Deproto-metallation using mixed lithium-zinc and lithium-copper

bases and computed CH acidity of 2-substituted quinolines

Nada Marquise,^a Guillaume Bretel,^a Frédéric Lassagne,^a Floris Chevallier, ^{*a} Thierry Roisnel,^b Vincent Dorcet,^b Yury S. Halauko, ^{*c} Oleg A. Ivashkevich,^c Vadim E. Matulis,^d Philippe C. Gros^e and Florence Mongin^{*a}

^a Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, 35042 Rennes, France.

^b Centre de DIFfractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10B, Campus Scientifique de Beaulieu, 35042 Rennes, France.

^c UNESCO Chair of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus.

^d Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus.

^d HECRIN, SRSMC, Université de Lorraine-CNRS, Boulevard des Aiguillettes, 54506 Vandoeuvre-Lès-Nancy, France

e-mails: floris.chevallier@univ-rennes1.fr, hys@tut.by, florence.mongin@univ-rennes1.fr

Table of Contents

Page	Item
S2	¹ H and ¹³ C NMR spectra
S24	Calculated values of the Gibbs energies $\Delta_{acid}G$ [kcal mol ⁻¹] for deprotonation
	at the corresponding positions of the investigated quinolines
S25	Cartesian coordinates of molecular geometry for the most stable rotamer form
	of selected quinolines (on example of 1f, 1h) (neutral molecule, gas phase)
	optimized at B3LYP/6-31G(d) level of theory

¹H and ¹³C NMR spectra 2-Phenylquinoline (1a).

ppm (f1)

2-(2-Naphthyl)quinoline (1b).

2-(4-Methoxyphenyl)quinoline (1c).

11*H*-Indeno[1,2-*b*]quinoline (1d).

2-tert-Butyl-1,2,3,4-tetrahydroacridine (1e).

2-(3-Pyridyl)quinoline (1f).

2-(2-Furyl)quinoline (1g).

2-(2-Thienyl)quinoline (1h).

S9

8-lodo-2-phenylquinoline (2a).

S10

8-lodo-2-(2-naphthyl)quinoline (2b).

8-lodo-2-(3-iodo-4-methoxyphenyl)quinoline (3c).

11-lodo-11*H*-indeno[1,2-*b*]quinoline (2d).

11,11-Diiodo-11*H*-indeno[1,2-*b*]quinoline (3d).

2-(6-lodo-3-pyridyl)quinoline (2f).

S15

2-(2-lodo-3-pyridyl)quinoline (2f').

2-(5-lodo-2-furyl)quinoline (2g).

2-(5-lodo-2-thienyl)quinoline (2h).

2-(3,5-Diiodo-2-thienyl)quinoline (3h).

8-(2-Chlorobenzoyl)-2-phenylquinoline (4a).

8-(2-Chlorobenzoyl)-2-(2-naphthyl)quinoline (4b).

2-(5-(2-Chlorobenzoyl)-2-thienyl)quinoline (4h).

2-Phenyl-11*H*-indeno[1,2-*h*]quinolin-11-one (5a).

Calculated values of the Gibbs energies $\Delta_{acid}G$ [kcal mol⁻¹] for deprotonation at the corresponding positions of the investigated quinolines

Cartesian coordinates of molecular geometry for the most stable rotamer form of selected quinolines (on example of 1f, 1h) (neutral molecule, gas phase) optimized at B3LYP/6-31G(d) level of theory

1f

С	0.864745	-0.0568	-0.03846
С	1.530703	1.170595	-0.33594
С	2.890335	-1.14499	0.250674
С	2.902177	1.208188	-0.34418
Н	0.959426	2.070933	-0.53161
С	3.588755	-2.34303	0.559895
С	3.641967	0.034781	-0.05189
Н	3.430426	2.133389	-0.56331
С	4.965334	-2.36492	0.567247
Н	3.000245	-3.22691	0.785257
С	5.059084	-0.01895	-0.03627
С	5.707993	-1.19541	0.266916
Н	5.492192	-3.28525	0.804331
Н	5.622923	0.882089	-0.26669
Н	6.793776	-1.23183	0.276884
С	-0.6189	-0.14637	-0.01951
С	-1.2578	-1.212	0.632784
С	-1.44414	0.797411	-0.65205
С	-2.64608	-1.27149	0.640186
Н	-0.6512	-1.96881	1.118263
Ν	-2.78047	0.753917	-0.65374
Н	-1.00975	1.626217	-1.20749
С	-3.36277	-0.26411	-0.00963
Н	-3.16875	-2.08065	1.142063
Н	-4.45156	-0.2755	-0.01761
Ν	1.529602	-1.16659	0.250598

С	-0.45616	-0.12163	-0.02502
С	0.293607	-0.23683	-1.23639
С	1.398767	-0.67804	1.246601
С	1.618513	-0.58063	-1.1715
Н	-0.18366	-0.05368	-2.19293
С	1.96648	-0.90507	2.528676
С	2.228534	-0.81714	0.088417
Н	2.211667	-0.67508	-2.07838
С	3.293352	-1.25309	2.651355
Н	1.320111	-0.79433	3.393656
С	3.590255	-1.17638	0.247264
С	4.113432	-1.39043	1.504069
Н	3.7198	-1.42503	3.635996
Н	4.214216	-1.28014	-0.63765
Н	5.158038	-1.66564	1.619927
N	0.084584	-0.33606	1.16717
С	-1.87309	0.242935	-0.0469
С	-2.69965	0.522837	-1.11396
S	-2.74893	0.371281	1.463512
С	-4.03184	0.839561	-0.72777
Н	-2.37018	0.504225	-2.14704
С	-4.20576	0.797752	0.630518
Н	-4.82132	1.08654	-1.4294
Н	-5.111	0.994205	1.190141

1h