
HAL Id: hal-00990428
https://univ-rennes.hal.science/hal-00990428

Submitted on 13 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An intercomparison of measured pressure-broadening,
pressure shifting parameters of carbon dioxide and their

temperature dependence
Robert R. Gamache, Julien Lamouroux, Valérie Blot-Lafon, Eldon Lopes

To cite this version:
Robert R. Gamache, Julien Lamouroux, Valérie Blot-Lafon, Eldon Lopes. An intercomparison of
measured pressure-broadening, pressure shifting parameters of carbon dioxide and their tempera-
ture dependence. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 135, pp.30-43.
�10.1016/J.JQSRT.2013.11.001�. �hal-00990428�

https://univ-rennes.hal.science/hal-00990428
https://hal.archives-ouvertes.fr


 1 

 

 

 

 

 

 

 

An intercomparison of measured pressure-broadening, pressure shifting 

parameters of carbon dioxide and their temperature dependence 

 

 

 

 

Robert R. Gamache†a
, Julien Lamourouxa,b, Valérie Blot-Lafonc, Eldon Lopesa 

 
a Department of Environmental, Earth, and Atmospheric Sciences 

University of Massachusetts Lowell 
One University Avenue 

Lowell, MA 01854, USA 
 

b current address 
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, 

Universités Paris Est Créteil et Paris Diderot, Institut Pierre-Simon Laplace. Université Paris Est 
Créteil, 94010 Créteil Cedex, FRANCE 

 
c Department of Physics 
Université de Rennes 1 

F-35042 Rennes Cedex, FRANCE 
 
 

 



 2 

 

†  Corresponding author  

Robert_Gamache@uml.edu 

978-934-3904 



 3 

Abstract: 

 An intercomparison of measured pressure-broadening and pressure-shifting 

coefficients for carbon dioxide absorption lines was done.  The work focuses on collision 

systems where a significant number of data can be found (CO2-N2, CO2-O2, CO2-air, and 

CO2-CO2) and yield information important to applications to Earth’s atmosphere.  The 

literature was searched for measured line shape parameter data for the collision systems 

mentioned above.  Databases were created for each perturbing gas with the ro-vibrational 

transition as the key.  Using these databases, intercomparisons of the measurements of 

half-widths, their temperature dependence, and line shifts were made.  The data allow the 

investigations of trends in the data with respect to the vibrational and the rotational 

quantum numbers, various line shape models, and isotopologue effects. 

 The data were averaged and an estimated uncertainty determined.  The averaged 

data sets are evaluated with respect to the need of the spectroscopic and remote sensing 

communities.  In general many data points do not agree within the stated uncertainty 

estimate independent of the broadening species.  Agreement between measurements of 

the temperature dependence of the half-width is in a poor state and the understanding of 

the temperature dependence of the line shift is in its infancy.  The intercomparison data 

show more measurements are needed for the CO2-O2, CO2-N2 and CO2-CO2 systems.  In 

addition to the half-width at 296 K, data are needed for the temperature dependence of 

the half-width and line shift. 

 

Keywords: CO2, measured half-widths, line shifts, temperature dependence of half-width 

and line shift 
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INTRODUCTION 

 Carbon dioxide is a trace gas in the Earth’s atmosphere with a concentration of 

0.039445% [1]. Even with this seemingly low mixing ratio it is the second strongest 

absorber of infrared radiation in the Earth’s atmosphere after water vapor [2].  CO2, 

however, has a residence time of about 120 years in the atmosphere compared to water 

vapor which has a residence time of ~9 days.  Because of its long lifetime, CO2 is evenly 

mixed in the atmosphere.  Due to these facts carbon dioxide has become the standard by 

which other greenhouse gases are gauged in global climate change.  The mixing ratio of 

CO2 is being monitored daily and records of direct measurement go back to 1957 [3, 4].  

Proxy methods allow the records to be extended back hundreds of thousands of years [5].  

The current concentration of 394 ppm is larger than it has been in the last 650 thousand 

years [5, 6] and probably much longer.  Recent proxy data show an abrupt rise in the CO2 

concentration after the industrial revolution and this increase is thought to be of 

anthropogenic origin [7]. 

 It is paramount that the role of CO2 in global climate change is better understood.  

As such the international community is actively monitoring the sources and sinks of CO2 

globally.  Measurements are being made from ground-based networks [8], from balloons 

[9, 10], and from a number of satellite platforms.  NASA’s AQUA satellite [11] has the 

Atmospheric Infrared Sounder (AIRS) [12] and the METOP-A satellite [13] has the 

Infrared Atmospheric Sounder Interferometer (IASI) [14] both measuring in the mid-

infrared region.  In 2009 the Greenhouse Gases Observing Satellite (GOSAT) [15] was 

launched by Japan to make measurements of carbon dioxide in the 1.6 µm and 2 µm 

region.  The Jet Propulsion Laboratory attempted to launch the Orbiting Carbon 



 5 

Observatory [16] in 2009 but the satellite failed to reach orbit.  The importance of the 

mission [17] has prompted NASA to go forward with the launch of OCO-2 in the 2013-

2014 time frame.  The OCO-2 mission will require mixing ratios be retrieved with a 

precision of 0.3% placing strong demands on the spectroscopic community [18].  Miller 

et al. [18] state that the OCO remote sensing precision requirements for the Lorentz 

broadened half-width and line shift are 0.6% and < 0.0002 cm-1 atm-1 respectively.  This 

requirement is for air-CO2 thus in this work the 0.6% precision level is applied to N2-, 

O2-, and air-CO2 mixtures.  While self-broadening of CO2 in the Earth’s atmosphere is 

negligible (Note, self-broadening is the dominant contribution in some planetary 

atmospheres.) the same precision requirement is used to be consistent with the other 

broadeners.  They also point out that line shape models more accurate than the Voigt 

model are needed.   

 Of the spectroscopic parameters, it is the line shape parameters that are the least 

well known and while the shift can affect retrievals [19-22] the half-width has a stronger 

effect in retrievals from atmospheric spectra [23-26] reaching 1:1, error in the half-width 

to error in the retrieval, at surface pressures.  This work presents an intercomparison of 

the measured half-widths and line shifts of carbon dioxide important for terrestrial 

applications.  This study was undertaken to assess the state of knowledge of 

measurements of the line shape parameters for CO2 and to address if the needs of the 

remote sensing community can be satisfied.  These data allow an understanding of the 

influence of vibration, J dependence of the broadening, shifting, and temperature 

dependence, different collision partners, different line shape models, and broadening for 

different isotopologues.  The intercomparison will allow a sense of the uncertainty in the 
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parameters.  These data will point to gaps in the measurement record and suggest 

measurements that are crucially missing in order to complete a selected set of data.  

These data were also used to identify measurements that could be used to test the 

theoretical models.   

 Section 2 discusses the collection of the experimental results and the creation of 

the databases.  Section 3 reports the analysis of the data including the dependence of the 

collision-induced parameters on vibration, rotation, temperature, broadening partner, and 

line shape models. Intercomparisons of the data are also discussed in this section.  In 

section 4, conclusions and recommendations are made. 

 

 

2.0  THE EXPERIMENTAL RESULTS 

 This work considers the collision-broadened half-widths and pressure induced 

line shifts of carbon dioxide for terrestrial applications.  A search of the literature was 

made for line shape parameters for the CO2-N2, CO2-O2, CO2-air, CO2-CO2 collision 

systems.  The result was 87 papers from 1968 to 2012 [22, 27-112].  Most of the work 

focused on measurements of the pressure-broadened half-width with 33, 13, 24, and 48 

papers, respectively, reporting data on N2-, O2-, air-, and self-broadening of CO2.  The 

first measurements of the pressure-induced line shift for CO2 were reported in 1998. The 

number of papers reporting measurements of the pressure-induced line shift drops to 9, 3, 

11, and 12 for the perturbers respectively.  Considering the temperature dependence of 

the half-width the number of papers drops further with 9, 3, 4, and 4 for N2-, O2-, air-, 

and self-broadening of CO2.  The temperature dependence of the line shift has only 
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recently been studied with 2 papers each for the air- and self-collision systems.  A small 

number of papers (8) report measurements on the lesser isotopologues of CO2 

(16O13C16O, 16O12C18O, and 16O13C18O).  The data also allow the vibrational dependence 

of these line shape parameters to be considered with measurements available for 17 

(CO2-N2), 8 (CO2-O2), 17 (CO2-air), and 37 (CO2-CO2) vibrational bands.  Tables 1-4 

present a summary of the data for the CO2-N2, CO2-O2, CO2-air, CO2-CO2 collision 

systems respectively.  These tables list the maximum J” value, the number of data for the 

half-width, nγ, the line shift, nδ, and the temperature dependence of the half-width, nn, the 

minimum and maximum values of γ, δ, and n as a function of isotopologue and 

vibrational band.  The notation of the vibrational quantum numbers in the Table is that of 

Toth et al. [113]. 

 

Approximate position of Tables 1-4 

 

 The data in Tables 1-4 show that half-widths change by a factor of 2.01, 1.8, 2.2, 

and 6.4 for N2-, O2-, air- and self-broadening respectively.  As an example, the air-

broadened value can be compared with that for water where the half-widths change by a 

factor of 44 [114].    As a function of J”, the half-widths increase at very low J” values 

and then as J” increases the half-widths decrease.  The line shifts are mostly negative in 

the database files.  For example the CO2-N2 collision system has a few positive values for 

transitions to low energy vibrational states.  One of these values is much larger than the 

others and may be erroneous.  Similar problems may arise looking at the maximum 

values of the temperature exponent for N2-, O2-, and self-broadening.  In the study by 
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Predoi-Cross et al. [68] the air-broadening n values ranged from roughly 0.65 to 0.89.  

Theoretical calculations by Gamache et al. [115-117] for the 4 broadeners of this study 

show n<0.8.  Caution should be exercised when using values greater than 1.0. 

 Tables 1-4 lists the vibrational bands that have been studied for the different CO2 

collision systems.  The table shows that the maximum number of ν1, ν2, and ν3 quanta 

exchanged in the ro-vibrational transitions that have been measured are small; Δν1max, 

  Δ ν2max, and  Δ ν3max are 2, 4, and 3 for N2-broadening; 2, 4, and 1 for O2-broadening; 2, 

4, and 3 for air-broadening; and 3, 4, and 3 for self-broadening. 

 To account for the various collisional effects observed for CO2 at different 

experimental conditions a number of different line shape models have been used to 

reduce the measured spectra.  For a review of the various models see the work of 

Hartmann et al. [118] and references therein.  Table 5 gives the line shape models used to 

fit the spectra and an index labeling the model in the database.  The results from these 

models are discussed below. 

 

Approximate position of Table 5 

 

These data have been organized into databases for each perturbing gas with the values 

corrected, when necessary, to 296 K.  The format is similar to that of the line shape 

parameter databases for water [114, 119] or ozone [120] with modifications for the 

quantum numbers and an index for the line shape model used in the reduction of the 

measured data.   
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3.0 Intercomparison of the data 

 3.1 Intercomparison of the collision-induced parameters 

 The database files for each collision system were taken and sorted to group 

transitions with the same quantum numbers; v1’v2’v3’J’ ß v1”v2”v3”J”.  These data 

appear in groups of 2-9 points.  The half-width data were compared to each other 

(intercomparison) by determining the average percent difference (APD), 

APD=Ave
100× γ i −γ j( )

γ ij≠i
∑

i
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, and average absolute percent difference (AAPD), 

AAPD=Ave Abs
100× γ i −γ j( )

γ i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j≠i

∑
i
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, by comparing points I and J where I=1 to 

N, J=I+1 to N and I≠J, where N is the number of intercomparison points.  For the line 

shifts the APD and AAPD were calculated however due to comparing small numbers 

many of the values are large.  As an alternative the average absolute ratio, 

AR=Ave δ i
δ jj≠i

∑
i
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, of the data were taken.    Table 6 lists the number of points in the 

intercomparison, ni, the number of transitions with ni, the APD, AAPD, and AR.  This 

table clearly shows the lack of data for the CO2-O2 system.  In general the APDs range 

from ~0.2 to 3% and the AAPDs from ~2 to 6%.  The ARs vary considerably from 0.65 

for the oxygen-induced shift to 2.27 for air-induced shift with ni=3.  These differences are 

more apparent in the plots.  Figures 1-2 and 3-4 show example plots for the half-widths 

and line shifts for CO2-N2 (Figs. 1-2) and CO2-CO2 (Figs. 3-4) collision systems 

respectively. 
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Approximate position of Table 6 

Approximate position of Figs 1-4 

 

 3.2 Effects of rotational transition 

 There are a number of measured data sets, each for a particular vibrational band, 

that contain a sufficient number of transitions to address the effect of the rotational 

transition on the line shape parameters.  Figure 5a-c present the measured half-width, line 

shift, and temperature dependence of the half-width as a function of m, where m= -J”, 

J”+1 for P- and R-branch transitions, respectively for the 30012ß00001 band of CO2 in 

collision with N2; note measurements go to |m| ≈ mid sixties.  In general the data show 

the half-width decreases as |m| increases.  This structure is true for the other perturbers 

studied here.  A similar structure is observed for the line shift with the shift becoming 

more negative as |m| increases.  The temperature dependence of the half-width decreases 

with some oscillation as seen in the plot.  Note, this structure is evident even considering 

the scatter in the data.  Recent theoretical work for the CO2-N2, CO2-O2, CO2-air, and 

CO2-CO2 systems [115-117], which demonstrates excellent agreement with measured 

half-widths, line shifts, and temperature dependence of the line shift, shows similar plots 

with calculations to |m|=120.  Complete sets of measurement plots are available on the 

web site of one of the authors (faculty.uml.edu/Robert_Gamache). 

 

 

Approximate position of Fig. 5 
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 3.3 Effects of vibration 

 The number of vibrational transitions observed varies with the particular 

perturber, see Tables 1-4 for details.  There are no experimental studies of the vibrational 

dependence of the half-width that have been both systematic and comprehensive.  A good 

number of papers have been published addressing the vibrational dependence of the half-

width within confined spectral regions.  It is difficult to draw any firm conclusions from 

these studies.  A number of papers [22, 35, 36, 48, 52-55, 64, 66, 107, 108] report that the 

vibrational dependence of the half-width is very small; “within the error bars.”  Several 

studies report a measurable vibrational dependence in CO2 self-broadened half-widths 

[64, 71].  There are also studies that contradict one another; for example Young and 

Chapman [106] report half-widths in the 9. 4 µm band are 5% smaller than those in the 

10. 4 µm band whereas Moskalenko and Zotov [121] state half-widths in the 9. 4 µm 

band are 5% larger than those in the 10. 4 µm band.   

 In a recent theoretical work on the vibrational dependence of half-widths and line 

shifts of CO2 transitions, Gamache and Lamouroux [122] noted that in the above analyses 

most of the comparisons are for vibrational bands within the same polyad or between 

bands that have roughly the same number of vibrational quanta exchanged.  In their study 

they began with the expression for the vibrational dependence of γ and δ developed by 

Gamache and Hartmann [123] and  modified the expressions for a study of the vibrational 

dependence of γ and δ of CO2 transitions giving,  

 

 γ v1
' ,v2

' ,v3
'( ) f ← v1

",v2
" ,v3

"( )i⎡⎣ ⎤⎦ = I f←i
γ + Af←i abs c1 Δv1 + c2 Δv2 +c3 Δv3( )pγ     (1a) 
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 δ v1
' ,v2

' ,v3
'( ) f ← v1

",v2
" ,v3

"( )i⎡⎣ ⎤⎦ = I f←i
δ + Bf←i abs c1 Δv1 + c2 Δv2 +c3 Δv3( )pδ     (1b) 

 

where γ and δ are the half-width and line shift for the ro-vibrational transition 

v1
' ,v2

' ,v3
'( ) f ← v1

",v2
" ,v3

"( )i , I f←i
γ   and I f←i

δ   are the intercepts and Afßi and Bfßi are the 

slopes both with units of cm-1 atm-1, and c1 Δv1 + c2 Δv2 +c3 Δv3( )pγ  and 

c1 Δv1 + c2 Δv2 +c3 Δv3( )pδ  are the Quantum Coordinates of the lines describing the 

vibrational dependence of the half-widths and line shifts respectively.  These expressions 

fit the calculated data very well (<5x10-4 cm-1 atm-1 for γ and <1.5 x10-3 cm-1 atm-1 for δ) 

and allow prediction of the line shape parameters for any ro-vibrational transition of CO2  

[124]. They also explain why the studies within a polyad should not show appreciable 

vibrational dependence.   

Studying the vibrational dependence of the half-width and line shift from the 

measurement data allows changes in vibrational quanta up to Δν1= 3, Δν2= 6, Δν3= 3 (see  

Tables 1-4 for details).   Here, plots of γ or δ versus the appropriate Quantum Coordinate 

were made for each collision system, CO2-X with X=N2, O2, air, and CO2.  Figures 6 and 

7 show examples for the P18 line of CO2 broadened by air and the R20 line of CO2 self-

broadened.  Plotted are the half-widths and line shifts with the error bars versus the 

quantum coordinate.  Also shown in the plots are the predicted fits of the data from Ref. 

[124] as the solid black line.  What is clear is that there is considerable scatter in the 

measured values.  Many of the data points do not overlap within the quoted errors.  The 

prediction formulas give reasonable descriptions of the measurements.  Complete sets of 
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plots for all collision systems are available on the web site of one of the authors 

(faculty.uml.edu/Robert_Gamache). 

 

Approximate position of Figs 6-7 

 

 3.4 Line shape models 

In an effort to reduce the fit residuals when determining the parameters that describe the 

spectrum many line shape models have been used.  Table 5 shows that, for CO2 as the 

radiating molecule, eleven line shape models have been employed when fitting spectra.  

These models, which are more advanced than the Lorentz (or Voigt) model, contain 

additional fitting parameters, some up to six parameters [125], and always reduce the fit 

residual.  However, it has been shown [126, 127] that for some of these models some of 

the parameters giving the improved fits are unphysical.  Figures 1 and 8 show the 

measured half-widths deduced using different line shape model versus line number.  The 

plot symbols for the different line shape models are given in Table 5.  Also shown in the 

plot is the predicted value [124] as the solid black triangle.  The plots show small 

differences between the half-widths reduced using different line shape models.  However, 

looking at many plots (available online at faculty.uml.edu/Robert_Gamache) the scatter 

in the data and uncertainties it is difficult to make definitive statements about the effect of 

the model on the derived half-widths.  Luckily, there are a number of studies that applied 

two line shape models to a number of measured spectra and allow a statement.  For 

example, Refs. [56, 67, 105] show that their speed-dependent model gives results a few 

percent higher than the Voigt model, which was also mentioned by Hartmann et al. [118].  
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Note however, there are plots that show one model’s results higher than another model in 

one plot and lower in another.   

 

Approximate position of Fig. 8 

 

 

 3.5 Isotopologue effects 

 A limited number of half-width measurements are available for several of the 

isotopologues of the CO2 molecule; 12C16O2, 13C16O2, 16O12C18O, and 16O13C18O.  A good 

number of intercomparisons are available for the pair 12C16O2 and 13C16O2, there are also 

a limited number of comparisons for the pairs 12C16O2 and 16O12C18O and 12C16O2 and 

16O13C18O.  Theory [128, 129] provides a guide to the effects of the mass dependence of 

the half-width.  Assuming all collisions are resonant and a single intermolecular potential 

term of the form R-q, the temperature dependence of the half-width in cm-1/molecule is   

 γ T( ) ∝ T
− q−3( )

2 q−1( )  (2) 

 

Because the temperature dependence is essentially due to the mean relative speed vr(T) in 

the intermolecular collision, and since vr(T) is proportional to T
µ  the following 

relations hold 

 γ T( ) ∝ vr T( )−
q−3( )

q−1( )  (3) 

and  
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  γ T( ) ∝ µ
− q−3( )

2 q−1( )  (4) 

 

where µ is the reduced mass.  Note all of the collision systems considered here have the 

quadrupole-quadrupole interaction as the leading term in the intermolecular potential, i.e. 

q=5.  Thus, knowing the broadening of 12C16O2 by a broadener, the broadening of other 

isotopologues can be approximated by   

 

 γ aCbO2 − X( ) = γ 12C16O2 − X( ) µ aCbO2 − X( )
µ 12C16O2 − X( )

⎛

⎝
⎜

⎞

⎠
⎟

−α

 (5) 

 

where α=0.25.  

 The calculated isotopologue scaling factor (ratios of the reduced masses raised to 

the power –α) are listed in Table 7 for N2, O2, air, and 12C16O2 as the collision partners.  

For air the reduced mass was determined using the average molecular weight of dry air, 

28.96 g/mol [130].  The table indicates that the half-widths for the other heavier 

isotopologues will be slightly smaller that those of 12C16O2, of order less than 1%.  

Looking at the intercomparison plots there are many where the heavier isotopologue half-

widths are ~1% smaller, however there is much scatter in the measurement database and 

the relationship between isotopologues is not always the same.  Figure 9 shows the P 34 

line of the 00011ß10001 (top panel) and 00011ß10002 (bottom panel) bands.  Looking 

at the data for these two bands [22] and comparing the half-width for the 13C16O2 

isotopologue to that of the 12C16O2 isotopologue one finds the 13C16O2 value slightly 

larger for the 00011ß10001 band and slightly smaller for the 00011ß10002 band.  
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While there are some exceptions this observation generally holds in the data [22], 

indicating the possibility of a vibrational effect.  Looking at the other plots for 

isotopologues (available at faculty.uml.edu/Robert_Gamache) it is difficult to draw any 

conclusions due to the scatter in the data.  Often there are data points above and below 

the lesser isotopologue half-widths.  The same observation is made for the line shift 

intercomparisons with respect to the isotopologues. 

 

 

Approximate position of Fig. 9 

 

 

 3.6 Temperature dependence of the half-width 

 As discussed above, the number of papers that report the temperature dependence 

of the half-width is relatively small.  The temperature dependence of the half-width is 

expressed using the power law model, see section 3.5, and is generally expressed as  

 

 γ T( ) = γ T0( ) T0
T

⎡
⎣⎢

⎤
⎦⎥

n

 (6) 

 

where n is the temperature exponent.  The use of the power law model has been called 

into question for certain radiator-perturber collision pairs and for large temperature 

ranges [131, 132] with important considerations for CO2 as the radiating molecule [115-

117].  Note, the n data from Ref. [37] for CO2-N2 are unusually large (some values are 

greater than 2) well outside the range of other measurements or theoretical calculations.  
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From the measured data there are no intercomparisons of n for the CO2-N2 and CO2-O2 

collision systems, there are 4 intercomparisons for the CO2-air collision system, and for 

the CO2-CO2 collision system 112 plots were made, however the intercomparisons are of 

the data from Ref. [68] where two different line shape models, Voigt and speed 

dependent Voigt, were used.  Thus, the intercomparisons are of the line shape models and 

no conclusion can be drawn from the data as the Voigt model gives n values sometimes a 

few percent lower and sometimes a few percent higher than the speed dependent model.  

Considering J” and J’ and ignoring vibrational dependence, which is expected to be small 

(see section 3.3), more intercomparisons are possible.  Figure 10 shows measured 

temperature exponents with the corresponding error bars for the R20 transition for CO2-

CO2 versus the Quantum Coordinate.  As before, the plot symbols refer to the line shape 

model used to reduce the spectra.  Note, for the Quantum Coordinate around 0.5 there are 

4 data points.  These are from Ref. [68] for the 30012ß00001 and 30013ß00001 bands 

using the Voigt and a speed dependent Voigt model.  Finally, Fig. 11 shows the 

temperature exponent versus m, where m equals –J” for P-, J” for Q-, and J”+1 for R-

branch transitions.  In black are the recent measurements of Predoi-Cross et al. [68] for 

the 30012ß00001 and 30013ß00001 bands.  The plot symbols reflect the line shape 

model used to reduce the data.  The scatter in the data is quite noticeable.  It appears the 

comment in the HITRAN article [2] discussing improvements needed in the line shape 

parameters of ozone, “This especially concerns the temperature exponents where the 

experimental measurements rarely agree with each other or with the theoretical 

calculations,” also applies to CO2.  This observation is not particularly surprising since it 

has been shown [120] that the uncertainty in the temperature exponent n is related to the 
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uncertainty in the half-width and the temperature range used in the measurements.  The 

uncertainties in n in the databases appear to be underestimated, they are generally 1- (or 

2-) sigma of the fit and do not include systematic errors or the temperature range of the 

measurements. 

 

 

4.0  CONCLUSIONS AND RECOMMENDATIONS 

 A literature search of measured half-widths, line shifts, temperature dependence 

of the half-widths and line shifts for CO2 in collision with N2, O2, air, and CO2 has led to 

the collection of 7087 data points that have been stored in databases.  Using these 

databases intercomparison of the data was done to determine trends in the data, 

rotational-, vibrational-, isotopologue-, and temperature-dependence.  In general many 

measurements do not agree within the stated uncertainty estimate.  Considering 

measurements made in the past decade the data points still do not agree within the quoted 

error.  The uncertainties reported seem to be one standard deviation of the fit of the line 

rather than the combined uncertainty accounting for all statistical and systematic 

uncertainties.  Miller et al. [18] state “The multispectrum technique can determine 

spectrum line half-widths with an uncertainty better than 0.1%, but the systematic 

uncertainties have always limited the absolute accuracy of half-widths determined from 

experimental spectra to 1–2%.”   It is likely that the reported uncertainties often 

underestimate the actual uncertainties because systematic contributions to measurement 

uncertainty are not considered.  In the future, researchers should report the true error of 

the measurements. 
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 The needs of the spectroscopic community, especially the OCO-2 mission, place a 

heavy burden on measurement.  While Table 6 reports averages for the intercomparisons, 

the data can be studied line by line.  For air-broadening only 35 of the transitions out of 

the 224 intercomparisons have the average absolute difference less than or equal to 0.6%. 

For N2-, O2-, and self-broadening there are 21, 4, and 67 transitions out of the 233, 39, 

and 536 intercomparisons respectively that have an AAD ≤ 0.6%.  In the air-broadened 

data none of the 35 transitions are in the spectral range of importance to OCO-2.  An 

additional 43 transitions have an APDs between 0.6 and 1 and 137 have APDs between 1 

and 5 for air- broadening.  Thus there is a need for more measurements of CO2-air 

mixtures. 

 To aid theoretical calculations measurements need to be made for single 

perturbing gases (N2, O2, CO2) and not mixtures (air).  Looking at the databases there is a 

shortage of half-width measurements for the CO2-O2 system allowing only 36 2-point and 

3 3-point intercomparisons.  More high-accuracy measurements of half-widths for the 

CO2-N2 and CO2-CO2 systems would also be useful.  While the line shifts are less 

important to remote sensing they are very useful to gauge the theory.  Measurements of 

the temperature dependence of the half-width are in a poor state as demonstrated by the 

intercomparisons.  More measurements should be done considering larger temperature 

ranges.  Gamache et al. [120] have shown that the uncertainty in the temperature 

exponent is proportional to the ratio of the uncertainty in the half-width over the half-

width divided by the natural log of Tmax/Tmin (see Appendix A of Ref. [120]).  Thus the 

larger the temperature range the smaller the uncertainty in n.   
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 Measurements of the temperature dependence of the line shift are still in their 

infancy.  In early works by Varanasi and Chudamani [133] and by Grossmann and 

Browell [134, 135] a model similar to that used for the half-width given by  

 

 δ T( ) = δ T0( ) T0
T

⎡
⎣⎢

⎤
⎦⎥

n '

 (7) 

 

was used.  Note, all parameters have their usual meaning.  However, as pointed out by 

Gamache and Rothman [136], and later by Smith et al. [137], this model does not allow 

the shift to change sign.  Frost [138] proposed a model that allows for a change of sign in 

the line shift modified here to give the shift at temperature T from the shift at a reference 

temperature T0 (note the correction of Eq. (5) of Ref. [137]) 

 

 δ T( ) = δ T0( ) T0
T

⎡
⎣⎢

⎤
⎦⎥

n ' 1+A ln(T )
1+A ln(T0 )
⎡

⎣
⎢

⎤

⎦
⎥  (8) 

 

where A is a fitted constant which is negative (see Frost  for details).  Gamache and 

Rothman [136] proposed a different model that allows for the sign of the shift to change 

 

 δ T( ) = δ T0( ) S(T ') T0
T

⎡
⎣⎢

⎤
⎦⎥

n '

 (9) 
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where S(T’) changes from -1 to 1 at T’.  The last two models require fits to obtain the 

additional parameters.  The work of Smith et al. [137, 139-141] suggest their data can be 

fit by a linear model  

 

 δ (T ) = δ 0 T0( )+δ ' T −T0( )   (10) 

 

where the sign of δ’ depends on the choice of T0.  Frost states that their expression has no 

physical significance; it simply gives a reasonable fit to the data.  The same is true for 

Eqs. (9) and (10).  More work on a theoretical expression is needed.  

 Researchers should try to measure the half-width and line shift and the 

temperature dependence of these parameters.  It has been found that adjusting the 

potential surface in CRB calculations by fitting γ, δ, and n simultaneously places strong 

constraints on the parameters describing the surface.  What has been found is that only a 

unique set of parameters can reproduce all three line shape parameters [115-117].  It 

would be interesting to see how the addition of the temperature dependence of the line 

shift will affect the fits. 

 For new measurements to be useful more effort must be made to determine the 

true uncertainty of the measurements.  An excellent discussion of the determination of 

uncertainties in line shape measurements can be found Ref. [142].  The emphasis should 

be on the accuracy of the measurement rather than the number of transitions measured.   
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Figures 

Figure 1 Measured half-widths (cm-1 atm-1) for nitrogen-broadening of the R16 

transition of the 30012ß00001 band of CO2 with reported uncertainties.  

Solid line is the average half-width, dashed and dash-dot lines are 1 and 2 

standard deviations. See text for symbols and colors.   

Figure 2 Measured line shifts (cm-1 atm-1) for nitrogen-broadening of the R46 

transition of the 30013ß00001 band of CO2 with reported uncertainties.  

Solid line is the average half-width, dashed and dash-dot lines are 1 and 2 

standard deviations.  See text for symbols and colors.   

Figure 3 Measured half-widths (cm-1 atm-1) for self-broadening of the P20 

transition of the 00011ß10001 band of CO2 with reported uncertainties.  

Solid line is the average half-width, dashed and dash-dot lines are 1 and 2 

standard deviations. See text for symbols and colors.   

Figure 4 Measured line shifts (cm-1 atm-1) for self-broadening of the R20 transition 

of the 30012ß00001 band of CO2 with reported uncertainties.  Solid line 

is the average half-width, dashed and dash-dot lines are 1 and 2 standard 

deviations.  See text for symbols and colors.   

Figure 5 Structure of the measured half-widths (cm-1 atm-1, top panel), line shifts 

(cm-1 atm-1, middle panel), and temperature dependence of the half-width 

(bottom panel) as a function of m for the 30012ß00001 band for CO2-

CO2.  Colors and symbols refer to references given in the upper left of the 

top panel. 
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Figure 6 Measured half-widths (cm-1 atm-1, top panel) and line shifts (cm-1 atm-1, 

bottom panel) with error estimates for air-broadening of the P18 line for a 

number of vibrational bands versus the Quantum Coordinate. The solid 

black line is the theoretical prediction from Ref. [124]. 

Figure 7 Measured half-widths (cm-1 atm-1, top panel) and line shifts (cm-1 atm-1, 

bottom panel) with error estimates for self-broadening of the R20 line for 

a number of vibrational bands versus the Quantum Coordinate. The solid 

black line is the theoretical prediction from Ref. [124]. 

Figure 8 Measured half-widths (cm-1 atm-1) for self-broadening of the R12 

transition of the 30013ß00001 band of CO2 with reported uncertainties.  

Points 1, 2, 5-7 use the Voigt model, point 3 the Rautian model, point 4 

the speed-dependent model of Ref. [27], and point 8 the speed-dependent 

model of Ref. [55].  Solid line is the average half-width, dashed and dash-

dot lines are 1 and 2 standard deviations. See text for symbols and colors. 

Figure 9 Measured air-broadened half-widths (cm-1 atm-1) for the P34 transition 

demonstrating the isotopologue effect.  Measurements for 12C16O2 in blue 

and those for 13C16O2 in red.  Top and bottom panels are for the 

00011ß10001 and 00011ß10002 bands respectively. 

Figure 10 Measured air-broadened temperature exponents for different line shape 

models (see table 5 for description) versus the Quantum Coordinate. 

Figure 11 Measured temperature dependence of the self-broadened half-width for 

CO2 transitions.  In black are the recent measurements of Predoi-Cross et 
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al. [68] for the 30012ß00001 and 30013ß00001 bands.  The plot 

symbols reflect the line shape model used to reduce the data.   
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Table 1  Summary of measurement data for the CO2-N2 collision system.  
 
CO2-N2 

Band 
 

Jmax 
 

nγ 

 
nδ 

 
nn 

 
γmin

* 
 

γmax
* 

 
δmin

* 
 

δmax
* 

 
nmin 

 
nmax 

00011ß00001 82 268 133 21 58.50 96.96 -3.72 -0.09 0.720 0.860 
00011ß10001 48 266 210  60.79 97.00 -4.32 0.90   
00031ß00001 36 23 26  71.10 96.30 -9.50 -5.00   
11101ß00001 60 37   74.18 106.48     
11101ß10002 38 19   66.51 83.75     
20012ß00001 46 17 13 2 61.10 111.97 -7.00 -3.40 1.059 1.130 
30012ß00001 50 102 51  55.73 97.29 -8.49 -2.73   
30013ß00001 50 106 49 2 60.71 99.49 -8.52 -3.53 0.740 0.800 
00011ß10002 52 227 218  67.11 98.40 -4.90 1.73   
01111ß01101 52 63  7 69.03 95.00   0.860 0.860 
10001ß00001 50 93 92  63.50 105.10 -5.50 4.30   
10001ß01101 40 9   62.45 83.36     
01101ß00001 56 27  16 59.55 91.32   0.608 1.132 
10002ß00001 46 93 90  62.10 99.60 -5.60 1.40   
10011ß00001 48 9   68.70 95.80     
20031ß00001 20 1   70.00 70.00     
02211ß02201 36 3  3 65.63 84.55   0.860 0.860 
*  in units of cm-1atm-1 
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Table 2  Summary of measurement data for the CO2-O2 collision system.  
 
CO2-O2 
Band 

 
Jmax 

 
nγ 

 
nδ 

 
nn 

 
γmin

* 
 

γmax
* 

 
δmin

* 
 

δmax
* 

 
nmin 

 
nmax 

00011ß00001 82 21  9 51.30 83.80   0.820 0.820 
11101ß00001 60 31   64.16 93.79     
11101ß10002 26 18   56.34 73.98     
20012ß00001 46 13 13  54.70 73.00 -7.10 -2.90   
30012ß00001 56 72 61  53.13 86.99 -14.44 -2.98   
30013ß00001 56 76 56 2 53.20 86.43 -16.36 -1.24 0.660 0.720 
00011ß10002 30   4     0.930 1.090 
10011ß00001 48 9   57.50 85.10     
*  in units of cm-1atm-1 
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Table 3  Summary of measurement data for the CO2-air collision system.  
 
CO2-air 
Band 

 
Jmax 

 
nγ 

 
nδ 

 
nn 

 
γmin

* 
 

γmax
* 

 
δmin

* 
 

δmax
* 

 
nmin 

 
nmax 

00011ß00001 82 71 63  57.00 92.80 -6.40 -1.10   
00011ß10001 48 226 218  62.80 98.33 -4.69 0.70   
00031ß00001 48 30 41  66.40 94.50 -12.10 -3.86   
20012ß00001 64 60 53  60.91 95.20 -7.60 -2.08   
20013ß00001 62 58 61  63.20 94.40 -7.41 -2.32   
30012ß00001 56 290 263 55 49.05 95.75 -15.21 -0.62 0.646 0.884 
30013ß00001 56 284 260 56 63.14 96.42 -12.16 -2.40 0.673 0.876 
00011ß10002 52 226 220  62.40 93.21 -4.20 1.83   
10001ß00001 50 93 93  63.10 92.60 -3.10 1.70   
31113ß01101 31 49 39  67.25 89.47 -10.28 -0.02   
20011ß00001 60 51 50  62.40 95.50 -8.08 -2.27   
21112ß01101 47 52 42  66.20 94.20 -6.36 -2.61   
21113ß01101 45 37 60  66.70 92.20 -6.71 -2.67   
21111ß01101 44 48 50  67.30 90.90 -6.05 -2.81   
10002ß00001 46 93 91  64.40 106.40 -3.50 1.30   
10011ß00001 50 6   66.70 77.50     
20031ß00001 20 1   80.00 80.00     
*  in units of cm-1atm-1 
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Table 4  Summary of measurement data for the CO2-CO2 collision system.  
 
CO2-CO2 
Band 

 
Jmax 

 
nγ 

 
nδ 

 
nn 

 
γmin

* 
 

γmax
* 

 
δmin

* 
 

δmax
* 

 
nmin 

 
nmax 

00011ß00001 82 125  25 53.19 126.46   0.891 2.158 
00011ß10001 60 213 114 14 64.00 127.20 -4.80 -0.60 0.580 0.820 
00031ß00001 56 69 28  78.00 126.70 -13.30 -4.75   
01121ß00001 38 47 25  79.40 116.70 -8.71 -4.31   
10011ß10002 32 34   82.50 113.50     
11101ß00001 12 6   107.00 134.30     
11101ß10002 40 20   75.81 104.64     
20012ß00001 74 160 48 15 64.80 127.00 -11.60 -2.36 0.48 0.801 
20013ß00001 72 161 66  67.70 126.40 -9.61 -2.81   
21102ß01111 59 8   57.80 74.00     
30012ß00001 62 382 270 112 56.48 135.70 -20.53 -1.90 0.428 0.871 
31112ß01111 16 1   103.94 103.94     
30013ß00001 62 354 232 112 34.88 134.41 -12.68 -2.00 0.429 0.823 
00011ß10002 62 159 122 19 63.60 126.70 -3.40 -0.70 0.600 1.090 
01111ß01101 48 42   65.34 124.53     
10001ß00001 50 23  12 49.93 123.38   0.706 0.990 
10001ß01101 40 9   99.32 120.69     
01101ß00001 56 23  10 73.40 123.05   0.187 0.743 
31112ß01101 48 129 121  69.91 147.34 -11.55 0.30   
40013ß10002 30 24 17  86.91 116.91 -14.24 -2.90   
31113ß01101 46 122 111  76.77 125.09 -9.89 -0.72   
40014ß10002 32 18 11  70.77 141.94 -14.07 -2.63   
20011ß00001 72 65 59  66.30 127.10 -11.77 -2.55   
21112ß01101 62 58 43  68.90 111.60 -9.48 -4.13   
21113ß01101 59 69 62  66.80 123.30 -9.27 -2.64   
21111ß01101 57 73 54  69.50 121.70 -8.80 -2.54   
30014ß00001 48 47 44  72.60 120.60 -10.77 -2.82   
30011ß00001 44 34 31  76.00 112.30 -9.80 -2.76   
01131ß01101 37 50   86.90 116.30     
10002ß00001 32 7   85.80 109.90     
10011ß00001 70 2  2 130.00 171.00   0.654 0.695 
10012ß00001 42 19   78.37 126.28     
12211ß00001 46 19   157.87 223.97     
20031ß00001 30 14   63.00 106.98     
11102ß01101 48 20 20  80.07 111.73 -11.36 -11.36   
02211ß02201 15 1 1  102.60 102.60 -3.44 -3.44   
12201ß01101 46 105   75.40 126.50     
*  in units of cm-1atm-1 
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 Table 5  Database Index and corresponding line shape model. 

Index Model Plot 
symbol 

CO2-N2 CO2-O2 CO2-air CO2-CO2 

1  Voigt + X X X X 
2  Galatry Ú X X X X 
3  Speed dependent 

Voigt 
   X  

4  Rautian Î   X X 
5  Speed dependent 

Nelkin-Ghatak 
   X  

6  Speed dependent 
Rautian      

7  Lorentz (pure) ◊ X X  X 
8  Speed dependent 

Lorentz 
    X 

9  Modified Voigt 
(includes line-
mixing) 

� X   X 

10  Speed dependent - 
See Ref. [27] 

   X X X X 

11  Speed dependent  - 
See Ref. [55] 

   X X 
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Table 6 Intercomparison of the half-width and line shift data.  See text for details. 
 

CO2-N2  γ   δ 
ni n data APD AAPD n data AR 
2 68   2.79 5.52 15 1.17 
3 38   0.46 5.42 51 1.25 
4 16   0.82 4.25      
5 68   0.38 1.78 73 1.22 
6 40   0.68 2.34   
7  2   2.52 5.84   
8  1   1.54 2.40   
CO2-O2  γ   δ 
2 36 0.23 5.15 5 0.65 
3  3 1.70 2.07   
CO2-air  γ   δ 
2  21 -1.80 2.74  15 1.02 
3  15 -1.53 1.98  14 2.27 
4  22  0.30 1.67  21 1.03 
5 134 -0.17 1.06 159 1.18 
6  18 -0.56 2.82   4 1.24 
7  10 -2.38 2.92   
8   2  2.91 5.84   
9   2  1.81 5.69   
CO2-CO2  γ   δ 
2 234  0.28 2.97 216 0.96 
3 150 -1.67 4.00   4 0.99 
4  21 -0.28 3.38  74 0.99 
5  27 -1.62 4.25  29 1.03 
6  55 -0.20 6.01   5 1.54 
7  18  1.12 3.73   
8  29  2.65 5.03   
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Table 7  Isotopologue scaling factors for the half-width and line shift.  

Broadening species 13C16O2/12C16O2 16O12C18O/12C16O2 16O13C18O/12C16O2 

N2 0.9978 0.9957 0.9937 

O2 0.9976   0.9954 0.9932 

air 0.9978 0.9956 0.9936 

CO2 0.9972 0.9945 0.9919 
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