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Abstract. The present work deals with the calibration stgwtef yield functions used to describe
the plastic anisotropic behavior of metallic shektghis paper, Bron and Besson yield criterion is
used to model the plastic anisotropic behavior #5886 sheets. This yield model is flexible
enough since the anisotropy is represented by Yanpers (4 isotropic parameters and 8
anisotropic parameters in plane stress condition)the form of two linear fourth order
transformation tensors. The parameters of thisotnoigic yield model have been identified from a
single dedicated cross biaxial tensile test. $hiswn, from finite element simulations, that thaust
distribution in the center of the cruciform specme significantly dependent on the yield criterion
Moreover, this cross biaxial test involves a largege of strain paths in the center of the specimen.
The calibration stage is performed by means of pimmazation procedure minimizing the gap
between experimental and numerical values of thecipal strains along a specified path in the
gauge area of the cruciform specimen. It is shdvat the material parameters of Bron and Besson
anisotropic yield model can be determined accurdtgl unique biaxial tensile test.

Introduction

Sheet metals usually exhibit a plastic anisotropg tb previous thermo-mechanical processes
like rolling and annealing. To optimize the numatisimulation of these forming processes, an
accurate description of the plastic behavior is iregu Within a phenomenological description of
the mechanical behavior of sheet metals, yieldtfans and especially anisotropic ones are used to
represent the initial anisotropy of the materialariyl anisotropic yield models were proposed to
describe the initial anisotropy, e.g. a thoroughew of these models is presented in [1]. Theaihiti
anisotropy description, coupled with hardening etioh, can lead to a good representation of the
mechanical behavior over a large strain rangehaas in [2]. An alternative consists in taking into
account anisotropy evolution, as proposed in [8].cbnsider the plastic strain-induced anisotropy,
Zang and Lee [4] carried out the eigen decompastiof the linear transformation tensors of
Y1d2000-2d yield model at different equivalent piastrains.

Yield functions can involve a high number of makmparameters. The calibration of these
parameters requires usually several mechanica vagt different loading paths. To guarantee the
relevance of the parameter set, the number of ewpatal data should not be lower than the
number of material parameters considered in thetiftzation process. The relevance of the yield
contour is improved when increasing the numberash@ing points, demanding an increase of
experimental information. However, from an econahjmint of view, the number of tests should
be as small as possible. It has been proposed thgt}he following experimental data is required
at least: three yield stresses (eoy., 0,, and g,,) and three anisotropic coefficients (erg, r,;



and r,,) obtained from uniaxial tensile tests in differenientations to the rolling direction (RD); an
equi-biaxial yield stressa,) and a biaxial coefficientr() from biaxial tensile test, usually

hydraulic bulge test. As mentioned above, moshefgrevious works proposed identification based
on the initial values of these data, measured atldeto-plastic transition.

However, Hu [5] pointed out that the initial yiedtresses were difficult to determine accurately
since there exist several definition of initial Idi@g. Some works investigated the identificatidn o
material parameters considering not only the initedues but also values recorded at higher strains
[6,7]. Another approach without considering initigleld stress values consists in parameter
identification over the temporal evolution of expeental data. Zang et al [2] considered a
combination of stress level in uniaxial tension, idmaxial tension and simple shear, both
monotonic and Bauschinger tests, to identify matgrarameters of Bron and Besson yield function.
Bron and Besson [8] also proposed a similar idieatibn strategy with the temporal evolution of
stress levels in tensile tests, both on straigt@motched samples. It can be concluded thatalue t
the dispersion on initial yield stresses, as welihee evolution of anisotropy with strain, considgr
only initial yield stresses does not give an adeudgscription of the mechanical behavior.

Recently, some works have been focused on paraidetgification of yield functions from the
biaxial tensile test. Green et al [9] have perfatn@oss biaxial tests with seven different
proportional strain paths, in order to identify fre@rameters of several yield functions. The authors
adjusted the parameters with an iterative procethu@ptimize the predicted strength level of two
arms of the cruciform sample. Teaca et al [10] psgl the identification Ferron, Makkouk and
Morreale (FMM) yield function parameters [11] by daiming results of uniaxial tensile tests and
cross biaxial test. However, only two parameterghefyield model were calibrated from the strain
distribution in the central part of the cruciforpesimen. The field measurement of the strain level
was also used by Prates et al. [12] to identify EH948 coefficients. Up to now and to the authors’
knowledge, there is no published work that concdragparameter identification of a complex yield
model with only one cross biaxial tensile test.

In the present article, a biaxial tensile test isfqgened on a cruciform specimen in order to
investigate the plastic anisotropy of AA5086 she®mn and Besson yield model, chosen to
represent this anisotropic behavior, is express#dtwo linear fourth order transformation tensors
involving 12 material parameters; i.e. 4 isotropa&rameters and 8 anisotropic parameters in plane
stress condition. Experimental results show that dtrain distribution in the central area of the
proposed cross flat specimen is significantly desesito the yield criterion. Consequently, an
identification procedure of all Bron and Bessorapagters, based on a unique biaxial tensile test, is
led. Comparisons between experimental and numewsalts of principal strains along a specified
path defined in the gauge area of the cruciforntigpen are presented. It is shown that the cross
biaxial test involves a large range of strain pathsugh the maximum strain is limited. Finallyeth
yield function identified by the proposed method@npared to the one obtained from a classical
identification approach.

Biaxial Tensile Test with Cruciform Specimen

A cruciform specimen shape has been designed asttbisn in Fig. 1. Experiments on a servo-
hydraulic testing machine have been performed WiBj a constant velocity of 1 mm/s imposed on
the four arms of the cruciform specimen. The AASQ@Bet has a thickness of 2 mm and the
orientation of the rolling direction correspondshe X axis. The Fig. 2 shows the evolution of the
loads k and F recorded along the two arms. It can be seen thatalthe anisotropy, a significant
difference is observed.

Images of the central area of the specimen weraded with a high resolution camera and a
digital image correlation (DIC) software CORRELA 2Beveloped by LMS at the University of
Poitierg was used to compute the in-plane strain compsnés shown in Fig. 3, a central square



area of approximately 25x25 mMimvas selected, leading to a total number of ab&®0lpoints
where the strains are calculated.

' I —
CUUL F--memmmmmmme e e
P
2000 Pl
UL """""”;;’j"f """""""""""""""""""""""""""""
= =
< 2000 b 2 —
as ) ” .",’/
¥ © 3000 - ;If' ............................................... —FX |-
g t £ i
2 o—>x B FY Joorm
i
e 1000 5} ------------------------------------------------------------------------
RS mm 0 & . !
' 0 2 4 6 3
7 Time (s)
Fig. 1. Geometry of quarter cruciform Fig. 2 Evolution of loads on two arms
specimen

In-plane major strairg, and minor straing, were output at these material points and the strain
path, characterized by the ratig/e, , was analyzed at time= 6.0s for a rupture recorded at time
t = 6.048. Such a distribution is presented in Fig. 4. Ther@ nearly equi-biaxial strain state in the
central area. It then changes gradually to neamig«ial tensile stress state at the corner.

¢ ; X (mm)
Fig. 3: Analyzed section (in blue, Fig. 4 Strain path ratio distributiog, /€, in
25x25 mni) and visualization of the 4 diagonal the analyzed central section

paths.

The maximum and minimum principal strains along fdiagonal paths indicated in Fig. 3 have
been compared in Figs. 5 and 6 respectively. Theltee obtained for the four paths are similar,
whatever the selected path. A slight discrepanagesrded near the free edge of the sample, the
maximum relative gap being 1.7% for the major strand 0.6% for the minor strain. An average
value, both for minor and major strains, was thaltudated over the four paths. This average is
used in the following parts for the comparison Wittite element (FE) simulation and identification

procedure.
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Material M odel

Bron and Besson proposed a yield function invohiBgparameters under the form [8]:
-(Safo') ) o
k=1
a* are positive coefficients, the sum of which is édadl. G is the equivalent stress aiYg a
reference yield stress of the materiaf., k=1,2 are expressed in the form:
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a, b, b, anda' (a®=1-a') are four isotropic parameters which define thepstat the yield
surface.S' are the principal values of the transformed stdm/iatorsj" defined by:
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Where ¢/ are 12 parameters, which are related to the rabtisotropy. In the case of plane
stress condition, the anisotropic parameter numzirces to 8 witlef =cf =1.

Parameter |dentification of Bron and Besson Yield Function

From experimental results of the biaxial tensil fesented above, an identification procedure
of Bron and Besson yield function parameters ippsed. It consists in the minimization of the gap
between the experimental and calculated evoluttdneajor and minor strains along the diagonal



path defined in the central area of the specim&n @). The calculated values are obtained from a
FE numerical model of the biaxial tensile test. Simulations have been carried out with the
commercial software ABAQUS. Bron and Besson yialmction is implemented through the
UMAT user subroutine. It should be emphasized thata first step, only anisotropy is dealt with.
Hardening of the material is modeled by isotropiedkaing identified from a tensile test in the
rolling direction. The hardening law adopted hare i

o=0, +A (1 —e‘“p) (5)
whered, =146MPais the initial yield strength. A =217.6 MPa and-B.0.9 are material
parameters.

Due to the symmetry of the problem, only a quadérthe specimen is modeled (Fig. 7).
Experimental forcess, and F, given in Fig. 2 are imposed on the two arms of ¢heciform

specimen during the simulation process. Four nb@#l slements were used for the mesh, with a
minimum size of 1 mm. Influence of the mesh size wevestigated, in particular its influence on
the major and minor strains, and stable predictwa® obtained with the selected mesh.

The cost function evaluates the difference betwtbenexperimental and numerical principal
strains and is defined by:

5,(Y,/0pa, b 1 al,é)—Z( il ij +Z[ & = ijz (6)

2

where experimental values ande, are compared to the numerical valegs ande5". The index

p in Eg. (6) stands for the number of points aldr@gdiagonal path. As the nodes used to output the
strain components are different in the model antheexperiments, a linear interpolation of the
experimental signals was performed. During therojz@tion process, the principal strain field at
time t= 6.0s is considered both in the experiments and in thenerical simulation. The
identification is realized with the commercial seire modeFRONTIER®, which is an integration
platform for multi-objective optimization. It prades a coupling with the FE software ABAQUS.
The algorithm SIMPLEX is preferred in the identifiicatt process. In a situation with finite element
inverse integration, which takes long time for eaelfculation, the algorithm SIMPLEX is well
adapted.
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Fig. 7: FE boundary conditions. Dashed lines comrdgo symmetric conditions.



Results

Table 1 gives the variation range and the initidlgaf each parameter and values of identified
parameters of Bron and Besson yield model.

Table 1. Parameters of Bron and Besson yield funatientified by biaxial test

Y, / O, 1 1 1 1 2 2 2 2
a a b b C C C C

[MPa] L 1 2 | G > | G s | G > | G ”

1 0.5 6 10 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.8~1.2 |0.1~09| 0-12 0~20 0~20 (-1.2~2.2|-1.2~2.2|-1.2~2.2|-1.2~2.2|-1.2~2.2|-1.2~2.2|-1.2~2.2|-1.2~2.2

0.862 0.72 0.16 13.00 8.41 1.06 1.10 0.82 0.95 0.75 0.47 0.78 0.62

Fig. 8 gives the equivalent plastic strain disttii in the central area of the specimen at
t = 6.0s with the identified Bron and Besson model.

+2.200e-01
+2.017e-01
+1.833e-01
+1.650e-01
+1.467e-01
+1.283e-01
+1.100e-01
+9.167e-02
+7.333e-02
+5.500e-02
+3.667e-02
1 +1.833e-02
o= * +0.000e+00

Fig. 8: Equivalent plastic strain distribution iretbentral area of the specimen

Fig. 9 shows the predicted and experimental majarrainor strain evolution along a diagonal
path. According to the figure, there is a very gegdeement between experiments and numerical
simulation. The strain path ratio along the diagodakction has been compared with the
experimental one in Fig. 10. Bron and Besson mgukels a slight underestimation at the beginning
of the curve (central area of the cruciform specimédowever, farther from the center, the
prediction is rather close to the experiments.

Fig. 11 gives a comparison between two yield corst@alculated with parameters of Bron and
Besson model obtained either from the biaxial tedtom conventional tests [14]. There is only a
small difference between these two contours, maiagr the plane strain state.
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Conclusion

To simplify both the obtaining of the experiment@tabase and the calibration of the yield
function parameters, an identification method bagedlata obtained from a single cross biaxial
tensile test was investigated.

Bron and Besson yield model has been applied testiyate the anisotropic behavior of material
AA5086. A cost function, based on the minimizatiohthe gap between the experimental and
calculated evolutions of major and minor strainsngl a diagonal path in the central area of the
specimen, has been defined. From the proposedfidatibn method, all the 13 parameters of Bron
and Besson yield function have been determined anitia one biaxial tensile test. Good agreement
between yield contours obtained from an identifaaprocess based on the biaxial test and from a
classical method of calibration based on conveatitests validates the proposed method.
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