
HAL Id: hal-00990352
https://univ-rennes.hal.science/hal-00990352

Submitted on 13 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electron-molecular vibration coupling in (DMtTTF)Br
and (o-DMTTF)2[W6O19] salts studied by vibrational

spectroscopy
Andrzej Łapiński, Damian Jankowski, Roman Swietlik, Eric W. Reinheimer,

Marc Fourmigué

To cite this version:
Andrzej Łapiński, Damian Jankowski, Roman Swietlik, Eric W. Reinheimer, Marc Fourmigué.
Electron-molecular vibration coupling in (DMtTTF)Br and (o-DMTTF)2[W6O19] salts studied by
vibrational spectroscopy. Synthetic Metals, 2014, 188, pp.92-99. �10.1016/j.synthmet.2013.11.004�.
�hal-00990352�

https://univ-rennes.hal.science/hal-00990352
https://hal.archives-ouvertes.fr


Electron-molecular vibration coupling in (DMtTTF)Br and  

(o-DMTTF)2[W6O19] salts studied by vibrational spectroscopy 

 

Andrzej Łapiński1,*, Damian Jankowski1, Roman Świetlik1,  

Eric W. Reinheimer2,3, Marc Fourmigué3 

 

1 Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 

 60-179 Poznań, Poland 

2 Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA 

3 Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université Rennes 1, Campus 

de Beaulieu, 35042 Rennes, France 

Abstract 

A novel 1:1 salt encompassing radical cations of DMtTTF (DMtTTF = dimethyltrimethylene-

tetrathiafulvalene) and the Br– anion has been synthesized. Close inspection of the salt’s solid 

state structure revealed the presence of quasi-isolated dimers containing DMtTTF radical 

cations, a specific arrangement whereby the microscopic parameters of DMtTTF•+ might be 

studied. Analysis of the corresponding single crystal IR and Raman spectra of (DMtTTF)Br 

allowed us to study the material’s electronic and vibrational structure and to evaluate the 

electron-molecular coupling constants via the isolated dimer model. Additionally, using 

previously published IR data, analogous calculations were performed on the salt (o-

DMTTF)2[W6O19] (o-DMTTF = o-3,4-dimethyltetrathiafulvalene), which also contains well 

isolated dimers of o-DMTTF radical cations. These calculations revealed that the coupling 

constants for the unsymmetrical donors studied herein are comparable to those for symmetric 

TTF derivatives.  
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1. Introduction 

Within the field of organic conductors, it was very early realized that electrons in these 

materials couple strongly with intramolecular vibrations. This interaction is very important for 

understanding the physical properties of these systems which can display both activated and 

non-activated conductivity as well as superconductivity [1]. Infrared (IR) spectroscopy is a 

powerful method whereby molecular parameters, such as the EMV coupling constants, might 

be determined [2-4].  

The first experimental determination of the EMV coupling constants was performed 

on quasi-one-dimensional conductors containing the organic donor TCNQ (TCNQ = 

tetracyanoquinodimethane). For TCNQ salts possessing uniform or dimerized stacks, the 

phase phonon or isolated dimer models respectively were successfully applied in order to 

estimate the EMV coupling constants [5-8]. Originally developed for the salt K-TCNQ, with 

its well-isolated (TCNQ)2
2- dimers, the latter isolated dimer model provided a means by 

which the experimental determination of the coupling constants in this material could be 

achieved [7]. In addition to doubly-charged TCNQ dimers, the model also found utility in 

salts having TCNQ dimers containing one electron as the totally symmetric TCNQ vibrations 

were found to couple to the charge transfer between the charged and neutral molecules [9]. 

Subsequently, the isolated cluster model was also successfully applied to systems having 

greater than two TCNQ molecules [10-12]. Fitting the IR spectra of various TCNQ salts via 
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multiple models afforded the unique opportunity to experimentally determine fundamental 

molecular parameters such as the EMV coupling constants and compare them to those 

obtained through theoretical calculations [13]. 

 As mentioned above, models of EMV coupling are universal and were successfully 

applied to IR spectra of charge-transfer salts formed by TTF (TTF = tetrathiafulvalene) and its 

derivatives with various acceptors [14]. More specifically, the dimer model has proven 

especially useful in determining the coupling constants for charge transfer materials 

containing TTF derivatives. For example, reliable values for the EMV constants were 

obtained for the salt (BEDT-TTF)2[Mo6O19] (BEDT-TTF = 

bis(ethylenedithio)tetrathiafulvalene) which contained well-isolated (BEDT-TTF+)2
2+ dimers 

[15]. 

 According to symmetry considerations, in linear approximation for non-degenerated 

molecular orbital only the totally symmetric vibrational modes can couple with electrons [6, 

16-17]. For other symmetry modes, the electron–vibrational interaction is forbidden by the 

selection rules and is only correct if the molecules within the dimer have the same symmetry 

[16]. When considering the dimer, where the molecules are asymmetric with respect to one 

another, if those molecules are different or inequivalent, their modes are no longer degenerate 

and couple both in-phase and out-of-phase. In this case, the lack of an inversion center 

suppresses the mutual exclusion rule leading to all of the modes for the constituent molecules 

within the dimer becoming both IR and Raman active. Additionally, all of their symmetric 

modes can then couple to the CT electron [18]. Moreover, if we consider the sufficiently fast 

charge transfer between the dimer molecules due to electromagnetic radiation, their nuclear 

configurations do not have time to change in response to the charge transfer and their 

molecular vibrations arise as the result of the relaxation to each molecule’s respective 

equilibrium configuration. In this case, the symmetry type of the arising vibrational modes 
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depends not only on the final and initial state symmetries, but also on that of the intermediate 

states from which the transferred charge among the neighboring molecules belongs. These 

facts suggest that in some cases non-totally symmetric modes can be also coupled [19]. 

Herein, we describe a new 1:1 charge transfer salt formed via electrochemical 

oxidation of the unsymmetrical donor DMtTTF (Scheme 1) in the presence of Br- anions. 

Within the structure of this salt, the donors are arranged into well-isolated (DMtTTF+)2
2+ 

dimers intimating that the dimer model for EMV coupling should be very well applicable. 

Subsequently, we also used the dimer model for fitting the IR spectrum of the (o-

DMTTF)2[W6O19] salt containing (o-DMTTF+)2
2+ dimers and calculated the EMV coupling 

constants for its o-DMTTF•+ cations. The synthesis, structure and IR spectrum for this latter 

charge transfer salt, with its cations of the unsymmetrical donor o-DMTTF (Scheme 1) and 

the dianionic Lindquist polyoxoanion [W6O19]
2- were the subject of our recent report [20]. 

 

Scheme 1. Molecular structure of the DMtTTF and o-DMTTF donors 

 In the IR spectra for salts formed by unsymmetrical TTF derivatives such as o-

DMTTF, DMtTTF, EDO-TTF, and DOEO, one observes vibrational features suggestive of 

EMV coupling to intramolecular vibrations of donors, especially those related to C=C 

stretching [21-26]. Similarly, in the IR spectra of the salts (DMtTTF)Br and (o-

DMTTF)2[W6O19], we also find a clear evidence of the EMV coupling to C=C stretching 

modes. It should be emphasized that both donor molecules belong to the point group C2v, i.e. 

they have no center of symmetry and in crystal structures their local point symmetries can be 

lowered. The aim of the present study is to evaluate experimentally the EMV coupling 

constants for the unsymmetrical donors o-DMTTF and DMtTTF. 
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2. Experimental 

Single crystals of the 1:1 salt (DMtTTF)Br salt were grown by the 

electrocrystallization method using Pt electrodes. Electrolyte solution was prepared by 

dissolving DMtTTF (12.1 mg) and [PPh4][Br] (201.6 mg, 0.480 mmol) in freshly distilled 

1,1,2-trichloroethane (10 mL). Crystals were grown at room temperature at a constant current 

density of 0.5 μA. After two weeks the crystals were harvested, washed with a small amount 

of freshly distilled 1,1,2-trichloroethane, and allowed to dry in air. 

 Crystal structure studies were performed on Nonius KappaCCD Diffractometer with 

graphite-monochromated Mo-K radiation ( = 0.71073 Å). The structures were solved by 

direct methods (SHELXS-97) and refined (SHELXL-97) by full-matrix least-squares methods 

as implemented in the WinGX software package. Multi-scan absorption corrections were 

performed using SADABS. Hydrogen atoms were introduced at calculated positions (riding 

model), included in structure factor calculations and not refined. Crystallographic data are 

summarized in Table I. CCDC file 830864 contains the supplementary crystallographic data 

for this paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 Polarized reflectance measurements of the salt (DMtTTF)Br in the frequency range 

from 700 to 16000 cm–1 were performed on single crystals using an FT-IR Bruker Equinox 55 

spectrometer equipped with a Bruker Hyperion 1000 microscope. The optical conductivity 

spectra were obtained by Kramers-Kronig analysis of the reflectance data for the salts 

(DMtTTF)Br and (o-DMTTF)2[W6O19] reported in Ref. 25. The low-frequency data were 

extrapolated to zero frequency assuming a constant value. For frequency values above the 

highest point, the reflectance data were approximated by R~ω-2 while those above 106 cm-1 by 

R~ω-4. Single crystal Raman spectra of (DMtTTF)Br were measured in a backward scattering 
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geometry using Labram HR Horiba Jobin Yvon with a He-Ne laser (exc = 632.8 nm). The 

Raman spectra were recorded in the frequency range 150 – 3500 cm–1 with a spectral 

resolution better than 2 cm–1. In order to avoid sample overheating, the power of the laser 

beam was reduced to ~0.1 mW.  

 The quantum chemical calculations of the DMtTTT•+ and o-DMTTF•+ cations were 

carried out using the Gaussian 03 program with the 6-311++G(d,p) basis set [27]. The hybrid 

gradient-corrected exchange functional proposed by Becke was combined with the gradient-

corrected correlation functional of Lee, Yang, and Parr [28-29]. The initial geometry in the 

optimization process was taken from X-ray data. The geometries of the radical cations were 

fully optimized at the B3LYP/6-311++G(d,p) level of theory and those structures were 

checked by analysis of the harmonic vibrational frequencies to verify whether they are at 

minima, saddle points or stationary points of higher orders. Only positive eigenvalues of the 

Hessian matrix were obtained, proving that the calculated geometry was at a minimum on the 

potential energy surface. DFT orbitals were obtained by solving the Kohn-Sham equation 

which included both exchange and correlation terms. Recently, a normal mode analysis for 

neutral DMtTTT and o-DMTTF molecules as well as their cations was already performed [27, 

29]. 

 

3. Results and Discussion  

3.1. Crystal structures of (DMtTTF)Br and (o-DMTTF)2[W6O19] 

The crystal structure data for the 1:1 salt (DMtTTF)Br collected at room temperature 

is presented in Table I. This salt crystallizes in the monoclinic pace group P21/c and contains 

both cations and anions on general positions. As shown in Figure 1, the oxidized molecules 

are organized into strongly-dimerized chains with very short intradimer S···S contacts at 

3.386(7) and 3.502(7) Å, while the contacts between the sulfur atoms within their interdimer 

 6



analogues exceeds 3.9 Å. Furthermore, the stacks are oriented perpendicular to each other, an 

orientation similar to those observed in TMTTF salts that prohibits any sizeable lateral S···S 

contacts. In addition, no C–H···Br hydrogen bonds were observed upon closer inspection. As 

a result of these structural features, the (DMtTTF)2
2+ dimers can be considered well-isolated 

from one another and that the unpaired electrons are strongly localized within the dimeric 

unit. The intramolecular bond lengths for the TTF core of the DMtTTF•+ cation are given in 

Table II. Given the donor’s unsymmetrical nature, for clarification, those bonds from the 

fulvalene ring having only hydrogen atoms is denoted by an ‘R’ while those from the ring 

possessing methyl groups are denoted by ‘Me’. 

Recently, a charge transfer salt containing radical cations of the unsymmetrical donor 

o-DMTTF and the closed shell, dianionic Lindquist polyoxometalate [W6O19]
2- was reported 

[20]. In this salt, the donor molecules aggregate in a head-to-tail manner, forming strong face-

to-face doubly charged (o-DMTTF+)2
2+ dimers that lie nearly parallel to the ab plane (see Fig. 

2). Given the size of the [W6O19]
2- anion within the structure, the dimers are effectively well 

isolated from one another in the solid state. The detailed X-ray structural analysis, including a 

description of its array of hydrogen bonding interactions, was discussed in Ref. 20. 

 

3.2. Raman and IR spectra 

The single crystal Raman spectrum for (DMtTTF)Br is shown in Fig. 3. Within the 

region of C=C stretching, one observes three bands at 1412, 1507, and 1587 cm-1 assigned to 

the stretching of the central C=C bond, and the out-of-phase and in-phase stretching of the 

ring bonds, respectively. As DMtTTF has no center of symmetry, the mode related to the out-

of-phase C=C ring stretching can be viewed in the Raman spectrum. Other bands are assigned 

as follows: 1034 and 933 cm-1 (CH3 wagging), 960 cm-1 (C-S and C-C stretching), 510 and 

451 cm-1 (in-phase and out-of-phase fulvalene ring breathing) and 221 cm-1 (deformation).  
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Single crystal IR reflectance spectra of the (DMtTTF)Br salt for two polarizations (parallel 

and perpendicular to the a-axis) are displayed in Fig. 4a. Within these spectra, we observe a 

strong electronic absorption centred at ~7700 cm–1 assigned to the charge transfer transition 

between the fully ionized DMtTTF•+ molecules and an intense narrow vibrational feature at 

~1338 cm-1 assigned to the electron-molecular vibration (EMV) coupling of the C=C 

stretching mode with the charge transfer transition at 7700 cm–1. It has been well established 

in spectroscopic studies on TTF derivatives that the largest EMV coupling constants are 

attributed to coupling with the central C=C bond stretching vibration. As the band at 1338 cm-

1 constituted the largest such vibrational feature based on magnitude, it was assigned to this 

coupling mode; however in comparison with the Raman data it is shifted towards lower 

wavenumbers by ~74 cm-1 due to this strong coupling. It is also important to note that within 

the IR spectrum, at the E//a orientation, we also observed smaller vibrational features at 1436 

and 1498 cm-1 corresponding to the electron-molecular vibration (EMV) coupling of the C=C 

ring anti-phase and in-phase stretching, respectively  

The IR reflectance spectra of (o-DMTTF)2[W6O19] single crystals show also a clear 

evidence of interaction with the charge transfer transition at ~10250 cm−1 (Fig. 4b): within the 

region of C=C stretching we observe a strong vibrational feature at 1345 cm-1 as well as much 

weaker bands at 1465 and 1553 cm-1, which correspond to the C=C central, and C=C ring 

anti-phase and in-phase stretching modes respectively (see Fig. 6). It is important to note that 

by comparison, the charge transfer band of (o-DMTTF)2[W6O19] lies at much higher energy 

than its analogue within (DMtTTF)Br. The energy of this transition is proportional to the on-

site repulsion energy between two charges (Hubbard U parameter). By a first approximation, 

the higher energy of the transition, in comparison to other TTF derivatives, could be 

associated with a larger U. However, it is also possible that the presence of hydrogen bonding 

between the donors and the anions is also having an effect. For the Raman spectrum of (o-
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DMTTF)2[W6O19], within the region of C=C stretching vibrations, three bands at 1417 cm-1, 

1483, and 1556 cm-1 were found and assigned to the stretching of central C=C bond, as well 

as the out-of-phase and in-phase stretching of ring bonds respectively [20]. 

In the investigated salts, the shifting of vibrational bands toward lower wavenumbers 

with respect to the Raman data and, moreover, with a characteristic antiresonance dip, provide 

evidence of their interaction with the charge transfer transition. This effect is quite visible for 

(DMtTTF)Br salt where antiresonance dip at 1326 cm-1 was noted (see Fig. 5); the band at 

1338 cm-1 displays a characteristics reminiscent of an asymmetric Fano lineshape [30]. When 

the electric field is polarized along a chain of molecules, the interaction between the 

electronic absorption and phonon frequencies gives rise to an asymmetric Fano lineshape of 

bands [30]. The analysis of the Fano-effect, in conjunction with the Raman data, can lead to 

quantitative predictions for the various electron phonon couplings [31]. 

 

3.3. Calculation of EMV coupling constants 

 Much like the IR spectra for the recently published (o-DMTTF)2[W6O19] whose 

structure contained quasi-isolated dimers [20], the IR spectra for (DMtTTF)Br can also be 

analyzed in terms of the isolated dimer model. For both salts, due to the coupling, the 

vibrational modes borrow intensity from the nearby CT electronic transition and occur at 

frequencies lower than their corresponding Raman bands. The IR spectra of the investigated 

salts are dominated by the occurrence of very strong electronic bands (CT transitions) that are 

polarized perpendicularly to the molecular planes. 

 Using the Rice's model for both compounds, we calculated the frequency-dependent 

conductivity for the isolated dimer [8]. For the electronic part we have only considered the 

ground and charge-transfer states, disregarding the presence of excitonic intramolecular 

states. Furthermore, the coupling between electrons and the molecular vibrations is assumed 

 9



to occur through the phononic modulation of the on-site energy. Using linear-response theory, 

the frequency-dependent conductivity in the direction of the CT transition is given by the 

formula [8] ( ): 1

   
    
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where e is the electronic charge, a the intradimer distance, N/V the number of dimers per unit 

volume,    eCTCT ic   222
18  the CT electronic susceptibility and 
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EMV coupled phonons are described by the phonon propagator: 
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where ωα and γα are the frequencies and natural widths of the uncoupled modes. The constant 

λα is a dimensionless coupling constant related to the electron-molecular vibration (e-mv) 

coupling constant gα by 




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

CT

gc 22
18

                                    (3) 

The real part of the scalar conductivity σ(ω) yields the CT excitation spectrum of the ion-

radical dimer, which consists of the primary CT excitation mode and a series of absorption 

bands in the region of the molecular frequencies {ωα}. The latter are oscillations in the radical 

electron dipole moment driven by the antisymmetric vibrational modes qα [8]. In order to 

obtain the microscopic parameters for the dimer, we have fitted Re[σ(ω)] to the experimental 

spectra of (DMtTTF)Br and (o-DMTTF)2[W6O19]. Figures 5 and 6 show the conductivity 

spectra obtained by a Kramers-Kronig transformation of the experimental reflectance spectra 

(upper panels) and the conductivity spectra calculated within the framework of the dimer 

model (lower panels). In Table 3, the model parameters for the fit to the E//a conductivity 

spectra of (DMtTTF)Br and (o-DMTTF)2[W6O19] are presented and illustrate that the 
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coupling constants for all three C=C stretching modes were evaluated. In Table 4, one can see 

that EMV coupling constants for TTF and its derivatives BEDT-TTF, DOEO (DOEO = (1,4-

dioxane-diyl-2,3-ditio)ethylenedioxytetrathiafulvalene), TMTTF (TMTTF = 

tetramethlytetrathiafulvalene) and TTP (TTF = bis-fused TTF) compare closely to those 

determined for DMtTTF and o-DMTTF [2,3,15,25,32,33]. One can also see that the most 

strongly coupled modes are those assigned to vibrations of the TTF skeleton, i.e. the modes 

related to the stretching vibrations of both central and ring C=C bonds. From the frequency 

and intensity of the CT transition we can also extract the values of the intradimer transfer 

integral t and the effective Hubbard energy Ueff. For (DMtTTF)Br, we find t = 0.358 eV and 

Ueff = 0.418 eV, while for (o-DMTTF)2[W6O19] t = 0.307 eV and Ueff = 0.974 eV. 

As mentioned previously, the charge transfer band in (o-DMTTF)2[W6O19] lies at 

larger frequency than that observed for (DMtTTF)Br, a fact that has an important 

consequence for both the Ueff and EMV coupling parameters. When considering salts based 

on TTF derivatives, one might expect their charge transfer bands related to intermolecular 

electronic transitions between neighboring fully charged molecules occur at approximately 

the same frequency within their spectra. However, given that those bands might be influenced 

by the presence and magnitude of on-site Coulombic interactions, the actual frequencies for 

their charge transfer bands can be quite different [34]. For (o-DMTTF)2[W6O19], observed at 

10250 cm-1 is comparable to those found for salts based on DOEO [25], M(dddt)2 (M=PdII, 

PtII and NiII [35-37] and BEDT-TTF [25,35-40]. Meanwhile, the considerably lower value of 

7700 cm-1
, observed in (DMtTTF)Br, is akin to those measured in Ni(dmit)2 and selected 

BEDT-TTF salts [41-43].  

In order to investigate the differences between CT bands, we computed the highest 

occupied molecular orbitals (HOMO) for the DMtTTF•+ and o-DMTTF•+ radical cations. 

Figure 7a reveals that the electron density distribution on atoms within the HOMO is 
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observed in the central C2S4 core of each donor. If the conduction band for (o-

DMTTF)2[W6O19] and (DMtTTF)Br originates from the HOMO, we would expect 

delocalized conducting electrons to lie parallel to the stacking axis. The direct overlap of the 

individual C2S4 cores from the DMtTTF•+ and o-DMTTF•+ radicals with interplanar distances 

of 3.311 and 3.498 Å, respectively, (see Figure 7b) enables intermolecular electron transfer 

through the -orbitals. Moreover, the intradimer distance among the donors in (DMtTTF)Br is 

smaller than that for (o-DMTTF)2[W6O19] and suggests that the charge-transfer band for the 

former salt should lie at lower frequency than that for the latter. 

In (o-DMTTF)2[W6O19], both o-DMTTF•+ cations within the dimer strongly interact 

with the [W6O19]
2- anions via hydrogen bonding and suggest that this anion-donor interaction 

is not only responsible for different intradimer distances but also the position of charge-

transfer band. For example, it is well known that strong anion-donor interaction can induce a 

shift of π-hole density and thus contribute to charge ordering effects in organic conductors 

based on TTF derivatives [44]. Therefore, it is possible that the charge density distribution on 

the o-DMTTF•+ radicals in (o-DMTTF)2[W6O19] can be strongly affected by hydrogen 

bonding and that the evaluated molecular parameters for o-DMTTF•+ cations can be distorted 

by the anion-donor interaction. Additionally, on the basis of the DFT calculations, we 

observed that even for isolated o-DMTTF•+ cations, a large amount of positive charge is 

transferred from the TTF core to the outer part of the molecule (see Table V). This may in 

turn also influence the position of charge-transfer band, i.e. yield a shift toward higher 

frequencies. 

 

4. Conclusions 

In this paper, we have presented and discussed the infrared spectra of two recently 

synthesized charge-transfer salts (DMtTTF)Br and (o-DMTTF)2[W6O19] in which the donors 
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form strongly dimerized stacks isolated from each other due to effective separation by their 

co-crystallized anions. Analysis of their IR and Raman spectra allowed us to obtain important 

information regarding their electronic and vibrational structure. Spectral features related to the 

electron-molecular vibration-coupling phenomena were analyzed in terms of the model for 

isolated doubly charged dimers and suitable coupling constants were estimated. The values of 

coupling constants obtained for (DMtTTF)Br and (o-DMTTF)2[W6O19] salts are comparable 

to those obtained for other TTF derivatives. We have shown that the most strongly coupled 

modes are due to the stretching vibrations of both central and ring C=C bonds. Nevertheless, 

in the case of (o-DMTTF)2[W6O19], the evaluated parameters can be distorted by hydrogen 

bonding interactions between the o-DMTTF•+ radicals and the [W6O19]
2- anions.  
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Figure captions 

Figure 1. Structure of (DMtTTF)Br: (a) projection view of the unit cell along the a axis, 

showing the absence of inter-stack interactions and (b) side view of the strongly dimerized 

stacks running along the a-axis. 

Figure 2. Crystal structure of (o-DMTTF)2[W6O19]. 

Figure 3. Raman spectrum of the 1:1 salt (DMtTTF)Br recorded for the electrical vector of 

the exciting laser beam (exc = 632.8 nm) parallel to the direction of maximum intensity of the 

band at 1412 cm–1 (C=C stretching), i.e. perpendicular to the a-direction. 

Figure 4. Room temperature reflectance spectra of (DMtTTF)Br (a) and (o-DMTTF)2[W6O19] 

(b) salts recorded for polarization parallel (E//a) and perpendicular (Ea) to the stacking a-

axis. Note the logarithmic wavenumber scale. 

Figure 5. Experimental and calculated conductivity spectra of (DMtTTF)Br salt. Note that the 

electric vector is parallel to the stacking axis and the logarithmic wavenumber scale. 

Figure 6. Experimental and calculated conductivity spectra of (o-DMTTF)2[W6O19] salt. Note 

that the electric vector is parallel to the stacking axis and the logarithmic wavenumber scale. 

Figure 7. Sketch of the HOMO orbital of the DMtTTF•+ and DMTTF•+ cations computed at 

the B3LYP/6-311++G(d,p) level of theory (a). Packing arrangements within the stacks 

observed for the (o-DMTTF)2[W6O19] and (DMtTTF)Br salts (b). 
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Figure 2. Crystal structure of (o-DMTTF)2[W6O19]. 
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Figure 3. Raman spectrum of the 1:1 salt (DMtTTF)Br recorded for the electrical vector of 

the exciting laser beam (exc = 632.8 nm) parallel to the direction of maximum intensity of the 

band at 1412 cm–1 (C=C stretching), i.e. perpendicular to the a-direction. 
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Figure 4. Room temperature reflectance spectra of (DMtTTF)Br (a) and (o-DMTTF)2[W6O19] 

(b) salts recorded for polarization parallel (E//a) and perpendicular (Ea) to the stacking a-

axis. Note the logarithmic wavenumber scale. 
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Figure 5. Experimental and calculated conductivity spectra of (DMtTTF)Br salt. Note that the 

electric vector is parallel to the stacking axis and the logarithmic wavenumber scale. 
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Figure 6. Experimental and calculated conductivity spectra of (o-DMTTF)2[W6O19] salt. Note 

that the electric vector is parallel to the stacking axis and the logarithmic wavenumber scale. 
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Figure 7. Sketch of the HOMO orbital of the DMtTTF•+ and DMTTF•+ cations computed at 

the B3LYP/6-311++G(d,p) level of theory (a). Packing arrangements within the stacks 

observed for the (o-DMTTF)2[W6O19] and (DMtTTF)Br salts (b). 

 

 24



Tables 
 
Table I. Room temperature crystallographic data of the salt (DMtTTF)Br 

Compound (DMtTTF)Br 

Formula C11H12BrS4 

FW (g·mol–1) 352.39 

Crystal color 
Black 

Crystal size (mm) 
0.3×0.3×0.1 

Crystal system 
Monoclinic 

Space group P21/c 

T (K) 293(2) 

a (Å) 7.0259(8) 

b (Å) 12.4074(11 

c (Å) 15.4574(16) 

 (º) 90.0 

 (º) 101.684(9) 

 (º) 90.0 

V (Å3) 1319.6(2) 

Z 4 

Dcalc (g·cm–3) 1.774 

 (mm–1) 3.717 

Total refls. 6878 

Absorption correction multi-scan 

Tmin, Tmax 0.647, 0.690 

Unique refls.  2977 

Rint 0.0316 

Unique refls.  
(I > 2(I)) 

2311 

Refined param. 146 

R1 (I > 2(I)) 0.0503 

wR2 (all data) 0.1355 

Goodness-of-fit 1.117 

Res. dens (e–Å–3) -0.616, 0.614 
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Table II. Intramolecular bond lengths (averaged) within the TTF core. 
 

    Ci=Ci (Å)      Ci–S (Å)    Co–S (Å)    Co=Co (Å) 

    1.389(7)    1.731(5)(R) 
  1.720(5) (Me) 

  1.721(5) (R) 
  1.752(6) (Me) 

  1.349(7) (R) 
  1.329(9) (Me) 

 
(Ci represents the inner carbon atoms of the TTF core, Co the outer ones; R the five-
membered ring side; Me the methyl side).  
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Table III 
Dimer model parameters for the fit to the polarized conductivity spectrum of (DMtTTF)Br 
and (o-DMTTF)2[W6O19] obtained by Kramers-Kronig transformation from the reflectance 
spectra. 

a a = 3.311 Å, N = 2, V = 1319.62 Å3, c1 = 0.600, ωCT = 7700 cm-1, γe = 2900 cm-1 

(DMtTTF)Bra  (o-DMTTF)2[W6O19]
b 

ωα (cm-1) gα (meV) λα  ωα (cm-1) gα (meV) λα        Assignment 

1587 12 0.002  1556 60 0.022 in-phase ring C=C stretch  

1507 20 0.006  1483 80 0.042 anti-phase ring C=C stretch 
1412 74 0.095  1417 100 0.068 central C=C stretch  

ba = 3.498 Å, N = 1, V = 802.10 Å3, c1 = 0.435,  ωCT = 10250 cm-1, γe = 3310 cm-1 
(Ueff /4t equals xa=0.292 and xb=0.793 for (DMtTTF)Br and (o-DMTTF)2[W6O19] salts, respectively) 
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Table IV 
The EMV coupling constants, gα (meV) of the C=C stretching modes ω (cm-1) for several 
TTF-based radical cations. 
 

TTF•+ [2,3]  BEDT-TTF•+ [15]  TMTTF•+ [37]  TTP•+ [38]  DOEO•+ [30] 

ω gα  ω gα  ω gα ω gα ω gα 

1505 42  1460 43  1567 32 1540 8 1575 23 

        1474 54 1494 31 

1420 133  1414 71  1418 133 1423 9 1460 29 
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Table V. 
Charge distribution (Mulliken) on atoms of TTF core calculated at the B3LYP/6-311++G(d,p) 
for DMtTTF•+ and o-DMTTF•+ cations. Note: the numbering of atoms is shown in Fig. 2 
 
Atom DMtTTF•+ o-DMTTF•+

C1 0.737 0.575
S1 -0.615 -0.624
S2 -0.615 -0.624
C2 0.378 0.34
C3 0.378 0.34
C4 0.618 0.585
S3 -0.446 -0.177
S4 -0.446 -0.177
C5 0.65 -0.075
C6 0.65 -0.075
(C6S4) 1.289 0.088

 
 


