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The modelization of mass transfer through biconnected fractured porous media is studied by homogenizing the coupling between the Darcyan percolation and the viscous Stokes flow on their interface governed by the Beavers-Joseph law. The case of high transmission coefficients is considered. The asymptotic behaviour is completely described with the help of the solutions of some specific local problems and of a non homogeneous Neumann problem defined by the effective permeability tensor.

Introduction

Damaged porosity is the realistic counterpart of the model of porous media that was successfully recovered by means of homogenization methods based on formal asymptotic expansions in [START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF] and later proved in [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF] in its main part, namely the pressure problem. Variants including the influence of cracks have been studied in [START_REF] Barenblatt | On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian)[END_REF], [START_REF] Ene | Model of diffusion in partially fissured media[END_REF] based on an adequate choice of the physical model, see [START_REF] Barenblatt | On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian)[END_REF]- [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jäger | Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF]- [START_REF] Mikelić | Effets inertiels pour un écoulement stationnaire visqueux incompressible dans un milieu poreux[END_REF], [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] where this issue is taken into account. An important assumption in homogenization theory dealing with porous media is the periodicity of the distribution of inclusions [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF], [START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF], [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF], which has given rise to the periodicity-based two-scale convergence method of the pioneering article [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and numerous improvements by [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF], [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Neuss-Radu | Some extensions of two-scale convergence[END_REF]. Darcy's law results from the homogenization theory applied to a periodic distribution of solid blocks immersed in a Stokes fluid. The asymptotic analysis was performed with the help of a restriction operator, which enables a natural extension of the pressure in the blocks. The next step was to consider transmission problems which proved to be a difficult question to handle in asymptotic analysis. In this direction, we have already studied (see [START_REF] Gruais | Fluid flows through fractured porous media along Beavers-Joseph interfaces[END_REF]) the Stokes problem immersed in a porous medium when the interface is governed by the Beavers-Joseph law. The two-component model is that of a porous medium perforated by cracks filled with Stokes fluid interacting with the ambiant porous medium through Beavers-Joseph conditions, in the case of bounded transfer coefficient. The study is handled by the two-scale convergence method and gives rise to a coupled model between a microscopic Stokes flow and a macroscopic Darcy law.

We consider here an incompressible viscous fluid flow in a periodically structured domain consisting of two interowen regions, separated by an interface. The first region represents the system of fissures which form the connected fracture, where the viscous flow is governed by the Stokes system. The second region, which may be also connected, stands for a porous structure of a certain permeability, where the flow is governed by Darcy's law. These two flows are coupled on the interface by the Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF] which was confirmed by [START_REF] Jäger | Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] as the limit of a homogenization process. Besides the continuity of the normal component of the velocity, it imposes the proportionality of the tangential component of the viscous stress. The local problem has vanishing tangential velocity at the interface, which is linking both components of the corresponding microscopic cell problem while being coupled to a macroscopic Darcy law as well. The asymptotic behaviour is completely described with the help of the solutions of the local problems and of a non homogeneous Neumann problem defined by an effective permeability tensor.

The paper is organized as follows. The mathematical problem is presented in Section 2 along with a priori estimates derived from it. The coupling between the porous medium submitted to Darcy's law and the Stokes flow is described in details in Section 3. In particular, the scalings of both components are linked through the modelization of the interface which plays an important part in the asymptotic study. Compactness properties of the sequence of problems are studied in Section 4. The limit problem is introduced in Theorem 7 of Section 5 and described thereafter in Theorem 8. It consists of a macroscopic Darcy system characterized by a permeability tensor having the advantage of being easily computable through a local cell problem.

The properties of the two-connected components structure

Let Ω be an open connected bounded set in R N (N ≥ 2), locally located on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of connected components.

Let Y f be a Lipschitz open connected subset of the unit cube Y =]0, 1[ N , such that the intersections of ∂Y f with ∂Y are reproduced identically on the opposite faces of the cube without reaching the edges.

Repeating Y by periodicity, we assume that the reunion of all the Ȳf parts, denoted by R N f , is a connected domain in R N with a boundary of class C 2 , such that ∂Y f is Lipschitz-continuous. Defining Y s = Y \ Y f , we assume also that the reunion of all the Ȳs parts is a connected domain in R N . We set the origin of the coordinates system in such a point that there exists δ > 0 for which

B(0, δ) ⊂ R N s = R N \ R N f . The normal on Γ = Y f ∩ Y s , outward with respect to Y f , is denoted by ν.
For any ε ∈]0, 1[ we denote

Z ε = {k ∈ Z N , εk + εY ⊆ Ω} (2.1)
I ε = {k ∈ Z ε , εk ± εe i + εY ⊆ Ω, ∀i ∈ 1, N } (2.2)
where e i are the unit vectors of the canonical basis in R N . Finally, we define the system of fissures by

Ω εf = int ∪ k∈Iε (εk + ε Ȳf ) (2.3)
and the porous matrix of our structure by Ω εs = Ω\ Ωεf . The interface between the porous blocks and the fluid is denoted by

Γ ε = ∂Ω εf .
Obviously, Ω εs and Ω εf are connected and the fracture ratios of this structure have the property:

|Ω εf |/|Ω| → m := |Y f | ∈]0, 1[, when ε → 0.
A useful property of the present structure is the existence of a bounded extension operator (see [START_REF] Poliševski | Basic homogenization results for a biconnected ǫ-periodic structure[END_REF]) similar to that introduced in [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF] (see also [START_REF] Conca | On the application of the homogenization theory to a class of problems arising in fluid mechanics[END_REF]) in the case of isolated fractures.

Theorem 1 There exists an extension operator P

ε : H 1 (Ω εf ) → H 1 (Ω) such that P ε u = u in Ω εf (2.4) |e(P ε u)| L 2 (Ω) ≤ C|e(u)| L 2 (Ω εf ) , ∀u ∈ H 1 (Ω εf ) (2.5)
where C is independent of ε.

For any h ∈ {s, f }, we recall the main inequalities that hold here.

Lemma 1 There exists C > 0 independent of ε such that

|u| L 2 (Ω εf ) ≤ Cε|∇u| L 2 (Ω εf ) , ∀u ∈ H 1 0 (Ω εf ) (2.6) |u| L 2 (Ωεs) ≤ C( ε|∇u| L 2 (Ωεs) + ε 1/2 |u| L 2 (∂Ωεs) ) , ∀u ∈ H 1 (Ω εs ) (2.

7)

Theorem 2 There exists C > 0 independent of ε such that

|p| L 2 (Ω εh )/R ≤ C ε |∇p| H -1 (Ω εh ) , ∀p ∈ L 2 (Ω εh ). ( 2 

.8)

Corollary 1 There exists C > 0 independent of ε such that

|p| L 2 (Ω εh )/R ≤ C|∇p| L 2 (Ω εh ) , ∀p ∈ H 1 (Ω εh ). (2.9) Denoting χ εh (x) = χ h x ε
, where χ h is the characteristic function of Y h in Y , h ∈ {s, f }, we have a specific compactness result (see [START_REF] Poliševski | Basic homogenization results for a biconnected ǫ-periodic structure[END_REF]) for the pressure type estimates in H -1 (Ω εf ).

Theorem 3 For every ε ∈]0, 1[, let q ε ∈ L 2 (Ω εf ), such that for some constant C > 0 there hold:

Ω εf q ε (x) dx ≤ C, ∀ε ∈]0, 1[. (2.10)
|∇q ε | H -1 (Ω εf ) ≤ Cε, ∀ε ∈]0, 1[. (2.11)
Then, there exists q ∈ L 2 (Ω) such that, on some subsequence:

χ εf q ε 2 ⇀ χ f q.
(2.12)

The coupled Darcy-Stokes percolation

A model of fluid flow through a fractured porous medium is associated to our structure by assuming that there is a filtration flow in Ω εs obeying the Darcy's law and that there is a viscous flow in Ω εf governed by the Stokes system. These two flows are coupled by a Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF]. The system is completed by an impermeability condition on ∂Ω:

divu ε = 0 in Ω (3.1) 
A ε u ε = g -∇p εs in Ω εs , g ∈ L 2 (Ω) (3.2) σ εf ij = -p εf δ ij + ε 2 e ij (u ε ) in Ω εf (3.3) - ∂ ∂x j σ εf ij = g i in Ω εf (3.4) v εs • ν ε = v εf • ν ε on Γ ε , (3.5) 
p εs ν ε i + σ εf ij ν ε j + ε r α ε (u εf i -(u εf • ν ε )ν ε i ) = 0 on Γ ε , r < 1 (3.6) u ε • n = 0 on ∂Ω, n the outward normal on ∂Ω, (3.7) 
where u εs , u εf and p εs , p εf stand for the corresponding velocities and pressures,

A ε (x) = A x ε , A ∈ (C ∞ per (Y )) N ×N coercive, symmetric (3.8) 
α ε (x) = α x ε ≥ α 0 > 0, α ∈ C 1 per (Y ) (3.9)
and e(v) denotes the symmetric tensor of the velocity gradient defined by

e ij (v) = 1 2 ∂v i ∂x j + ∂v j ∂x i .
As usual, we use the notations:

H 0 (div, Ω) = {v ∈ H(div, Ω), v • n = 0 on ∂Ω} (3.10) L 2 0 (Ω) = {p ∈ L 2 (Ω), Ω p = 0} (3.11) V 0 (div, Ω) = {v ∈ H 0 (div, Ω), divv = 0 in Ω} (3.12)
Next, we define

H ε = {v ∈ H 0 (div, Ω), v ∈ H 1 (Ω εf ) N }, (3.13) 
the Hilbert space endowed with the scalar product

(u, v) Hε = Ωεs u•v + Ωεs divu divv +ε 2 Ω εf e(u) e(v)+ε r Γε (γ ε u-(γ ε ν u)ν ε )γ ε v, (3.14) 
where γ ε and γ ε ν denote respectively the trace and the normal trace operators on Γ ε , while ν ε is the normal on Γ ε , outward with respect to Ω εf . The corresponding subspace of incompressible velocities is

V ε = {v ∈ V 0 (div, Ω), v ∈ H 1 (Ω εf ) N }. (3.15) 
Via the corresponding Korn inequality, we obtain a specific inequality:

Lemma 2 There exists some constant C > 0, independent of ε, such that

|u| L 2 (Ω εf ) + ε|∇u| L 2 (Ω εf ) ≤ C|u| Hε , ∀u ∈ H ε . (3.16)
Looking for the variational formulation of the problem (3.1)-(3.7), we define for any u, v ∈ H ε and q ∈ L 2 0 (Ω)

a ε (u, v) := Ωεs A ε u • v + ε 2 Ω εf e(u) : e(v) + ε r Γε α ε (γ ε u -(γ ε ν u)ν ε ) • γ ε v (3.17) b ε (q, v) := - Ω q divv. ( 3.18) 
We see that if the pair (u ε , p ε ) is a smooth solution of the problem (3.1)-(3.7), then it is also a solution of the following problem:

To find (u ε , p ε ) ∈ H ε × L 2 0 (Ω) such that a ε (u ε , v) + b ε (p ε , v) = Ω g ε • v, ∀v ∈ H ε , (3.19) b ε (q, u ε ) = 0, ∀q ∈ L 2 0 (Ω). ( 3 

.20)

Theorem 4 There exists a unique pair

(u ε , p ε ) ∈ H ε × L 2 0 (Ω) solution of (3.

19)-(3.20).

Proof. As H 1 0 (Ω) is obviously included in H ε , the following inf-sup condition is easily satisfied by b ε :

∃C ε 1 > 0 such that inf q∈L 2 0 (Ω) sup v∈Hε b ε (q, v) |v| Hε |q| L 2 0 (Ω) ≥ C ε 1 .
The positivity conditions (3.8) and (3.9) imply that

∃C ε 2 > 0 such that a ε (v, v) ≥ C ε 2 |v| 2
Hε , ∀v ∈ H ε , that is the V ε -ellipticity of a ε . As we also have

V ε = {v ∈ H ε , b ε (q, v) = 0, ∀q ∈ L 2 0 (Ω)}, (3.21) 
the proof is completed by Corollary 4.1, Ch. 1 of [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF].

A priori estimates and two-scale convergences

From now on, for any function ϕ defined on Ω×Y we shall use the notations

ϕ h = ϕ| Ω×Y h , φh = 1 |Y h | Y h ϕ(•, y)dy, h ∈ {s, f }, (4.1) φ = Y ϕ(•, y)dy, that is φ = (1 -m) φs + m φf . (4.2)
Also, for any sequence (ϕ ε ) ε , bounded in L 2 (Ω × Y ), we denote

ϕ ε 2 ⇀ ϕ iff ϕ ε is two-scale convergent to ϕ ∈ L 2 (Ω × Y ) in the sense of [2].
As usual, the asymptotic study starts by the search of a priori estimates of the velocity. Noticing that u ε ∈ V ε and setting v = u ε in (3.19) we get

|u ε | 2 Hε ≤ C|u ε | L 2 (Ω) (4.3)
and therefore:

|u ε | L 2 (Ωεs) ≤ C, ε|e(u ε )| L 2 (Ω εf ) ≤ C, ε r/2 |γ ε τ u ε | L 2 (Γε) ≤ C (4.4)
where, for any v ∈ H 1 (Ω εf ), we define

γ ε τ v ∈ H 1/2 (Γ ε ) by γ ε τ v := γ ε v -(γ ε ν v)ν ε . (4.5)
We find that (χ

εs u ε ) ε , (χ εf u ε ) ε and εχ εf ∂u ε ∂x i ε are bounded in (L 2 (Ω)) N , ∀i ∈ {1, 2, • • • , N }.
Using the compacity results of [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], ∃u ∈ L 2 (Ω × Y ) N such that, on some subsequence

u ε 2 ⇀ u (4.6) εχ εf ∇u ε i 2 ⇀ ∇ y u i (4.7) u ε ⇀ ũ ∈ V 0 (div, Ω) weakly in L 2 (Ω) N . (4.8)
Moreover, denoting

H per (div, Y ) = {ϕ ∈ H loc (div, R N ), ϕ is Y -periodic} (4.9) H 1 per (Y f ) = {ϕ ∈ H 1 loc (R N f ), ϕ is Y -periodic} (4.10)
we can sum the convergence results obtained until now by Theorem 5 There exists u ∈ L 2 (Ω, H per (div, Y )) with the properties:

u f ∈ L 2 (Ω, H 1 per (Y f ) N ), ũ ∈ H 0 (div, Ω), (4.11) 
div y u = 0 in Ω × Y, (4.12) 
divũ = 0 in Ω, (4.13) 
such that the convergences (4.6) and (4.7) hold on some subsequence.

Next, we look for a priori estimates of the pressure. For this, set

v ∈ H ε in (3.19)-(3.20) such that v ∈ H 1 0 (Ω) N and v = 0 in Ω εf . (4.14) 
Using the classical L 2 decomposition, we find that ∃p εs ∈ H 1 (Ω εs ) such that

∇p εs = A ε u ε -g ε ∈ L 2 (Ω εs ) (4.15) 
and recalling (4.4), we find that there exists C > 0, independent of ε, such that

|∇p εs | L 2 (Ωεs) ≤ C. (4.16) 
Consequently, using Corollary 1 we have also

|p εs -pεs | L 2 (Ωεs) ≤ C, C > 0 independent of ε. (4.17) 
It remains to estimate pεs , and implicitly pεf , as pε = 0. We remark here that for any v ∈ H ε we get

|Ω| |Ω εf | pεs Γε γ ε ν v = Ωεs (p εs -pεs ) divv + Ω εf (p εf -pεf ) divv - Ω gv+ + Ωεs A ε u ε v + ε 2 Ω εf e(u ε ) : e(v) + ε r Γε α ε u ε (v -(γ ε ν v)ν ε ). (4.18) 
In oder to conclude, we need a proper test function. For this, let

θ ∈ H 1 0 (Y ) N such that θ = ν on Γ . Next, we define θ ε ∈ H 1 0 (Ω) N by θ ε (x) =      θ x ε for x ∈ Ω ε = int ∪ k∈Iε (εk + ε Ȳ ) 0 for x ∈ Ω \ Ωε ; (4.19) 
Setting v = εθ ε in (4.18), we finally get

|p εs | ≤ C|Γ ε | -1 1 + |θ ε | H 1 (Ω) , (4.20) 
that is, (p εs ) ε and (p εf ) ε are bounded. (4.21)

Consequently, there exists C > 0 independent of ε, such that

|p εs | H 1 (Ωεs) ≤ C (4.22)
and using the compactness results of [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], there exists p s ∈ H 1 (Ω) such that 

χ εs p ε 2 ⇀ χ s p s ,
∇p εf , ψ H -1 (Ω εf ) = ε 2 Ω εf e(u ε ) e(ψ) - Ω εf g ε ψ, ∀ψ ∈ H 1 0 (Ω εf ) N . (4.24)
Consequently, recalling (4.4) and (4.21) we find that ∃C > 0, independent of ε, such that

|∇p εf | H -1 (Ω εf ) ≤ Cε. (4.25)
In the light of (4.21), (4.25) and applying Theorem 3 we find that there exists 

p f ∈ L 2 (Ω) such that χ εf p ε 2 ⇀ χ f p f ,
p f = p s in L 2 (Ω). (4.27) Proof. Let ϕ ∈ D(Ω), ψ ∈ C ∞ per (Y ) N such that ψ = (γ ν ψ)ν on Γ and Γ γ ν ψ = 0. Set v ε i (x) = εϕ(x)ψ i x ε , ∀i ∈ {1, • • • , N },
in the variational formulation (3.19)- (3.20). Passing to the limit as ε → 0, we obtain

Γ γ ν ψ dσ Ω (p f (x) -p s (x))ϕ(x)dx = 0, ∀ϕ ∈ D(Ω),
which concludes the proof.

The convergence results concerning the pressure can be summed up by Theorem 6 There exists p ∈ H1 (Ω) := L 2 0 (Ω) ∩ H 1 (Ω) such that on some subsequence we have p ε 2 ⇀ p. (4.28)

A characteristic property issued from the Beavers-Joseph transfer condition is given by Lemma 4 The limit u satisfies:

γu f = (γ ν u f )ν on Ω × Γ. (4.29) Proof. For ϕ ∈ D(Ω, H 1 per (Y f ) N ) we define I ε (ϕ) = ε Γε α ε γ ε u ε (γ ε ϕ -(γ ε ν ϕ)ν ε ). (4.30)
As α and Γ are assumed smooth enough, there exists

Φ ∈ C ∞ (Ω, C 1 per (Y f )) N ×N such that Φ ij (x, y) = α(y)(ϕ i (x, y) -(ϕ(x, y) • ν(y))ν i (y))ν j (y) on Ω × Γ. (4.31)
Using the notation

Φ ε (x) = Φ x, x ε , (4.32) 
we find that

I ε (ϕ) = ε ∂Ω εf Φ ε ij u ε i ν ε j dσ = = Ω εf ∂Φ ε ij ∂y j ε u ε i + ε Ω εf ∂Φ ij ∂x j ε u ε i + ε Ω εf Φ ε ij ∂u ε i ∂x j (4.33)
and a direct computation yields

lim ε→0 I ε (ϕ) = Ω×Y f ∂Φ ij ∂y j u f i + Φ ij ∂u f i ∂y j = Ω×Y f Φ ij u f i ν j = = Ω×Γ αγu f (γϕ -(γ ν ϕ)ν). ( 4 

.34)

Setting v = ε 1-r ϕ as test function in (3.19) and passing to the limit with ε → 0 we find that

lim ε→0 I ε (ϕ) = 0 (4.35) that is, Ω×Γ αγu f (γϕ -(γ ν ϕ)ν)) = 0, ∀ϕ ∈ D(Ω, H 1 per (Y f ) N ), (4.36) 
which yields the result.

Theorem 7 u and p introduced by Theorems 5 and 6 form a pair (u, p) ∈ X × M which is the unique solution of the problem (5.7)- (5.8).

Proof (3.19). Passing to the limit with ε → 0, taking advantage of the property γ ε τ ϕ ε = 0 by construction and using the two-scale convergences of Theorems 5 and 6, we obtain: where K is the symmetric and positive tensor defined by

. Let ϕ ∈ X ∩ D(Ω, C ∞ per (Y )) N . Denoting, as usual, ϕ ε (x) = ϕ x, x ε , we can set v(x) = ϕ ε (x) in
K ji = Y w i j .
(5.15)

Taking into account that the homogenized problem (5.7)-(5.8) is wellposed, then by straightforward verification we obtain the complete asymptotic behaviour of the solution:

Theorem 8 If (u ε , p ε ) ∈ H ε × L 2 0 (Ω)
is the solution of (3.19)- (3.20), then

u ε 2 ⇀ u = g i - ∂q ∂x i w i , (5.16) 
p ε 2 ⇀ p = q, (5.17

)
where w i ∈ W and q ∈ H1 (Ω) are defined by (5.11) and (5.13)- (5.14).

  b ε (p ε , ϕ ε ) → -Ω×Ys p (div x ϕ) = b(p, ϕ),and a ε (u ε , ϕ ε ) → a(u, ϕ),which concludes the proof.The solution of the homogenized problem (5.7)-(5.8) has a further description which takes into account the so-called local problems and effective coefficients. For this, let us introduce the unique solution of the Darcy-Stokes system in Y , with the classical normal flow coupling conditions:For every i ∈ {1, • • • , N }, w i ∈ W is the solution of the problem:Ys Aw i ψ + Y f e y (w i ) e y (ψ) = Y ψ i , ∀ψ ∈ W (5.11)whereW= {w ∈ H per (div, Y ), w f ∈ H 1 per (Y f ) N , divw = 0 in Y, γ τ w f = 0 on Γ }. (5.12)Next, let q ∈ H1 (Ω) be the unique solution of the following compatible nonhomogeneous Neumann problem: div(K∇q) = div(Kg) in Ω, (5.13)K∇q • n = Kg • n on ∂Ω,(5.14)

  on some subsequence. (4.23) Next, we set ψ ∈ H ε in (3.19)-(3.20) such that ψ = 0 in Ω εs . It follows that ∃p εf ∈ L 2 (Ω εf ) such that
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The two-scale homogenized problem

Here we find the so-called two-scale homogenized problem, verified by the limits u and p, given by Theorems 5 and 6. By proving that this problem is well-posed, it turns out that all the convergences in Theorems 5, 6 and so forth hold on the entire sequence. We conclude that the asymptotic behaviour of (u ε , p ε ) is completely described by (u, p), the unique solution of the homogenized problem.

Denoting

we introduce the Hilbert space

endowed with the scalar product

e y (u) : e y (ϕ).

(5.3)

we consider the problem:

where b is given by (5.6) and a is defined by

e y (v) : e y (ϕ).

(5.9)

Lemma 5 The problem (5.7)-(5.8) is well-defined.

Proof. First, we notice that

(5.10)

As the X 0 -ellipticity of a in X is obvious, the proof is completed by Corollary 4.1, Ch.1 of [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF], the corresponding inf-sup condition being justified via the surjectivity of div ∈ L(H 1 0 (Ω) N , L 2 0 (Ω)). The fact that (5.7)-(5.8) is the homogenized problem of the present case is justified below.