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ABSTRACT 

 

Semiconductor materials have received substantial attention as photocatalysts for 

controlling water pollution. Among these materials, perovskite-structured SrSnO3 is a 

promising candidate for this application, whereas BaSnO3 exhibits very low activity. In the 

present work, Sr1-xBaxSnO3 (x = 0, 0.25, 0.50, 0.75 and 1) was synthesized by solid-state 

reaction and was applied in the photocatalytic discoloration of the organic dye Remazol 

Golden Yellow. The perovskite structure was obtained for all compositions of the solid 

solutions with both Sr2+ and Ba2+ present in the lattice. A remarkable change in the short-

range symmetry was observed as the amount of Ba2+ increased, and this change led to a 

decrease in the band gap of the material. Although the BaSnO3 was not active toward water 

photolysis, the discoloration induced by this perovskite was twice that induced by SrSnO3. 

The two materials appear to feature different mechanisms of photodegradation: the direct 

mechanism prevails in the case of BaSnO3, whereas the indirect mechanism appears to 

play a key role in the case of SrSnO3. 
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1. Introduction 

 

Stannates such as CaSnO3, SrSnO3 and BaSnO3 have been reported in the 

literature as compounds with the classic perovskite structure, with stoichiometry ABO3 [1,2]. 

With respect to other perovskites, their Bravais lattice depends on the A cation. In this 

sense, BaSnO3 has an ideal cubic structure [3,4] with space group  and is an n-type 

semiconductor with a band gap of approximately 3.4 eV, which is similar to the band gap of 

other photocatalysts such as TiO2, SrTiO3, ZnO and ZnS [5-7]. CaSnO3 and SrSnO3 have 

unit cells that differ from those of other perovskite-structured oxides; their unit cells are 

composed of distorted cubes and are classified as orthorhombic (space group ) 

because of the tilting of octahedra, and their band gaps are 4.4 eV and 4.1 eV, respectively 

[2,8,9]. In these compounds, the local octahedral environment around Sn4+ is maintained 

and the corner-sharing octahedral connectivity of the perovskite structure is also preserved 

[2]. However, the difference in the symmetries are driven by a mismatch in the fit of the 

alkaline-earth cation to the cubic-octahedral cavity in the corner-sharing octahedral 

network; this mismatch is due to the smaller ionic radius of Sr2+ or Ca2+ compared to that of 

Ba2+ [8,9]. As a consequence, a change in the Bravais lattice occurs when the A cation is 

changed. 
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These stannates exhibit interesting properties that lead to their application as stable 

thermal capacitors, high-quality humidity sensors and photoluminescent and photocatalytic 

materials [10-13]. The use of these materials for photocatalytic water splitting is well known 

[14,15]. Nonetheless, the literature contains very few studies on the use of perovskite-

structured stannates for the photodegradation of organic dyes, although SrSnO3 has been 



synthesized by cyclic microwave radiation and used in the photocatalytic decolorization of 

methylene blue with high efficiency [16]. 

The objective of the present work was to obtain photocatalysts based on Sr1-

xBaxSnO3 (x = 0, 0.25, 0.50, 0.75 and 1) powders prepared by solid-state reaction and to 

evaluate the influence of the barium content on the structural characteristics of the 

materials as well as its influence on the ability of the photocatalysts to degrade a textile dye.  

 

2. Experimental procedure 

 

2.1. Synthesis and characterization of the photocatalysts 

 

Sr1-xBaxSnO3 (x = 0, 0.25, 0.50, 0.75 and 1) powders were prepared by solid-state 

reaction [8,17] using stoichiometric amounts of BaCO3 (JOHNSON MATTHEY S.A.; 

99.99%), SrCO3 (MERCK; 99.99%) and SnO2 (ALDRICH; 99.99%). The precursors were 

milled in a planetary mill using an agate vessel with a rotation speed of 400 rpm for 26 min. 

After being milled, the samples were calcined at 1000 °C for 6 h with a heating rate of 5 

°C.min-1. Powders were deagglomerated and calcined again at the following temperatures 

for crystallization of the perovskites: 1100 °C for 8 h for SrSnO3; 1250 °C for 6 h for 

Sr0.75Ba0.25SnO3, Sr0.50Ba0.50SnO3 and Sr0.25Ba0.75SnO3; and 1350 °C for 6 h for BaSnO3. All 

temperatures were optimized on the basis of the formation of the desired phases. 

All of the powders were structurally characterized by X-ray diffraction with a two-

circle Bruker D8 diffractometer using monochromatized Cu Kα1 radiation (λ = 1.5406 Ǻ). 

Data for Rietveld refinement of all of the samples were collected in the 2θ range of 10° to 

120° at room temperature, and calculations were performed using the FullProf program 

[18]. 



Infrared spectroscopy measurements were performed in a Shimadzu IRPrestige-21 

spectrophotometer over the wavenumber range of 2000 to 400 cm-1 using KBr pellets. 

Raman spectroscopy measurements were performed with an S/Witec Alpha 300 scanning 

near-field optical microscopy system equipped with a Nd:YAG laser source with a 

wavelength of 514 nm and an incident power of 150 W/mm2. The data acquisition time was 

125 s in a range between 0 and 2000 cm-1. The optical absorbance was measured by 

diffuse reflectance spectroscopy in a SHIMADZU model UV-2550 spectrophotometer in the 

wavelength region 190–900 nm, and the optical band gap values (Eg) were determined 

using the method of Wood and Tauc [19]. The morphology was evaluated by field-emission 

scanning electron microscopy (FE-SEM, Joel 6301-F), which was operated at a low voltage 

(7 kV) to limit charging effects and to achieve high resolution without the need for surface 

metallization. Microanalysis by energy-dispersive spectroscopy was performed with a JEOL 

model JSM 6400 (Oxford INCA). 

 

2.2. Photocatalysis and adsorption tests 

 

The Sr1-xBaxSnO3 system was evaluated via the photo-oxidation of an organic textile 

dye, Remazol golden yellow (RNL), which is widely used in the textile industry. During the 

photocatalytic tests, 10.0 mg of the Sr1-xBaxSnO3 powders was added to a Petri dish 

containing 15.0 mL of a 10 ppm aqueous solution of RNL with no stirring. All of the 

analyses were performed in triplicate at pH = 6.0. Experiments were conducted in a 10 × 10 

× 100 cm3 lab-made reactor for 5 h using a UVC lamp (λ = 254 nm) [20]. One test was 

performed under the same conditions without a photocatalyst for the measurement of the 

photolysis. 



An adsorption test without UV irradiation was also performed. The same amounts of 

powders (10.0 mg) were added to an aqueous solution of RNL (15.0 mL of a 10.0 ppm 

solution) and were sealed in a closed system in the absence of light for 5 h. 

Evaluation of the adsorption and of the photocatalysis was performed by 

measurement of the discoloration percentage. UV–vis analysis of the resulting solution was 

performed after centrifugation and filtering of the suspension. The same equipment 

described before was used, but in transmittance mode. The discoloration percentage was 

obtained from the band at 410 nm, which is assigned to the N=N bond, i.e., the azo bond. 

The values were calculated using a calibration curve obtained from the intensity of the 

absorption band at 410 nm of solutions with known concentrations of RNL.  Discoloration 

due to photolysis was subtracted from the discoloration percentage. 

 

3. Results and discussion 

 

3.1. Characterization of the photocatalysts 

 

3.1.1. X-ray diffraction 

XRD patterns of all of the samples are presented in Fig. 1. The patterns were 

indexed to a cubic unit cell (ICDD 74-1300) in the case of BaSnO3 and to an orthorhombic 

one (ICDDD 22-1442) in the case of SrSnO3. No ICDD pattern was found for the solid 

solution. 

The XRD patterns confirmed the formation of the perovskite structure. A solid 

solution was obtained for all of the intermediate compositions (from x = 0.25 to x = 0.75), 

and it was confirmed by the shift of the peaks to smaller angles in the XRD patterns as Sr2+ 

was substituted by Ba2+. Small peaks were observed at 26.7° and 33.9° in the patterns of 



SrSnO3 and Sr0.75Ba0.25SnO3; these peaks were assigned to SnO2, which was present as a 

secondary phase (ICDD 078-1063). Mountstevens et al. [8] and Glerup et al. [21] also 

synthesized SrSnO3 by solid-state reaction and obtained single-phase materials; however, 

a higher temperature (1380 °C) was used by Mountstevens et al., whereas Glerup et al. 

employed two heat treatments at 1200 °C for 8 h. Stanulis et al. [22] have synthesized 

SrSnO3 using a new sol–gel method for the formation of crystalline phases at temperatures 

between 700 and 900 °C; this method resulted in formation of SnO2 at higher temperatures. 

The structural parameters determined via Rietveld refinement (Fig. 2) are shown in 

Table 1, in addition to the Ba2+/(Sr2++ Ba2+) ratio obtained by EDS. Perovskites with 

different crystalline structures were obtained as a function of the composition, varying from 

orthorhombic for SrSnO3 and Sr0.75Ba0.25SnO3 (space group ) to cubic for BaSnO3 

and Sr0.25Ba0.75SnO3 (space group ) in addition to the tetragonal structure for 

Sr0.50Ba0.50SnO3 (space group ); these results are in agreement with previous 

results reported in the literature [23-28]. The change of the space group for the different 

compositions is due to the substitution of Sr2+ for Ba2+ (i.e., the A cation); Sr2+ ions are 

smaller than Ba2+ ions, which leads to an A–O bond with greater covalent character.  
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Yuan et al. [15] prepared Ba1-xSrxSnO3 perovskites by the polymerized complex 

method and reported the same space groups observed in the present work for the samples 

with x = 0, 0.25, 0.75 and 1, whereas the sample with x = 0.50 exhibited a different space 

group of . Mizoguchi et al. [17] reported a space group of ( ) for SrSnO3, which 

is similar to the space group . This change in space group is related to the bonding 

among octahedra. According to Zhang et al. [23], when Sr2+ occupies the cubic-octahedral 

cavity, octahedra tilt, which changes the crystalline structure but maintains the local 

octahedral configuration among O2- and Sn4+ ions.  

Pbnm Pnma

Pbnm

 



3.1.2. Infrared spectroscopy 

The infrared spectra of all of the samples are shown in Fig. 3. Three vibrational 

modes were expected for the ABO3 perovskites: 1, which is related to the B-O stretch; 2, 

which is assigned to the B–O–B bend; and 3, which is related to the A–BO3 lattice mode 

[29-31]. Some splitting may occur in the case of distorted perovskites, which leads to 

additional bands [32]. In the present case, the 1  vibration was observed at approximately 

669 cm-1, with small shoulders between 574 and 534 cm-1; these shoulders were especially 

noticeable in the spectrum of SrSnO3. As Ba2+ was substituted into the lattice, these small 

shoulders became less defined, most likely due to a smaller distortion of the octahedra. 

In addition to the vibrations assigned to the perovskite, additional bands were also 

observed at 1772 cm-1 (small), 1463 cm-1 (broad or with a high intensity) and 860 cm-1 

(medium size). These bands were more intense in the spectrum of SrSnO3, which is related 

to the vibrational mode   2
3COA  of the carbonates used as precursors; these results 

indicate that decomposition of the carbonates during the heat treatment was not complete 

[33]. Differences in the intensity are most likely related to the synthesis temperatures. The 

presence of SrCO3 may be responsible for the formation of SnO2 (Fig. 1) because 

stoichiometric amounts of Sr and Sn were used in the synthesis. 

 

3.1.3. Micro-Raman spectroscopy 

Raman spectra of all of the samples are shown in the Fig. 4. The Raman spectra of 

perovskites are well described in the literature. For orthorhombic perovskites (Pbnm) such 

as SrSnO3, 24 active modes may be present; however, not all of them are always observed 

due to overlapping and due to the low polarizability of certain modes [23].  

The spectrum of SrSnO3 shows lattice soft modes below 173 cm-1, scissoring modes 

of the Sn–O–Sn groups at approximately 223 cm-1 and O–Sn–O bending motions and Sn–



O–Sn scissoring motions at approximately 252 cm-1. A set of bands at approximately 380 

and 450 cm-1 and a band between 640 and 710 cm-1 are also expected; these bands are 

related to a Sn–O3 torsion mode and to a stretching mode, respectively. Additional bands at 

721, 745 and 1148 cm-1 can also be observed; these bands are assigned to the presence 

of defects or disorder in the SrSnO3 perovskite structure. For cubic perovskites such as 

BaSnO3, no vibration mode should be observed because of its highly symmetric structure 

(space group ) [23, 34-36]. mPm


3

In the present work, the bands observed for SrSnO3 were in agreement with the 

literature, as previously reported, except for a well defined band at 202 cm-1, which was not 

assigned to this perovskite, to SrCO3 or to SnO2. This band can be assigned to the 

hydration of the perovskite structure [37]; however, the presence of non-ordered reduced tin 

oxide (SnO) cannot be excluded [38-40]. 

The spectra of the other compositions were widely influenced by the cationic 

substitution into the A sites, as already reported in the literature [36]. For Sr0.75Ba0.25SnO3, 

the intensity of the lattice mode (171 cm-1) exhibited a meaningful decrease, whereas a 

broad band was observed at 203 cm-1 along with quite small bands at approximately 270 

and 305 cm-1. Tenne et al. [41] have observed second-order modes in the spectra of 

Sr0.8Ba0.2TiO3 monocrystals at approximately 220 cm-1, similar to the result observed in the 

present work for Sr0.75Ba0.25SnO3. The inset of Fig. 4 shows that the spectra of 

Sr0.50Ba0.50SnO3, Sr0.25Ba0.75SnO3 and BaSnO3 contain very small bands between 400 and 

500 cm-1 despite the cubic symmetry of the latter two phases. The presence of these bands 

indicates that the SnO6 octahedra became disordered with a change in its symmetry as 

already observed by other authors [23,42]. In the case of BaSnO3, broad bands at 668 and 

739 cm-1 were also observed by Cerdà et al. [43], who attributed these bands to the 

presence of local defects. 



 

3.1.4. UV–visible spectroscopy 

UV–vis spectra and the band gaps of the Sr1-xBaxSnO3 samples are presented in Fig. 

5. A meaningful decrease in the band gaps was observed as the amount of Ba2+ increased 

in the solid solution. The values reported in the present work were similar to those reported 

by Mizoguchi et al. [2] and Lee et al. [44] for SrSnO3 (approximately 4.0 eV) and BaSnO3 

(3.1 eV). Mizoguchi et al. [2] have compared the band gaps of BaSnO3 and CaSnO3 both 

theoretically and experimentally. They also observed smaller values for BaSnO3 and 

attributed this behavior to the increased electronegativity of the Ca2+ ion (better energetic 

overlap) and especially to the octahedral tilting distortion (better spatial overlap). According 

to Yuan et al. [15], as tilting  among SnO6 octahedra increases, the Sn 5s non-bonding 

character at the minimum of the conduction band is lost and anti-bonding Sn 5s-O 2p 

contributions become more important. As a consequence, the minimum energy of the 

conduction band is pushed up, which results in a corresponding increase in the band gap. 

 

3.1.5. Scanning electron microscopy  

FE-SEM micrographs of Sr1-xBaxSnO3 powders are presented in Fig. 6. A 

meaningful influence of the composition on the microstructure was observed, with an 

increase in the average grain size besides an increase in the grain size distribution (SnSrO3 

= 160  64 nm; Sr0.75Ba0.25SnO3 = 205  44 nm; Sr0.50Ba0.50SnO3 = 250  68 nm; 

Sr0.25Ba0.75SnO3= 265  87 nm and BaSnO3 = 310  133 nm) as barium is substituted into 

the perovskite structure. This behavior is related to the different synthesis temperatures 

necessary to obtain the desired phase.  

 

3.2. Discoloration of azo-dye solutions 



 

3.2.1. Photocatalytic tests 

UV–vis spectra of the RNL solutions after photocatalytic test are presented in Fig. 

7. The band at 410 nm is characteristic of the azo group [45] responsible for the color of the 

dye [46]. The intensity of this band decreased after photocatalytic treatment in the presence 

of the perovskite, which indicated that discoloration occurred [10,44,47]. The results 

presented in Fig. 7 indicate that the extent of photodiscoloration increased as the amount of 

Ba2+ substituted into the perovskite increased. As a result, the percentage of discoloration 

reached in the presence of BaSnO3 was almost twice that achieved in the presence of 

SrSnO3.  

Despite the scarcity of results related to the use of stannates in the photodegradation 

of textile dyes, some authors have reported the use these materials for the photocatalytic 

splitting of water. Borse et al. [10,47] and Yuan et al. [15], in different papers, reported a nil 

photocatalytic activity for BaSnO3 that improved with the addition of Pb or Sr into the 

perovskite lattice. Chen et al. [48] and Zhang et al. [23] have evaluated the use of SrSnO3 

with 0.5 wt% Pt as a co-catalyst. Different methods of synthesis have been used to obtain 

the perovskite in these papers: hydrothermal synthesis and solid-state reaction. Catalysts 

obtained via the hydrothermal method exhibited efficiencies almost ten times greater than 

those of samples prepared by solid-state reaction, which has been attributed to the greater 

surface area of SrSnO3 prepared via the hydrothermal method. With respect to the 

photocatalytic degradation of dyes, Junploy et al. [16] achieved 85% discoloration of 

methylene blue after 320 min of UV irradiation in the presence of SrSnO3. 

The results obtained in the present work differ substantially from those reported in 

the literature for photocatalytic water splitting when the solid solution Sr1-xBaxSnO3 was 

used because, according to our results, BaSnO3 led to highest discoloration percentage. 



Differences in surface area may not be the reason for the differences in the discoloration 

percentages especially considering that samples with the highest particle size showed the 

highest discoloration percentage. 

The photocatalytic behavior can be understood by considering the possible 

mechanisms of dye photodegradation, i.e., the direct and indirect mechanisms [49-55]. 

When a semiconductor with an appropriate band-gap energy is irradiated with ultraviolet 

radiation, electrons are excited into the conduction band ( ) and holes are formed in the 

valence band ( ). According to the direct mechanism, these photogenerated electrons 

may interact with the organic molecules of an azo dye adsorbed onto the surface of a 

catalyst, thereby leading to the formation of R+ and then to its degradation. These electrons 

may also interact with acceptor molecules such as O2 adsorbed onto the surface of a 

semiconductor or dissolved in water, thereby leading to the formation of a superoxide. 

According to the indirect mechanism, the photogenerated holes may oxidize species such 

as OH- or H2O, thereby forming OH- free radicals, which are a strong oxidizing agent that 

can react with most textile dyes [10,46,56]. 

 

3.2.2. Adsorption tests 

The literature data indicates that BaSnO3 has a low efficiency in water splitting. 

Thus, the indirect mechanism of photocatalytic degradation may not be the most important 

one with respect to dye discoloration. To understand the results obtained in the 

photocatalytic tests, we performed adsorption tests; the results are shown in Fig. 8.  

The results in Fig. 8 indicate that degree of adsorption onto BaSnO3 is more than 

three times greater than that onto SrSnO3. This adsorption does not lead to the breaking of 

the N=N bond, and discoloration is simply related to the decrease in the concentration of 

the RNL adsorbed onto the catalyst after its removal from the solution. A comparison of 



discoloration due to adsorption and discoloration due to photocatalysis reveals that the 

percentage increased from 14.7% to 38.0% for SrSnO3, which represents a 158% increase, 

whereas it increased from 47.3% to 74.0% in the case of BaSnO3, which represents a 56% 

improvement. This result indicates that the direct mechanism is most likely more important 

for dye discoloration on BaSnO3, whereas the indirect mechanism is most likely more 

important in the case of SrSnO3. 

According to Yuan et al. [15], the greater electronegativity of Sr2+ and the short Sr–O 

distance that results from octahedral tilting distortion relative to the octahedral in BaSnO3 

provides favorable opportunities for charge-carrier transport. However, the bottom of the 

conduction band was gradually pushed up as x was increased from x = 0 to x = 1.0 in 

Sr1−xBaxSnO3. Higher energy levels result in stronger reducing ability of the photoinduced 

electrons. As a consequence, the photoinduced electrons of SrSnO3 have enhanced 

reducing ability and SrSnO3 provides favorable opportunities for charge-carrier transport. 

As a consequence, the formation of superoxide and hydroxyl radicals is favored, which 

leads to an indirect mechanism of dye photodegradation. Because some adsorption of RNL 

onto SrSnO3 was observed (Fig. 8), the direct mechanism may also play an important role 

in this photocatalytic reaction, but it does not appear to be the most important mechanism. 

BaSnO3 exhibits small reducing ability, as also reported by Borse et al. [10, 47] in 

two different papers, which causes it to exhibit low efficiency in the photocatalytic splitting of 

water. As a consequence, the formation of hydroxyl radicals is not favored, which 

decreases the efficiency of the indirect mechanism. In the case of this perovskite, the direct 

mechanism appears to prevail as a consequence of its higher adsorption capability. This 

behavior may be related to the high ionic character of the Ba2+–O2- bond, which may lead to 

an active site for interaction with the SO3
- groups present in the RNL structure that were 

originally bonded to Na+. 



 

4. Conclusion 

 

The perovskite structure was highly influenced by the modifier cation Sr2+ or Ba2+. The 

space group and the tilting among octahedra changed when barium was substituted into 

the lattice, which was accompanied by a decrease in the band gap. As a consequence, the 

efficiency of the different perovskites in the photodegradation of the azo dye differed among 

the different materials, with an almost linear increase in photodegradation as the barium 

was substituted for strontium; the photodegradation varied from 38.0% for SrSnO3 to 74.0% 

for BaSnO3. A comparison of the discoloration during the photocatalytic test with the 

discoloration due to adsorption revealed that a higher efficiency was attained when UV 

irradiation was used, especially for SrSnO3, with an increase of 158%, whereas a 56% 

improvement was observed in the case of BaSnO3. These results may indicate that a direct 

mechanism of photodegradation is favored for BaSnO3, where excited electrons interact 

with azo-dye molecules adsorbed onto the perovskite surface. In the case of SrSnO3, the 

indirect mechanism appears to be the most prevalent mechanism, where hydroxyl radicals 

are formed by water splitting and oxidize the azo-dye molecules. 

 

Acknowledgements 

 

The authors acknowledge CAPES-COFECUB (Project 644/09), INCT/CNPq/MCT, 

RECAM/CNPq/MCT and PROINFRA/FINEP/MCT for financial support, J. Le Lannic for 

SEM images at CMEBA of University of Rennes and Marwène Oumezzine for his help in 

the Rietveld refinements. 



References 

 

[1]. Alves, M. C. F.; Souza, S. C.; Lima, H. H. S.; Nascimento, M. R.; Silva, M. R. S.; 

Espinosa, J. W. M.; Lima, S. J. G., Longo, E.; Pizani, P. S.; Soledade, L. E. B.; Souza, A. G.; 

Santos, I. M. G.; J. Alloys Compd.; 476, (2009), 507-512; 

[2]. Mizoguchi, H.; Hang W. Eng. and Patrick M. Woodward; Inorg. Chem.; 43, (2004), 1667-

1780; 

[3]. Smith, M. G.; Goodenough, J. B.; Manthiram, A.; J. Solid State Chem.; 98, (1992), 181-

186; 

[4]. Stokes, H. T.; Kisi, E. H.; Hatch, D. M. and Howard; Acta Crystallogr. B; 58, (2002); 934-

938; 

[5]. Bouhemadou, A.; Haddadi, K.; Solid State Sci.; 12, (2010), 630-636; 

[6]. Kato, H.; Kado, A.; J. Phys. Chem. B; 106, (2002), 5029-5034; 

[7]. Smith, A. J.; Welch, J. E.; Acta Cristalogr.; 13, (1960), 653-656; 

[8]. Mountstevens, E. H.; Attfield, J. P.; Redfern, S. A. T.; J. Phys-Condens. Mat.; 15, 

(2003), 8315-8326; 

[9]. Mountstevens, E. H.; Redfern, S. A. T.; Phys. Rev. B; 71, (2005), 220102R; 

[10]. Borse, P. H.; Joshi, U. A.; Ji, S. M.; Jang, J. S.; Lee, J. S.; Appl. Phys. Lett.; 90, 

(2007), 034103; 

[11]. Bucur, R. L.; Bucur, A. L.; Novaconi, F.; Nicoara, I.; J. Alloys Compd.; 542, (2012), 

142–146; 

[12]. Di Paola, A.; García-López, E.; Marcì, G.; Palmisano, L.; J. Hazard. Mater.; 211-212, 

(2012), 3-29; 

[13]. Kocemba, I.; Wróbel-Jedrzejewska, M.; Szychowska, A.; Rynkowski, J.; Glówka, M.; 

Sensor and Actuat. B; 121, (2007), 401-405; 



[14]. Shi, J.; Guo, L.; Prog. Nat. Sci.: Mat. Int.; 22, (2012), 592-615; 

[15]. Yuan, Y.; Lv, J.; Jiang, X.; Appl. Phys. Lett.; 91, (2007), 094107. 

[16]. Junploy, P.; Thongtem, S.; Thongtem, T.; Superlatices and Microst.; 57, (2013), 1-10; 

[17]. Mizoguchi, H.; Woodward, P. M.; Park, C. H.; Keszler, A. D.; Strong Near-infrared 

Luminescence in BaSnO3; J. Am. Chem. Soc.; 126, (2004a), 9796. 

[18]. Roisnel, T.; Carvajal, J. R.; Program: Fullprof, LLB-LCSIM, France, 2000; 

[19]. Wood, D. L.; Tauc, J.; Phys. Rev. B; 5, (1972), 3144-3151; 

[20]. Bouzaza, A.; Laplanche, A.; J. Photoch. Photobio. A; 150, (2002), 207–212; 

[21]. Glerup, M.; Knight, K. S.; Poulsen, F. W.; Mat. Res. Bull.; 40, (2005), 507-520; 

[22]. Stanulis, A; Selskis, A.; Ramanauskas, R.; Geganskiene, A.; Kareiva, A.; Mat. Chem. 

Phys.; 130, (2011), 1246-1250; 

[23]. Zhang, W.; Tang, J.; Ye, J.; J. Mat. Res.; 22, (2007), 1859-1871; 

[24]. Glazer, A. M.; Acta Crystallogr. B; B28, (1972), 3384; 

[25]. Howard, C. J.; Stokes, H.; Acta Crystallogr. B; B54, (1998), 782-789; 

[26]. Lafuso, M. W.; Woodward, P. M.; Acta Crystallogr. B; B57, (2001), 725-738; 

[27]. Woodward, D. I.; Reaney, I. M.; Acta Crystallogr. B; B61, (2005), 387-399; 

[28]. Moreira, E.; Henriques, J. M.; Azevedo, D. L.; Caetano, E. W. S.; Freire, V. N.; 

Albuquerque, E. L.; J. Solid State Chem.; 187, (2012), 186-194; 

[29]. Ramdas, B.; Vijayaraghavan, R.; Bull. Mat. Sci.; 33, (2010), 75-78; 

[30]. Last, J. T.; Phys. Rev.; 105, (1957), 1740-1750; 

[31]. Perry, C. H.; Khanna, B. N.; Phys. Rev.; 135, (1964), A408-A412; 

[32]. Karlsson, M.; Ahmed, I.; Matic, A.; Eriksson, S. G.; Solid State Ionics; 181, (2010), 

126–129; 

[33]. Nyquist, R. and Kagel, R.; Infrared Spectra Inorganics Compounds; Academic Press, 

Inc. (London), 1991; 



[34]. Tarrida, M.; Larguem, H.; Madon, M.; Phys. Chem. Miner.; 36, (2009), 403-413; 

[35]. Moreira, E.; Henriques, J. M.; Azevedo, D. L.; Caetano, E. W. S.; Freire, V. N.; 

Albuquerque, E. L.; J. Solid State Chem.; 184, (2011), 921-928; 

[36]. Zheng, H.; Csete de Gyorgyfalva, G. D. C.; Quimby, R.; Bagshaw, H.; Ubic, R.; 

Reaney, I. R.; Yarwood, J.; J. Eur. Ceram. Soc.; 23, (2003), 2653–2659; 

[37]. Colomban, Ph.; Tran, C.; Zaafrani, O.; Slodczyk, A.; J. Raman Spectrosc.; 44, (2013), 

312-320; 

[38]. Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G.; Roumyantseva, M.; 

J. Solid State Chem.; 135, (1998), 78-85; 

[39]. Lin, Chung-Cherng; Liu, Lin-Gun; J. Phys. Chem. Solids; 58, (1997), 977-987; 

[40]. Zhurbina, I. A.; Tsetlin, O. I.; Timoshenko, V. Yu; Semiconductors+; 45, (2011), 236–

240; 

[41]. Tenne, D. A.; Soukiassian, A.; Zhu, M. H.; Clark, A. M.; Phys. Rev. B; 67, (2003), 

012302; 

[42]. Siny, I. G.; Katiyar, R. S.; Bhalla, A. S.; J. Raman Spectrosc.; 29, (1998), 385-390; 

[43]. Cerdà, J.; Arbiol, J.; Diaz, R.; Dezanneua, G.; Morante, J. R.; Mat. Lett.; 56, (2002), 

131-136. 

[44]. Lee, C. W.; Kim, D. W.; Cho, I. S.; Park, S.; Shin, S. S.; Seo, S. W.; Hong, K. S.; Int. J. 

Hydrogen Energ.; 37, (2012), 10557-10563; 

[45]. Stylid, M.; Kondarides, D. I.; Verykios, X. E.; Appl. Catal. B- Environ.; 47, (2004), 189–

201; 

[46]. Cervantes, T. N. M.; Zaia, D. A. M.; Santana, H.; Quím. Nova; 32, (2009), 2423-2428; 

Brazil; 

[47]. Borse, P. H.; Lee, J. S.; J. Appl. Phys.; 100, (2006), 124915; 

[48]. Chen, Di; Ye, J.; Chem. Mater.; 19, (2007), 4585-4591; 



[49]. Galindo, C.; Jacques, P.; Kalt, A.; J. Photoch. Photobio. A; 130, (2000), 35–47; 

[50]. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, Jean-Marie; 

Appl. Catal. B-Environ.; 31, (2001), 145–157; 

[51]. Liu, Chin-Chuan; Hsieh, Yung-Hsu; Lai, Pao-Fan; Li, Chia-Hsin, Kao, Chao-Lang; 

Dyes Pigments; 68, (2006), 191-195; 

[52]. Mozia, S.; Tomaszewska, M.; Morawski, W.; Dyes Pigments; 75, (2007), 60-66; 

[53]. Rauf, M. A.; Asharf, S. S.; Chem. Eng. J.; 151, (2009), 10–18; 

[54]. Tanaka, K.; Padermpole, K.; Hisanaga, T.; Water Res.; 34, (2000), 327-333; 

[55]. Zhan, H.; Tian, H.; Dyes Pigments; 37, (1998), 231-239; 

[56]. Konstantinou, I. K.; Albanis, T. A.; Appl. Catal. B-Environ.; 49, (2004), 1–14 



 
Table Caption 

Table 1. Refined structural parameters of Sr1-xBaxSnO3 (0  x  1). 

Compound 
EDS 

Ba/(Sr + Ba) 
Crystal 

structure 
Space group

Lattice parameter 
(Å) 

Chi2

a = 5.711 

b = 5.703 SrSnO3 0% Orthorhombic Pbnm 

c = 8.065 

2.81

a = 5.749 

b = 5.733 Sr0.75Ba0.25SnO3 25.5% Orthorhombic Pbnm 

c = 8.099 

2.49

a = 5.761 
Sr0.50Ba0.50SnO3 50.7% Tetragonal I4/mcm 

c = 8.175 
2.64

Sr0.25Ba0.75SnO3 75.3% Cubic 
Pm3¯m 

a = 4.098 2.65

BaSnO3 100% Cubic 
Pm3¯m 

a = 4.115 2.36

 



 
Figure caption 

Fig. 1. XRD patterns of the Sr1-xBaxSnO3 (0 ≤ x ≤ 1) compounds. 

 

Fig. 2 XRD patterns illustrating the fits obtained by Rietveld calculations. (a) SrSnO3; (b) 

BaSnO3 



 

Fig. 3. FT-IR spectra of the Sr1-xBaxSnO3 (0 ≤ x ≤ 1) powders. 

 



Fig. 4. Raman spectra of the powders: (a) SrSnO3, (b)Sr0,75Ba0,25SnO3, (c) 

Sr0,50Ba0,50SnO3, (d)Sr0,25Ba0,75SnO3, and (e) BaSnO3. 

 

Fig. 5. UV-visible absorption spectra of Sr1-xBaxSnO3. The inset shows the estimated band 

gap values as a function of x. 

 

Fig. 6. FE-SEM  images of Sr1-xBaxSnO3.(a) SrSnO3, (b) Sr0.75Ba0.25SnO3, (c) 

Sr0.50Ba0.50SnO3, (d) Sr0.25Ba0.75SnO3 and (e) BaSnO3 powders. 



 

 

 

 

 

 

 

 

 



Fig. 7. UV-visible absorption spectra of the textile dye after photocatalysis in the presence 

of Sr1-xBaxSnO3 perovskites powders of various compositions. 

 

Fig. 8. UV-visible absorption spectra of the textile dye after adsorption in the presence of 

the Sr1-xBaxSnO3 perovskites powders of various compositions. 
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