
solutions. We define the confidence domain (insst#gtrain diagram) as the envelope of these
hardening laws [26]. The confidence domain, thaimdes the hardening laws identified as

solutions, is presented in Fig.7b.
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Fig.7: (a) Ellipse corresponding to the maximal vale of ERMS between the
experimental curves (table 1)26].

(b) Identified solution and confidence domain limied with the envelopg26].
In this section, an identification method that aioidentifying the Hollomon hardening law
parameter setd, n) and the average representative strain was prdpfmseone specific
penetration depthhf,,/R=0.2344 was used). As described above the avesgesentative
strain indicates the part of the Hollomon hardeniag that is identified with the highest
precision. In order to identify the hardening lafstlee material with the highest precision, the

same procedure is applied for multiple penetratiepth in the following section.

3- Evaluation of the tensile properties from multige h;./R

3.1- Influence of penetration depth on the identied hardening law

As for the previous section, the average experialeindentation curve obtained for the
20MnBS5 steel is used. Using the definition of tlome with the elliptical base (Eq. (4), (8)),
the Hollomon hardening law parameter sets ) are calculated for various valueshafa/R
(0.00554ma/R<0.2344). Fig.8 shows that the maximum penetratiepth has a strong
influence on the values of the identified parangetthe studied material. Furthermore, a
correlation betweew, andn is observedg; decreases amlincreases whehya/R increases.
From these observations, it becomes difficult tckena choice ohya/R to characterize a
material with a Hollomon hardening law. A questierto be asked: which set of parameters

should be considered as solution?
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Fig.8: Material parameter sets @, n) identified with spherical indentation for different
penetration depth (0.0055%h.x/R<0.2344) for the case of 20MnB5 steel alloy
(experimental result) and the case of a material wh g=260MPa andn=0.16 (FE
simulation result)

Discussion

The results presented in black color in Fig.8 wastained for the 20MnB5 steel for which

the hardening law does not correspond perfectly ollomon law. We propose to study the

influence of the penetration depth on the iderdifleardening law for a material with a

Hollomon hardening law. Thé-h curve was obtained from FE simulation for a matesiith

0,=260 MPa ana=0.16. From this indentation curve and using thHend®n of the cone with

the elliptical base (Eq. (4), (8)), the Hollomonrdening law parameter setsy( n) are

calculated.

From Fig.8, it can be observed that the valueshefitentified Hollomon hardening law

parameters are almost identical for every value.gfR. The small variations of the values of

oy andn observed in Fig.8 are only due to the precisionhef minimization process in the

proposed method (Eq. (8)). Hence, when the hardel@w of the material corresponds



perfectly to a Hollomon law, there is no influenafethe penetration depth on the identified
parameter setd, n). On the other hand, when the hardening law ofrtiaerial does not
correspond perfectly to a Hollomon law, the ideetfparameter seiy, n) depends on the
penetration depth (Fig.8). From this result thebpgm of the uniqueness of solution in
spherical indentation should be investigated.

Methods for the identification of the Hollomon paweter set £, n) from spherical
indentation curveF-h, were proposed in many studies [11,12,16-18,20-482¢ach study,
one value of maximum penetration depth was chosehveas considered as sufficient to
characterize the studied materials. No clear exgbian on the choice of this value was given.
For example, Lee et al [16] proposed a model far ithentification of the Hollomon
hardening law parameter setg,(n). They chose a maximal ratie../R = 0.12 with no
justification. Later, in 2010, Lee et al. [17] shedvthat there could be a problem of
uniqueness of solution fdm,,/R = 0.12. They showed that two dissimilar materialay
produce quite similalF-h curves for shallow indentation, ilgn./R = 0.12. They also showed
that as indentation depth increases, fdlk curves clearly separate from each other. This
features inspired the authors [17] to develop a ifieatd method for a deeper spherical
indentation test, i.ehna/R=0.4. The reason why this choice would definiteblve the
problem of uniqueness of the solution was not given

We show that the value of the identified paramsétrig, n) is about the same independently
of the value ofhnaR in the case of a material with a hardening lawolwhcorresponds
perfectly to a Hollomon law (Fig.8). In the caseaahaterial with a hardening law which does
not correspond to a Hollomon law, Fig.8 shows thatvalues of the identified parameter set
(gy, n) depend on the value bfa/R. In the following part, a procedure of charactatian
which takes into account the values of the idesdifparameter setgx( n) obtained for all

values ofhya/R is proposed.



3.2- Identification using the average representativstrain

In section 2 the average representative strainomsused to give additional information on
the part of the hardening law that is identifiedhahe highest precision. In this section the
average representative strain is used to buildh#indening law of the material point by point.
Using Eq. (4), (7) and (8), a material parameté(gg n) and an average representative strain
&r are determined for each valuef,/R. Using the fact that the higher thga/(R ratio the
higher & is, various setd,, gy) are determined for various,s/R. This way, the hardening
law of the material is built up with different sefs,, oa). Fig.9 shows that the built up

hardening law is very close to the tensile testesiiof the material.
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Fig.9: Tensile test curves, hardening law identifié with the proposed method and
confidence domain determined with the proposed metid.
Discussion
In the paragraph 3.1 the question of uniquenessobtftion was invoked for the case of

20MnBS5 steel. We show in Fig.8 that different Hallon hardening law parameter sefs ()



are identified depending on the valuemf,/R. There is no reason to choose one specific
material parameter seti( n) among the identified ones. The Hollomon harderiags,
obtained from parameter sets,(n) identified for small values dina/R, better represent the
beginning of the plastic flow of the material. Irsianilar way, the Hollomon hardening laws,
obtained from parameter setg,(n) identified for high values dfina/R, better represent the
plastic flow of the material for high values ofatr. The procedure presented in this study
allows considering all the identified Hollomon hanihg laws obtained from small to large
values ofhna/R. For each one of these laws, the correspondingt gk o.r) is considered
because it is for this point that the result is iti@st precise when using tkeh curve for the
identification of the hardening law. Using the buip hardening law with the various,(
Oar), N0 value ohpay/R ratio is considered more important than the othéfish the proposed
method, allhna/R between 0.0055 and 0.2344 are equally considemeldna unjustified
choice was made on the value of the usggR for the identification of the hardening law of
the material. Even more, the range of plastic s¢afior which the hardening is identified, is
directly obtained, i.e between 0.012 and 0.04%Herstudied case. The proposed method is
similar to the methods [10,13,15,19,27] based anrtteasure of applied load and contact
radius from which the hardening law is built up mioper point. The advantage of the
proposed method is that the average representathaen is directly determined from
measured parameters éndh), which is not the case for the methods cited abdw these
methods, the representative strain is obtained ftbhenvalue of contact radius which is
calculated from the value of penetration depth gismodels. In the studies on the
representative strain in spherical and Vickers mtagons, it was shown that the values of
representative strain obtained from #é relationship are smaller than those obtained from
the F-a relationship [28]. The use of tHea relationship in addition to thE-h relationship

must thus lead to the identification of complementearts of the hardening law of a material.



3.3- Confidence domain
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Fig.10: Evolution of the error between the averageuwve and the four indentation

curves as a function of the ratio penetration deptlover indenter radius

In order to take into account experimental impriecisand material heterogeneitiirys is

calculated between the average experimental cundeeach one of the four experimental
curves. The variation of this error as a functidrh@./R for the four experimental tests is
presented in Fig.10. From these errors, the maxnadake ofErvsis considered for each value
of hna/R. The average curve associated to the maximal vafu&rys leads to the

characterization of a confidence domain that takEsaccount the experimental imprecision
and the material heterogeneity. Therefore, sinae moint of the hardening law is identified
for each penetration depth, the confidence domascribed in section 2 is reduced to a

minimum and a maximum values of stress for daglyR. This way, the confidence domain

is built up point by point.



For eachgg, the maximum and the minimum values of stressdatermined using the
material parameter setgy( n), corresponding to the points b and d of the ikevallipse

represented Fig.7(a) as follow:

point b point d
k=k,-Ysinf,, k =Kk, +Ysinf,, ©)
n=n,+Y Ccosf,, n=n,—Y Ccosf,,

The confidence domain built up from the averageeerpentalF-h curve is presented in
Fig.11. All the hardening laws that are locateddesthe confidence domain lead feh
curves that givéegys smaller than the maximal value Bvs represented in Fig.10. Thus the
confidence domain regroups all possible soluticssng into account the experimental
imprecision and the material heterogeneity. The féh curves, presented in Fig.3, were used
to characterize the material and the identifiedibamg laws are presented in Fig.11. It can be

observed in this figure that the four hardeningdare located inside the confidence domain.
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Fig.11: Confidence domain and the four identified Brdening laws determined from
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Discussion

Fig.11 shows that the width of the confidence deomdecreases with the increase in
penetration depth. This result shows that the highe penetration depth, the higher the
precision of the identification from B-h curve is. Six values diyn./R are considered, see
Fig.12. For these six values bf./R, six values ofEgrus corresponding to the maximal
experimental errors are obtained (see Fig.10)1Bighows the six isovalues Bfvsobtained

in the diagram ¢x, n]. It can be seen in this figure that the quaspséls corresponding to the
isovalues oEgysrotates with the variation imy,./R value. The higher the value lof./R, the
higher the values ofl, andg,, are.

The surface of each quasi ellipse decreases wWhgfR increases (Fig.12). This result
confirms that because of the experimental imprenisihe smaller the penetration depth, the

smaller the precision of the identified results is.
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Fig.12: Quasi ellipses corresponding to the isovads of the considered penetration
depths (a) total domain (b) enlarged area around th intersection zone
The surface corresponding to the intersection zdriee quasi ellipses obtained for different
values ofhma/R (Fig.12(b)) should be considered for the identtima of the Hollomon law
of the material. For all these valuesmf,/R, the material parameter sets located inside the
intersection zone lead t6-h curves that giveegrus smaller than the maximal value of the
experimental error.
The results presented in section 3 illustrate tiedlpm of the uniqueness of the solution and
the influence of the choice of penetration depthe Proposed method allows identifying the
hardening law of the material for specific valuésstrain taking into account experimental
imprecision and material heterogeneity.

The influence of the choice of the err&k(;sin our case) is studied in the following section.

4- Influence of the choice of error

The procedure proposed above is applied to obkerhardening law of the 20MnB5 steel

using a different definition of error. This errardefined with the following equation:



ha/ = _ 2 )2
REnys (/R =100% | I(Fl FZ] df (10)
heax 2\ F

1

whereREzrusis the root mean square relative error expresseeéricentage.

Ermvs and RErus do not depend on the number and on the distributiothe points of the
experimentaF-h curves. Contrary t&rvs RErms is defined so that the value of the error is
equally influenced by small and high values of lod&ince the proposed average
representative strain is determined from the distron of the error between an experimental
curve and theF-h curves of the database, the error definition hasirdluence on the

determined average representative strain (Fig.13).
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Fig.13: Comparison between the variation of the arvage representative strains

determined with Egys and RErus as a function ofhpya/R

Moreover, the identified Hollomon hardening law graeter sets depend on the choice of the
error. For example, fdn,./R=0.2344, the identified Hollomon hardening law paeter set,
0,~264MPa andh=0.161, obtained frofREryusis different from that calculated usifGvs

i.e. =240MPa anah=0.182.



Using the setséd, da) determined withRErys for varioushna/R, the hardening law of the
material is built up point by point (Fig.14). Detspithe differences observed between the
identified Hollomon hardening law parameter sefg () obtained fromREzus and Erms
Fig.14 shows that the built up hardening law suppdses the tensile test curves. This result
confirms that the average representative straiicatels perfectly the part of the hardening
law that is identified when usingFRh indentation curve. With the proposed procedure, th
error formula only influences the range of straimiich the hardening law is identified.

The comparison between Fig.9 and 14 shows thatwikdéh of the confidence domain
obtained withRErys is higher than the one obtained wihys Hence,Ervs leads to better

precision tharREgus
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Fig.14: Tensile test curves, hardening law identiéid with the proposed method using

RErus and confidence domain determined with the proposethethod usingREgus.

Discussion



As previously mentioned, the points of the expentakF-h curve have not the same
influence on the identified results whRirys andErvs are used. The influence of the error
formula on the values of the plastic propertiesnadterials extracted from the spherical
indentation loading curve was expected sihgg/R has an influence on these values. This
influence was never studied in previous works [21,6-22]. Moreover, neither the error
formula used to obtain the analytical expressidnthe F-h curve as a function of material
properties, nor the error formula used to evalube hardening law from this analytical
expressions were given in these works. We showighdtudy that the influence of the error
formula and the value dfna/R should be considered when we use methods to deaine

stress—strain curve from tleh indentation curve.
4- Conclusion

In this study, a new method to extract the hardgtanv of materials from an instrumented
spherical indentation loading curve is proposede Tésults obtained with this method are
very satisfactory when compared to the tensile tesves. Using the proposed average
representative strain, this method takes into audcomnultiple difficulties that were not
specified in the literature:

- Depending on the value of the penetration deptirjous Hollomon hardening law
parameter setsg{, n) can be identified from a single-h spherical indentation curve. The
proposed method allows considering all these paemsets. Each penetration depth is

considered to identify one point of the hardeneng.|

- The extraction of a stress-strain curve of a nmedtédrom an indentation test only give

precise result for a range of strain. This rangsti@in is obtained with the proposed method.



- It is impossible to obtain two or more perfecsliynilar experimental indentation curves.
Using the average experimental curve and the maxexperimental error, the proposed
method allows identifying a confidence domain whtekes into account the experimental

imprecision and the material heterogeneity.

- Different Hollomon hardening law parameter setg ) are obtained when different error
formula are used to calculate the gap between tatlen curves. With the proposed
procedure, the identified stress-strain curve aduxsiepend on the error formula. The choice
of the error only influences the range of strainvimich the hardening law is identified and the

width of the confidence domain.
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